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The present work highlights the impact of the working dielectric fluid on the flow and 
the thermal parameters of an axially grooved flat mini heat pipe (FMHP) submitted to 
Electrohydrodynamic (EHD) effects. Three dielectric working fluids are considered: 
pentane, R123, and R141b. A model is developed by considering the Laplace-Young, 
mass, momentum, and energy balance equations. The numerical results show that the 
electric field affects the liquid distribution along the heat pipe and helps the 
condensate to flow back to the evaporator section. Moreover, under the electric field 
conditions, the vapor pressure drop increases, however, the liquid pressure drop 
decreases. The effect of the electric field on the liquid velocity depends on the FMHP 
zone, and the vapor velocity is hardly affected by the EHD effects. Furthermore, lower 
capillary driving pressures are required to provide the necessary capillary pumping 
under EHD conditions. Besides, pentane allows for higher vapor pressure drops 
compared to those obtained with R123 and R141b, while the liquid pressure drops are 
highest for R123. It is found that with R123, the liquid velocity is higher than that 
reached with R141b and pentane. It is also demonstrated that the capillary limit 
increases under EHD conditions, and for R141b, the capillary limit is the highest either 
in zero-field and EHD conditions. Best heat pipe thermal performances are observed 
for wide and deep grooves with R141b. Finally, the optimum fill charge allowing the 
maximum heat transfer capacity is determined for each working fluid and different 
groove dimensions. It is shown that the optimum fill charge is hardly affected by the 
electric field whatever the working fluid. R123 requires the highest optimum fill charge, 
however, the heat transport capacity of the FMHP is the lowest when using this 
working fluid. 
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The use of heat pipes has become a common solution for electronics cooling applications. Their 
major advantages lie in their ability to transfer high heat fluxes under small temperature gradient, 
flexibility, high reliability, and their large heat capacity transport. The heat pipe operation is based 
on evaporation-condensation phenomena. Indeed, in contact with the heat source, the liquid is 
evaporated by absorbing heat at the evaporator, and the vapor, therefore, flows to the condenser 
where it releases the heat. The condensate flows back towards the evaporative region by capillary 
pumping which is ensured by the capillary structure (grooves, screen meshes, or sintered metal 
powder). The heat pipe thermal performances depend on the capillary structure, the heat sink 
temperature, the heat input power, and the environmental working conditions such as gravity and 
acceleration [1-2]. Besides, the proper operation of the heat pipe is based on the best choice of the 
capillary structure and the working fluid combination to provide the necessary capillary height.  

For a capillary pumped heat pipe, the capillary merit number, Mc, which should be high in the 
range of the operating temperature, is used to assess the transport capacity of the working fluids 
according to Dunn and Reay [3]. 

 

𝑀𝑐 =
𝜌𝑙.𝜎.𝛥ℎ𝑣

𝜇𝑙   
(1) 

 

where l, , hv, and l are the liquid density, the surface tension, the latent heat, and the liquid 
dynamic viscosity, respectively. 

The capillary height can be estimated under no-flow conditions by Saad et al., [4] 
 

ℎ𝑐 =
2𝜎.𝑐𝑜𝑠 𝛼

𝜌𝑙.𝑔.𝑟𝑐
 (2) 

 
where rc is the effective capillary radius, and α is the contact angle. 

In flow conditions, the capillary pumping is ensured when the capillary driving pressure overcomes 
the vapor, the liquid, and the hydrostatic pressure drops according to  

 
Δ𝑃𝑐 ≥ Δ𝑃𝑙 + Δ𝑃𝑣 + Δ𝑃𝑔 (3) 

 

where Pc, Pl, Pv, and Pg are the driving capillary pressure, the pressure drops in the liquid and 
vapor phases, and the hydrostatic pressure drop, respectively. 

An alternative technique to enhance the heat pipe thermal performance is the use of external 
fields such as magnetic or electric fields. The latter technique, the so-called electrohydrodynamic 
technique (EHD), is based on the interaction between an electric field and a working fluid. The 
physical principle of the electric field application in heat pipes is based on the fact that electric forces 
in the liquid-phase (condenser) are higher than that in the vapor phase (evaporator), which induces 
an EHD pumping of the condensate back to the evaporator. The electrical force per unit of volume 
that is responsible for the EHD flow is expressed by Durand [5] 

 

𝑓𝑣= q𝑣 Ē - 
1

2
 E2 𝛻𝜀 + 

1

2
 𝛻 (𝜌 

𝑑𝜀

𝑑𝜌
  E2)  (4) 

 

qv is the volume density of the electrical charges, E is the electric field strength,  and  are the fluid 
permittivity and the fluid density, respectively.  

The first term of Eq. (4) represents the Coulomb force which acts on the electrical free charges. 
The second term represents the dielectrophoretic force generated by the spatial variations of the 
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dielectric permittivity of the fluid. Physically, this term represents the force exerted on the 
polarization charges that appear within the fluid under the action of an electric field. The third term 
of Eq. (4) is the electrostrictive force. It is due, on one hand, to the variations of the dielectric 
permittivity with the fluid density, on the other hand, to the non-uniformity of the electric field in 
the dielectric medium. The fluids that are used in combination with the EHD technique are dielectric 
ones that have low electrical conductivity. Hence, the electrical current intensity is very low leading 
to low electrical consumption.  

For an EHD heat pipe, an EHD merit factor, MEHD, which is similar to the capillary merit, Mc, has 
been identified and it is expressed by Jones [6] 

 

𝑀𝐸𝐻𝐷 =
(𝜀𝑙−𝜀𝑣) 𝐸𝑏

2 𝜌𝑙 h𝑣

𝜇𝑙
 (5) 

 
where Eb is the breakdown electric field strength of the saturated vapor. εl and εv are the dielectric 
constants of the liquid and the vapor, respectively.  

In the EHD Merit number, the term (l − v) Eb
2 replaces the surface tension in the capillary Merit 

number; however, it depends on the breakdown field strength of the saturated vapor, which is not 
an intrinsic property of the fluid.  

Under no-flow conditions, an electrical pumping height can be defined similarly to the capillary 
pumping height according to Jones [6] 

 

ℎ𝐸𝐻𝐷 =
(𝜀𝑙−𝜀𝑣) 𝐸

2

2𝜌𝑙𝑔
 (6) 

 
The EHD heat pipe works properly if the driving pressure provided by the combination of the EHD 

and the capillary forces is greater than the sum of all the pressure drops i.e. the pressure losses in 
the liquid and vapor phases and the hydrostatic pressure. This can be expressed by 

 
𝛥𝑃𝐸𝐻𝐷 + 𝛥𝑃𝑐 ≥ 𝛥𝑃𝑙 + 𝛥𝑃𝑣 + 𝛥𝑃𝑔

    
(7) 

 

where PEHD is the EHD driving pressure. 
Several experimental and theoretical studies dealing with the application of the EHD effects in 

heat pipes were carried out. They can be classified according to studies dealing with cylindrical heat 
pipes [6-17], and those dealing with flat heat pipes [18-28]. The choice of the working fluid affects 
strongly the EHD heat pipe operation. The most used dielectric fluids in heat pipes are pentane [17-
21], R11 [7, 10, 11, 19], R113 [12, 13, 15, 16], R141b [17], and R123 [20].  

Experimental works indicated that several advantages can be obtained by using electric fields in 
heat pipes among them we can distinguish: (1) the strong ability of the electric field to push the liquid 
from the condenser to the evaporator, (2) the significant enhancement of the heat transfer capacity 
rate and the active control of the temperature, and (3) the reduction or the elimination of the dry-
out and the flooding zones. 

Theoretical models have been improved and several numerical models available in the literature 
try to explain the EHD effects in axially grooved flat heat pipes. Suman [23] presented a theoretical 
study to analyze the EHD effects on a heat pipe including a grooved capillary structure with a 
triangular section. The results indicate that increasing the intensity of the electric field promotes the 
reduction of the dry-out length and allows to increase of the maximum heat transfer capacity due to 
the Coulomb forces contribution rather than the dielectrophoretic forces. Chang and Hung [24] 
studied the EHD effect on the operation of a flat heat pipe including a grooved capillary structure 
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composed of square-shaped microchannels. The results showed that the application of a non-
uniform electric field promotes the condensate flow back to the evaporator and intensifies the 
capillary limit. Saad et al., [25-27] studied the fluid flow and heat transfer in an EHD axially grooved 
flat heat pipe including square, triangular, and rectangular grooves. It was demonstrated that the 
higher is the electric field intensity, the lower is the capillary pumping required for the liquid flow 
[25]. Besides, higher electric field strengths were needed for the triangle grooves to observe similar 
effects to those observed for the square ones [26]. It was demonstrated that there is an optimum fill 
charge for which the power transferred by the heat pipe is maximum [27]. The effect of the electric 
field on the maximum heat input power is low for shallow grooves, whereas the maximum heat input 
power increases significantly for deep grooves [27].  

The previous studies focused on the effects of the electric field strength [23, 25-26], the electrode 
configurations [24-25], and the groove shape [26] on the flow parameters. To our knowledge, no 
studies were carried out to highlight the impact of the working fluid on the thermal performance of 
electrohydrodynamic axially grooved flat heat pipes. The present paper aims to highlight and assess 
the combined effect of the nature of the working fluid and the use of an electric field on the flow and 
thermal parameters in an axially grooved flat heat pipe. Besides, this study allows identifying the 
optimum fill charges that enable to obtain the maximum heat transport capacity for given groove 
dimensions. 

The evaluation of the FMHP performances in the presence and the absence of an electric field 
requires an analysis of the flow parameters (capillary radius, capillary pressure, liquid and vapor 
pressures, and velocities in both phases) since they affect considerably the maximum powers 
transferred according to Eq. (3) and (7). Likewise, the analysis of the forces exerted in the two phases 
and on the liquid-vapor interface provides undeniable clarifications that could explain the effect of 
the electric field on the flow and heat transfer in an FMHP. Finally, as the performance of the FMHP 
depends also on the working fluid fill charges and the dimensions of the grooves, an analysis of these 
parameters is necessary. The paper is structured around these orientations.  
 
2. Description of The Modeled EHD Axially Grooved Flat Heat Pipe and Mathematical Formulation 
 

The flat heat pipe is composed of five axial square-shaped grooves (Figure 1). Vertical electrodes 
are considered to promote the EHD pumping as it is shown by the section (A-A) of Figure 1. The liquid 
flows back to the evaporator along the corners and the vapor flows in the center of the groove (Figure 
2). The EHD pumping, which originates from the electric forces, is such that the liquid flows from the 
condenser to the evaporator. The FMHP considered in this study is 100 mm length. The lengths of 
the evaporator, adiabatic, and condenser zones are 20 mm, 35 mm, and 45 mm, respectively. The 
thermophysical properties of the working fluids are listed in Table 1 for the saturation temperature 
Tsat = 30 °C. They are determined by REFPROP Software (version 8.0) [28]. 
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Table 1 
Thermophysical and electrical properties of pentane, R123, and R141b 
Working Fluid N-Pentane R123 R141b  

ρl 615 kg/m3 1451.4 kg/m3 1224.3 kg/m3 
ρv 2.5 kg/m3 6.9 kg/m3 4.5 kg/m3 

σ 15  10-3 N/m 14.614  10-3N/m 17.598  10-3N/m 

μl 202  10-6 kg/(m.s) 394.95  10-6 kg/(m.s) 386.50  10-6 kg/(m.s) 

μv 6.782  10-6 kg/(m.s) 10.909  10-6 kg/(m.s) 9.338  10-6 kg/(m.s) 
Δhv 361.6 kJ/kg 169.33 kJ/kg 223.76 kJ/kg 
Mc 1.23 × 1010 9.09 × 109 1.25 × 1010 
Psat 82060 Pa 108990 Pa 93742 Pa 
α 20° 20° 20° 
εl 1.8 εo 4.49 εo 4.5 εo 
εv εo εo εo 
qv 10-5 C/m3 10-5 C/m3 10-5 C/m3 

 

 
Fig. 1. Schematic of the EHD axially grooved flat heat pipe 

 

 
Fig. 2. Liquid-vapor flow evolution along one 
groove 
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The equations governing the electrohydrodynamically driven FMHP operation are developed by 
Saad et al., [25-26], and summarized below 
 
(i) The Laplace-Young equation which takes into account the electric forces that act on the liquid-
vapor interface 

 
𝑑𝑃𝑣

𝑑𝑧
−

𝑑𝑃𝑙

𝑑𝑧
= −

𝜎

𝑟𝑐
2

𝑑𝑟𝑐

𝑑𝑧
+

1

2
(𝜀𝑙 − 𝜀𝑣) 

dE0
2

dz   
(8) 

 
where Pv and Pl are the vapor and liquid pressures. rc is the curvature radius of the liquid-vapor 
interface. Eo is the electric field strength. 
 
(ii) The mass balance equations which are obtained by equalizing the mass flow rates entering and 
leaving an elementary volume of the liquid and vapor phases 

 
𝑑𝑚 𝑙

𝑑𝑧
 =

𝑑(𝜌𝑙𝐴𝑙𝑣𝑙)

𝑑𝑧
=

𝑑𝑚 𝑖𝑙

𝑑𝑧
= 𝜌𝑙 𝑣𝑖𝑙(𝑧) 𝑝𝑖 (9) 

 
𝑑𝑚 𝑣

𝑑𝑧
 =  

𝑑(𝜌𝑣𝐴𝑣𝑣𝑣)

𝑑𝑧
=

dm iv

dz
= −𝜌𝑣 𝑣𝑖𝑣(𝑧) pi (10) 

 
𝑑𝑚 𝑖𝑙

𝑑𝑧
= 𝜌𝑙  𝑣𝑖𝑙(𝑧) p𝑖 = 

dm iv

𝑑𝑧
= 𝜌𝑣  𝑣𝑖𝑣(𝑧) 𝑝𝑖  (11) 

 
where m l and m v are the mass flow rates of the liquid and vapor phases, respectively. m il is the mass 
flow rate of the liquid vaporized through the liquid-vapor interface, and m iv is the mass flow rate of 
the vapor. ρl and ρv are the liquid and vapor densities, respectively. pi is the liquid-vapor interfacial 
perimeter. Al and Av are liquid and vapor cross-sections, respectively. vl and vv are the liquid and vapor 
axial velocities. vil and viv are the interfacial velocities at the liquid and vapor sides, respectively. 
 
(iii) The momentum balance equations in the liquid and vapor phases which are obtained by 
determining the forces acting on an elementary volume and considering the Euler theorem 

 

𝜌𝑙
𝑑(𝐴𝑙𝑣𝑙

2)

𝑑𝑧
 =  - 

𝑑(𝐴𝑙𝑃𝑙)

𝑑𝑧
+ 𝑝𝑖𝜏𝑖𝑙 + 𝑝𝑙𝑤𝜏𝑙𝑤 − 𝜌𝑙  𝑔 𝐴𝑙 𝑠𝑖𝑛 𝛽 −  q𝑣 E𝑙 A𝑙 - 

1

2
 (𝜀𝑙 - 𝜀𝑣) E𝑙

2 p𝑖      (12) 

 

𝜌𝑣
𝑑(𝐴𝑣𝑣𝑣

2)

𝑑𝑧
  =  −

𝑑(𝐴𝑣 𝑃𝑣)

𝑑𝑧
− 𝑝𝑖𝜏𝑖𝑣  − 𝑝𝑣𝑤𝜏𝑣𝑤 − 𝜌𝑣 𝑔 𝐴𝑣 𝑠𝑖𝑛 𝛽  −  q𝑣 E𝑣 A𝑣  −  

1

2
 (𝜀𝑙 - 𝜀𝑣) E𝑣

2 p𝑖   (13) 

 
The liquid and vapor sections, Al and Av as well as the liquid-wall, Alw, the vapor-wall, Avw, and the 

interfacial sections, Ai depend on the liquid-vapor interface radius and the contact angle (Figure 3). 
τvw and τlw are the vapor-wall and the liquid-wall viscous stresses, respectively. τi is the liquid-vapor 
interfacial shear stress. plw and pvw are the liquid-wall and vapor-wall perimeters, respectively. The 
expressions of these parameters are detailed in Saad et al., [25-26]. qv is the volume density of the 
electrical charges. εl and εv are the liquid and vapor dielectric constants, respectively. El and Ev are the 
electric strength in the liquid and vapor phases, respectively. β is the inclination with respect to the 

horizontal. Hence,  = 0° for the horizontal position,  = 90° for the favorable vertical position 

(evaporator down and condenser up), and  = -90° for the unfavorable vertical position (evaporator 
up and condenser down). 
 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 79, Issue 1 (2021) 128-152 

134 
 

                     
Fig. 3. Capillary radius and the different areas 
involved in the calculations 

 
(iv) The energy balance equations for which the heat input power is supposed to contribute mainly 
to the phase change, and the thermal diffusion along the FMHP wall is neglected 

 
dQ

dz
= 

dm 𝑙

dz
 𝛥ℎ𝑣  =

𝑑 (𝜌𝑙 v𝑙 A𝑙)

𝑑𝑧
𝛥ℎ𝑣  (14) 

 

 
dQ

dz
=  -

dm 𝑣

dz
 𝛥ℎ𝑣 = −

𝑑 (𝜌𝑣 v𝑣 A𝑣)

𝑑𝑧
𝛥ℎ𝑣  (15) 

 
Δhv is the latent heat and dQ/dz represents the variations of the heat flux rate in the evaporation, 

adiabatic, and condensation zones that are determined according to the following heat flux rate 
distribution 

 

𝑄 =  

{
 
 

 
 𝑄𝑎  

(𝑧−𝐿𝑑𝑟)

(𝐿𝑒−𝐿𝑑𝑟)
                         Ldr  ≤  z ≤ 𝐿𝑒                                

𝑄𝑎                                   L𝑒 <  z  < 𝐿𝑒 + 𝐿𝑎            

𝑄𝑎  (
𝐿 −(𝑧−𝐿𝑏)

𝐿𝑐−𝐿𝑏
)              𝐿𝑒 +𝐿𝑎 ≤ 𝑧 ≤ 𝐿 − 𝐿𝑏   

                     

(16) 

 
Le, La, and Lc are the lengths of the evaporator, the adiabatic, and the condenser zones, 

respectively. L is the overall length of the FMHP, and Lb is the length of the blocked zone of the 
condenser which is flooded by the liquid (Figure 2(d)). Ldr is the length of the dried zone of the 
evaporator (Figure 2(a)). Qais the heat flux rate transferred axially along a microchannel of the FMHP. 
The dry-out length, Ldr, and the blocking length, Lb, are determined by performing the mass balance 
along the FMHP according to the following relation 
 

𝑀0 = 𝑁𝑔 [∫ 𝜌𝑙𝐴𝑙𝑑𝑧 + ∫ 𝜌𝑣𝐴𝑣𝑑𝑧
𝐿−𝐿𝑏
𝐿𝑑𝑟

𝐿−𝐿𝑏
𝐿𝑑𝑟

] + 𝑀𝑏 (17) 

 
Ng is the number of the grooves, and Mb is the blocking mass at the end of the condenser section 
which depends upon the operating conditions. The radius of curvature of the meniscus at the 
evaporator end cap, rcmin, is found using Eq. (17). 

The Laplace Young equation in Eq. (8) and the governing equations in Eq. (9)-(16) are resolved 
using the Runge-Kutta method of order 4 and a semi-implicit method is used. The computational 
procedure and numerical solving are described in Saad et al., [25-26]. The following boundary 
conditions are considered 

Al 

Av 

Avp 

Ai 

rc 
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{
 
 

 
 
𝑟𝑐(𝑧 = 0) =  𝑟cmin               
𝑣𝑙(𝑧 = 0) =  𝑣𝑣(z = 0)  =  0          
𝑃𝑣(𝑧 = 0) =  𝑃sat(𝑇𝑣)           

𝑃𝑙(𝑧 = 0) =  𝑃𝑣  - 
𝜎

𝑟cmin
 - 

1

2
(𝜀𝑙 − 𝜀𝑣) 𝐸0

2       

  (18) 

 
where Tv represents the saturated vapor temperature in the evaporator. 

The solution is determined by an iterative process along the FMHP starting at the beginning of the 
evaporator (z = 0) for which a radius of curvature rc = rcmin is initially selected. The minimum value of 
the radius of curvature is then determined to verify the principle of conservation of mass along the 
FHMP, but also to take into account the heat and mass transfer in the evaporator and condenser 
sections (Eq. (17)). The solving procedure is stopped when rc = rcmax by performing the following 
reasoning: the radius of curvature increases progressively from the evaporator towards the 
condenser. The attachment angle of the liquid film on the walls is assumed to be constant and equal 
to the contact angle (Figure 2(a) and 2(b)). When the contact points of the liquid film are joined, the 
vapor is no longer in contact with the wall and the structure of the vapor-liquid interface is as that 
shown in Figure 2(c). In this case, the radius of the curvature of the vapor-liquid interface is maximum 
(rc = rcmax). Then gradually as the vapor condenses, the radius of curvature of the liquid-vapor 
interface decreases as the liquid film becomes thicker (Figure 2(d)). The maximum power transferred 
by the FMHP is such that corresponds to configuration of Figure 2(c). The position of this 
configuration is determined by performing mass balance along the FMHP. Thus, if the total mass that 
flows along the FMHP (term in the right of Eq. (17)) is greater than that introduced initially, Mo, it 
appears a dry-out zone at the evaporator and/or a flooding zone at the condenser and the lengths of 
these areas, Ldr and Lb, are determined. 

 
3. Results and Discussion 
3.1 Model Validation 
 

Up to now, no experimental studies dealing with the combined effects of the EHD and the working 
fluid on grooved FMHP operation have been published. Therefore, the validation of the results of our 
model is based on results that consider a flat grooved heat pipe operating in zero-field conditions 
and EHD conditions. Consequently, we have considered works that fit the model assumptions. 
Referring to Saad et al., [25], the numerical results provided by our model are compared to the 
theoretical results obtained by Suman and Hoda [29] under zero-field conditions for a flat heat pipe 
including triangular grooves and the experimental results of Yu et al., [22] for a flat heat pipe including 
rectangular grooves under EHD conditions. Both works consider pentane as a working fluid. The 
physical dimensions of the flat heat pipe and hydrodynamic parameters used in these investigations 
are summarized in Saad et al., [25]. A good agreement is demonstrated between the results issued 
from the present model and those predicted by Suman and Hoda [29] and Yu et al., [22]. 
 
3.2 Flow Parameters Variations 
3.2.1 Capillary radius variations 
 

The axial variations of the capillary radius i.e. the liquid-vapor radius of curvature for the three 
working fluids are depicted in Figure 4 under zero-field and EHD conditions for a heat input power of 
0.3 W (Wg = Dg = 0.9 mm) and a fill charge of 6 mg per groove. For these simulations, the FMHP is 
positioned horizontally (β = 0). The radius of curvature increases along the heat pipe. Indeed, due to 
the evaporation phenomenon, the amount of the liquid is very low at the evaporator, which results 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 79, Issue 1 (2021) 128-152 

136 
 

in a low value of the capillary radius. Since the condenser contains more liquid due to the 
condensation phenomenon, the liquid-vapor radius of curvature is greater than that in the 
evaporator. The liquid cross-section depends on the capillary radius. Thus, if the capillary radius is 
large, the grooves contain more liquid. Pentane allows for the highest liquid volume while for R123 
the liquid volume is the lowest since the liquid density of pentane is the lowest and that of R123 is 
the highest, the filling mass being the same for the three working fluids. The electric field causes an 
increase of the capillary radius in the evaporator and adiabatic zones and its reduction in the 
condenser since the electric field promotes the return of the liquid from the condenser to the 
evaporator.  

The variations of the relative gap between the capillary radii, which are obtained under EHD and 
zero-field conditions, are plotted as a function of the dimensionless length, z/L, for the different 
working fluids in Figure 5. The maximum increase in the capillary radius is 3 %, 5 %, and 21 % for 
pentane, R141b, and R123, respectively. It is reached at the beginning of the evaporator zone. Hence, 
the effect of the electric field on the liquid distribution is more pronounced for R123 and less marked 
for pentane. This can be explained by the fact that for R123, the grooves contain more vapor when 
compared to pentane and R141b. Indeed, in the case of R123, the grooves contain less liquid as it is 
mentioned previously. Moreover, R123 evaporates more easily as its latent heat is the lowest. 
Knowing that the electric field strength in the vapor phase is higher than that in the liquid phase due 
to the dielectric permittivity difference between the phases, the electric field strength in the grooves 
filled with R123 is higher than that in grooves filled with pentane and R141b. Hence, the application 
of an electric field is more effective for R123, especially in the evaporator section. We can also notice 
that the effect of the electric field on the capillary radius is almost the same for the three working 
fluids in an area located between the end of the adiabatic zone and the condenser end cap. This can 
be explained by the fact that the condenser section is filled with liquid and the electric field strength 
is almost the same for the three working fluids. Note that the maximum decrease of the curvature 
radius due to the electric field effect is reached in the condenser end cap. When compared to the 
capillary radius that is obtained under zero-field conditions, the maximum decrease of the capillary 
radius in EHD conditions is about 3 % for the three working fluids.  

 

 
Fig. 4. Variations of the radius of curvature for 
pentane, R123, and R141b 
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Fig. 5. Variations of the relative gap between rc(Eo) and rc(0) 
as a function of z/L for pentane, R123, and R141 

 
3.2.2 Capillary pressure variations 
 

Figure 6 shows the variations of the capillary pressures (Pc = σ/rc). It decreases along the FMHP 
from the evaporator to the condenser since it is inversely proportional to the liquid-vapor radius of 
curvature. As shown, the lowest capillary pressures are reached with pentane for which the highest 
capillary radii are obtained. Moreover, the capillary pressure is reduced in the evaporation and 
adiabatic zones and augmented in the condensation zone when an electric field is applied. Hence, 
the electric field causes the reduction of the capillary driving pressure, which is the difference 
between the capillary pressures at the beginning of the evaporator and the end of the condenser 
section. Indeed, the capillary driving pressure decreases from 3.8 Pa (Eo= 0 kV/mm) to 2.2 Pa (Eo = 3 
kV/mm), for pentane, and from 16.8 Pa (Eo = 0 kV/mm) to 13.1 (Eo = 3 kV/mm) for R141b, and from 
52 Pa (Eo = 0 kV/mm) to 36.6 Pa (Eo = 3 kV/mm) for R123. The capillary driving pressure reduction is 
due to the EHD driving pressure that ensures the EHD pumping and reinforces the capillary pumping 
(Eq. (7)). Hence, the EHD driving pressures are 0.1 Pa, 0.5 Pa, and 4.1 Pa for pentane, R141b, and 
R123, respectively. This indicates that the highest EHD driving pressures are obtained with R123 
because high electric strengths are achieved since grooves filled with R123 contain more vapor than 
the ones filled with pentane and R141b. 

The variations of the relative gap between the capillary pressures that are obtained under EHD 
and zero-field conditions are depicted in Figure 7 as a function of the dimensionless length, z/L, for 
the different working fluids. The maximum decrease of the capillary pressure is reached at the 
beginning of the evaporator. It is 3 %, 5 %, and 17.5 % for pentane, R141b, and R123, respectively. 
The maximum increase of the capillary pressure due to the application of an electric field, which is 
reached at the condenser end, is nearly 2.5 % for the three working fluids.  
 

   



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 79, Issue 1 (2021) 128-152 

138 
 

  
Fig. 6. Axial variations of the capillary pressure for 
pentane, R123, and R141b 

Fig. 7. Variations of the relative gap between Pc(E0) 
and Pc(0) as a function of z/L, for pentane, R123, 
and R141b 

 
3.2.3 Vapor pressure variations 
 

The variations of the vapor pressure are illustrated in Figure 8. The vapor pressure decreases in 
the direction of the vapor flow that is from the evaporator to the condenser in zero-field and EHD 
conditions. The curves exhibit a smooth slope as they approach the condenser end cap. This is due 
to the attenuation of the vapor-wall and vapor-liquid friction since in the condenser, the vapor 
disappears in favor of the liquid as it will be demonstrated in sub-section 3.3.3. It should be noted 
that this will depend on the filling charge. Indeed, for optimum filling, the configuration of Figure 2(c) 
is obtained at the end of the condenser (Lb = 0: no blocking length i.e. no flooding zone). Under these 
conditions, both phases exist, and the vapor-liquid and vapor-wall frictions are still effective. For a fill 
charge that is greater than the optimum one, a blocking zone appears, and the curves exhibit 
smoother slopes as they approach the condenser end. Note that the calculations do not continue 
beyond this zone filled with liquid which does not participate in the flow. 

The total vapor pressure drop is very low, and it is not exceeding 1 Pa for all the working fluids 
under zero-field conditions. Under EHD conditions, the total vapor pressure drop increases slightly. 
Thus, it passes from 0.5 Pa (Eo = 0 kV/mm) to nearly 1.2 Pa (Eo = 3 kV/mm) for pentane (Figure 8(a)), 
while it passes from 0.38 Pa (Eo = 0 kV/mm) to 0.79 Pa (Eo = 3 kV/mm) for R141b (Figure 8(c)) and 
increases from 0 Pa (Eo = 0 kV/mm) to 0.8 Pa (Eo = 3 kV/mm) for R123 (Figure 8(b)). The total pressure 
drop augmentation in the vapor phase is mainly due to the vapor velocity increase. Indeed, since the 
electric field contributes to the liquid flow back to the evaporator, the vapor cross-section flow is 
reduced along the evaporator and adiabatic zones according to the mass balance principle. 
Consequently, the vapor velocity increases in these zones causing augmentation of the vapor 
pressure drop. Under the same electric field conditions, using pentane allows for the highest vapor 
pressure drop since higher vapor velocities are reached with pentane as it will be demonstrated in 
sub-section 3.2.6. 
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Fig. 8. Axial variations of the vapor pressure for (a) pentane, (b) R123, and (c) R141b 

 
3.2.4 Liquid pressure variations 
 

The variations of the liquid pressure are shown in Figure 9. The liquid pressure decreases from the 
condenser to the evaporator due to the liquid-wall viscous forces. The liquid pressure variations 
depend greatly on the liquid distribution along the FMHP. When the electric field is applied, the liquid 
is pushed towards the evaporator. Hence, the evaporator and adiabatic zones contain more liquid 
and consequently the liquid pressure rises in these regions; however, the liquid pressure drops in the 
condenser since it contains less liquid. The highest liquid pressure drop is obtained with R123 under 
zero-field and EHD conditions since higher liquid velocities are reached with this working fluid as it 
will be shown in sub-section 3.2.6.  

The electric field causes a reduction of the liquid pressure drop passing from 3.4 Pa under zero-
field conditions to nearly 1.1 Pa under EHD conditions for pentane (Figure 9(a)), whereas, it passes 
from 52 Pa to 39.9 Pa for R123 (Figure 9(b)), and from 16.4 Pa to 12.3 Pa for R141b (Figure 9(c)). The 
pressure drop in the liquid phase is mainly due to the liquid velocity decrease. Under the electric field 
action, the liquid cross-section flow is augmented in the evaporator and adiabatic zones, since the 
electric field promotes the return of the condensate from the condenser to the evaporator. Hence, 
the liquid velocity decreases in these regions, and consequently, the wall-liquid viscous forces are 
reduced.  
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Fig. 9. Axial variations of the liquid pressure for (a) pentane (b) R123, and (c) R141b 

 
3.2.5 Vapor velocity variations 
 

The axial vapor velocity in the evaporator region increases sharply due to the active evaporation 
of the liquid, while it decreases in the condenser region and vanishes at its end (Figure 10). In the 
adiabatic section, as the vapor cross-section decreases, the vapor velocity increases. Pentane allows 
for the highest vapor velocities since low vapor cross-section is achieved with this working fluid. The 
electric field increases slightly the vapor velocity in the evaporator and adiabatic sections. The 
increase of the vapor velocity is not very significant under EHD conditions for the three working fluids 
as it is shown in Figure 11. The maximum increase in vapor velocity is obtained near the evaporator 
extremity. Hence, the maximum vapor velocity increase is about 1.5 % for R123 and R141b and about 
2.5 % for pentane. The electric field hardly affects the vapor velocity in the condenser section for 
R123 and R141b. However, for pentane, the vapor velocity decreases by 1 % near the condenser end 
cap.  

In the evaporator and a partial zone of the adiabatic section, the increase in the vapor velocity 
under the EHD conditions is mainly due to the reduction of the vapor cross-section since the electric 
field promotes the return of the liquid back to the evaporator. The decrease of the vapor velocity in 
the condenser section under the EHD conditions is due to the augmentation of the vapor cross-
section as the liquid is pumped to the evaporator under the action of the electric field. For pentane, 
the vapor velocity rise is higher than that reached with R123 and R141b.  
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Fig. 10. Axial variations of the vapor velocity for 
pentane, R123, and R141b 

Fig. 11. Variations of the relative gap between 
vv(E) and vv(0) as a function of z/L for pentane, 
R123, and R141b 

 
3.2.6 Liquid velocity variations 
 

Figure 12 illustrates the evolutions of the axial liquid velocity along the grooves. The liquid velocity 
vanishes at the evaporator and condenser end cap (boundary conditions). In the evaporator, due to 
the evaporation phenomenon, the liquid cross-section decreases. As a result, the liquid velocity 
increases. In the adiabatic zone, the liquid cross-section rises, this causes a reduction of the liquid 
velocity. In the condenser, the liquid cross-section continues to grow due to the condensation 
phenomenon. Consequently, the liquid velocity decreases further. Additionally, it is observed that 
the liquid velocity value and profile depend on the working fluid. The highest liquid velocities are 
reached with R123 under zero-field conditions since the liquid cross-sections are the lowest for this 
working fluid as it is discussed in section 3.2.1 (Figure 4). Under EHD conditions, the liquid velocity is 
lower than that obtained in zero-field conditions in the evaporator and the adiabatic zones because 
the liquid-cross section grows in these zones since the electric field promotes the liquid flow back to 
the evaporator. The increase of the liquid velocity in the condenser is explained by the decrease of 
the liquid cross-section in this region under the effect of the electric field.  

The variations of the relative gap between the liquid velocities obtained under EHD and zero-field 
conditions are shown in Figure 13 as a function of z/L, for the different working fluids. The maximum 
decrease in the liquid velocity, which is obtained near the evaporator extremity (z = 0), is 6 %, 9.1 %, 
and 33 %, for pentane, R141b, and R123, respectively. It should be pointed out that, as for the 
capillary radius and the capillary pressure, the electric field has the same effect on the liquid velocity 
in the area located between the end of the adiabatic zone and the end of the condenser zone 
whatever the selected working fluid. Furthermore, under the EHD conditions, the liquid velocity is 
augmented in the condenser section and the maximum increase reaches nearly 10 %. The effect of 
the electric field on the liquid velocity decrease is more effective for R123. The significant decrease 
in the liquid velocity with R123 is attributed to the elevated vapor area in the grooves compared to 
that obtained with pentane and R141b. Hence, the electric field in the grooves filled with R123 is 
more intense than that in the grooves filled with R141b and pentane. Moreover, as the grooves are 
starved from liquid in the absence of an electric field as it is discussed in section 3.2.1, especially in 
the evaporator section, the EHD pumping ensures an effective liquid flow allowing to fill efficiently 
the grooves in the evaporator thus increasing the liquid cross-section, and consequently, reducing 
notably the liquid velocity. The effect of the electric field on the liquid velocity for the three working 
fluids is the same at the end of the adiabatic section and in the condenser because the electric field 
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strength is nearly the same for the three working fluids since the grooves are filled similarly with 
liquid in these locations.  

   

  
Fig. 12. Axial variations of the liquid velocity for 
pentane, R123, and R141b 

Fig. 13. Variations of the relative gap between 
vl(E0) and vl(0) as a function of z/L for pentane, 
R123, and R141b 

 
3.3 Variations of the Forces Along the FMHP 
3.3.1 Interfacial liquid-vapor shear forces 
 

Figure 14(a) shows the axial evolutions of the liquid-vapor interfacial shear forces per unit of 
length. They are defined as the product of the interfacial shear stress, τil, by the interfacial perimeter, 
pi, and they depend on the vapor velocity but also the liquid-vapor radius of curvature [25-26]. 
Changes in interfacial forces are similar to those of the vapor velocity. They increase in the 
evaporation and adiabatic zones and decrease in the condensation zone. Moreover, under EHD 
conditions, the interfacial shear forces increase in the evaporator and the adiabatic zones. The 
maximum increase is reached at the evaporator end cap, and it is about 53 % for R123 and 15 % for 
pentane and R141b (Figure 14(b)). This can be explained by the vapor velocity and the liquid-vapor 
interfacial perimeter rise in these zones under the action of the electric field. However, in the 
condenser section, the liquid-vapor interfacial shear stresses decrease as the vapor velocity and the 
liquid-vapor perimeter are lowered in this region. The maximum reduction in the liquid-vapor 
interfacial forces, which is reached in the condenser end cap, is about 10 % for pentane and 5 % for 
R123 and R141b (Figure 14(b)). For pentane, the liquid-vapor interfacial shear forces are higher than 
those of R141b and R123 since for pentane, which allows for high liquid filling ratio, the vapor 
velocity, and the interfacial perimeter are greater than those obtained with R141b and R123. 
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Fig. 14. Axial variations of (a) the interfacial liquid-vapor forces per unit of length, Fil, and (b) the relative 
gap between Fil(Eo) and Fil(0), for pentane, R123, and R141b 

 
3.3.2 Liquid-wall viscous forces 
 

The variations of the liquid-wall viscous forces per unit of length are depicted in Figure 15(a). They 
are calculated as the product of the liquid-wall viscous stress, τlw, by the liquid-wall perimeter, plw. 
The obtained curve profiles are similar to those of the liquid velocity since the liquid-wall viscous 
forces are proportional to the liquid velocity [25-26]. The presence of an electric field reduces the 
liquid-wall viscous forces in the evaporator and adiabatic zones. The maximum reduction is reached 
at the evaporator end cap, and it is nearly 35 % for R123 and 9 % for pentane and R141b (Figure 
15(b)). This result can be explained by the decrease of the liquid velocity even though the liquid-wall 
perimeter increases under the action of the electric field in these sections as the electric field 
promotes the return of the liquid back to the evaporator. In the condenser section, the liquid-wall 
viscous forces increase slightly in the presence of the electric field which has a little effect on the 
liquid velocity. The maximum rise in the liquid-wall viscous forces is the same for the three working 
fluids and it is about 5 % (Figure 15(b)). The highest liquid-wall viscous forces are obtained with R123, 
which allows for the highest liquid velocity in zero field and EHD conditions. Note that the electric 
field affects similarly the liquid-wall viscous forces for pentane and R141b. 

The liquid-wall viscous forces are responsible for the liquid pressure drop. As it is indicated above, 
the liquid-wall forces decrease in two zones (evaporator and adiabatic zones) under EHD conditions 
and increase slightly in the condenser, so we can conclude that along the FHMP the liquid-wall forces 
decrease, and consequently, the liquid pressure drop is diminished. Note the liquid-wall forces are 
the highest for R123 which explains the highest value of the liquid pressure drop that is obtained 
with this working fluid under zero-field and EHD conditions. 
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Fig. 15. Axial variations of (a) the liquid-wall viscous per unit of length, Flw, and (b) the relative gap 
between Flw(Eo) and Flw(0), for pentane, R123, and R141b 

 
3.3.3 Vapor-wall viscous forces 
 

The evolutions of the vapor-wall viscous forces per unit of length are plotted in Figure 16(a). They 
are defined as the product of the vapor-wall viscous stress, τvw, by the vapor-wall perimeter, pvw. This 
force depends on the vapor velocity and the capillary radius [25-26]. It increases in the evaporator 
and decreases in the adiabatic and condensation zones. Note that the variations of the vapor-wall 
forces are not similar to those of the vapor velocity in the adiabatic section since the vapor-wall 
decreases significantly in this region as the liquid is pumped back to the evaporator under the action 
of the electric field. The application of an electric field reduces the vapor-wall friction in the 
evaporator and adiabatic zones. The maximum reduction is reached at the evaporator end cap, and 
it is about 15 %, 8 %, and 5 % for pentane, R123, and R141b, respectively. However, in the condenser, 
the vapor-wall friction is augmented. The maximum augmentation is reached at the condenser end 
cap, and it is about 38 % for pentane and 5 % for R123 and R141b. The vapor-wall viscous forces are 
much lower than the liquid-wall viscous forces, but they have the same order of magnitude of the 
liquid-vapor shear forces. The highest vapor-wall viscous force is obtained with R123 and the lowest 
one is obtained with pentane. This is because the vapor-wall perimeter is the highest for R123 and 
the lowest for pentane. 

The vapor-wall viscous forces and the liquid-vapor shear forces are responsible for the vapor 
pressure drop. As it is indicated above, under the action of an electric field, the vapor-wall forces 
decrease in two zones (evaporator and adiabatic zones) and increase in the condenser, however, as 
it is demonstrated in section 3.3.1, the liquid-vapor shear forces increase in the evaporator and 
adiabatic zones and decrease in the condenser under the action of the electric field. Hence, the 
combined effect of these two forces (Fil + Fvw) is such that it increases along the FMHP whatever the 
section, and consequently, the vapor pressure drop is augmented when the electric field is applied. 
Note the sum of the vapor-wall forces and the liquid-vapor shear forces are highest for pentane which 
explains the highest value of the vapor pressure drop that is obtained with this working fluid under 
zero-field and EHD conditions. 

 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 79, Issue 1 (2021) 128-152 

145 
 

  
Fig. 16. Axial variations of (a) the vapor–wall viscous forces per unit of length, Fvw, and (b) the relative gap 
Fvw(Eo) and Fvw(0), for pentane, R123, and R141b 

 
3.3.4 Electrical forces 
 

The variations of the electrical forces (Coulomb and dielectrophoretic forces) per unit of length 
are plotted in Figure 17, for the three working fluids. The Coulomb force in the liquid phase is 
calculated as the product of the electrical force volume density by the liquid area (Fcl = qv El Al). The 
Coulomb force is reduced from the condenser to the evaporator indicating that this force tends to 
push the condensate towards the evaporator (Figure 17(a)). Besides, for R123, the Coulomb force 
exerted in the liquid phase is lowest and it is highest for pentane. This result is mainly attributed to 
the low liquid area that fills the grooves in the case of R123. 

The variations of the Coulomb force in the vapor phase are plotted in Figure 17(b). It is defined as 
the product of the electrical force volume density by the vapor area (Fcv = qv Ev Av). The Coulomb force 
exerted in the vapor phase has a reverse trend when compared to the Coulomb force in the liquid 
phase; hence, it decreases from the evaporator to the condenser. Moreover, the coulomb force in 
the vapor phase is much lower than that exerted in the liquid phase. The highest Coulomb force in 
the vapor phase is reached with R123 since this working fluid allows for a high vapor area.  

Figure 17(c) illustrates the variations of the dielectric force per unit of length. It is calculated 
according to 0.5 (εl - εv) E2pi. The dielectric force has the same trend as the Coulomb force exerted in 
the liquid phase. Hence, it decreases from the condenser towards the evaporator indicating that it 
favors the condensate flow back. It is pointed out that the dielectric force is higher than the Coulomb 
forces. Although in the case of pentane, the liquid-vapor interfacial perimeter is the highest, 
nevertheless, this fluid has the lowest dielectric permittivity. Thus, for this working fluid, the 
dielectrophoretic forces are the weakest. R141b and R123 have similar dielectric constants, however, 
for R123, the liquid-vapor interfacial perimeter is lower than that for R141b. Thus, the 
dielectrophoretic forces in the case of R123 are lower than those in the case of R141b. 
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Fig. 17. Variations of the electrical forces per length unit for pentane, R123, and R141b: (a) the Coulomb 
force within the liquid phase, (b) the Coulomb force within the vapor phase, and (c) the dielectrophoretic 
force 

 
3.4 Variations of the Capillary Limit as A Function of the Fill Charge 
 

Figure 18 shows the variations of the maximum heat transfer capacity, Qmax, as a function of the 
filling charge under zero-field and EHD conditions, for the different working fluids. Under zero-field 

conditions, the capillary limit occurs when the driving capillary pressure, Pc, balances the pressure 

drops in the liquid and vapor phases, Pl and Pv, as well as the hydrostatic pressure drop, Pg, (Eq. 
(3)). Under EHD conditions, the maximum heat transfer capillary is determined by balancing the 
capillary and the EHD driving pressures with the liquid, vapor, and hydrostatic pressure drops (Eq. 
(7)). The maximum heat transport capacity corresponds to a flow configuration such as no dry-out 
and flooding occur in the evaporator and condenser, respectively (Las = Lb = 0). 

In these simulations, square grooves are considered (Dg = Wg = 0.8 mm). Each of the obtained 
curves exhibits maxima corresponding to the optimum fill charge, for which the capillary limit of the 
FMHP, is maximum. Moreover, a filling charge, which is less than the optimum value, causes a 
reduction in the heat transfer capacity of the FMHP with a possibility of dry-out in the evaporator. 
Contrarily, a filling charge, which is greater than the optimum value, leads to an excess of liquid which 
remains blocked at the condenser, and reduces its effective length, thus causing a reduction in the 
capillary limit. Besides, maximum heat transport capacities are reached for R123 and R141b with 
nearly the same optimum fill charge, under zero-field and EHD conditions. For pentane, maximum 
heat transport capacities are reached for low optimum fill charges under the same conditions. Note 
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that the highest maximum heat transport capacity is achieved with R141b, however, R123 exhibits 
the lowest performance. To assess quantitatively the transport capacity of the different working 
fluids in the absence of an electric field, the merit number of each of the working fluid was calculated 
at an operating temperature of 30 °C as it is shown in Table 1. R141b exhibits the highest value of the 
Merit number, while R123 exhibits the smallest one. The Merit values explain the good thermal 
performances obtained with R141b for the operating temperature of 30 °C. 

The maximum heat transport capacities that are reached under optimum fill charges under zero 
field and EHD conditions are reported in Figure 19. Under zero-field conditions, the maximum heat 
transfer capacities, Qmax, that are obtained with R123 and pentane are nearly the same (0.54 W for 
R123 and 0.56 W for pentane). However, for R141b, Qmax = 0.68 W. When comparing the maximum 
heat transfer capacities obtained with pentane and R141b to that obtained with R123 under zero-
field conditions, we can note that pentane and R141b allow for 3.7 % and 26 % enhancement, 
respectively (Figure 20(a)). The electric field allows for heat transport capacity enhancement for all 
the working fluids. Hence, an electric field intensity of 3 kV/mm allows for 3.7 %, 7.1 %, and 11 % 
enhancement for R123, pentane, and R141b, respectively (Figure 20(b)). Moreover, when referring 
to R123, the electric field ensures heat transfer capacity enhancement that reaches 7.1 % for pentane 
and 35 % for R141b, respectively (Figure 20 (c)). 

    

  
Fig. 18. Variations of the maximum heat 
transport capacity as a function of the fill charge 
for the different working fluids (Dg = Wg = 0.8 
mm) 

Fig. 19. Maximum heat transport capacities for 
optimum fill charges under zero-field and EHD 
conditions for the different working fluids (Wg = 
Dg = 0.8 mm) 

 

   
Fig. 20. Heat transport capacity enhancements under optimum fill charges when referring to: (a) R123 under 
zero-field conditions, (b) the zero-field conditions, and (c) R123 under EHD conditions (Wg = Dg = 0.8 mm) 
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3.5 Variations of the Capillary Limit as A Function of the Groove Dimensions 
 

The variations of Qmax as a function of the fill charge are shown in Figure 21 for pentane, R123, 
and R141b under zero-field and EHD conditions, for different groove dimensions. The optimum fill 
charge and the maximum transferred power, Qmax, increase with the groove dimensions. The best 
performances are obtained for large and deep grooves (1 × 1mm2 cross-section). In Figure 22, are 
reported the maximum heat transport capacities for the different working fluids that are reached 
with optimum fill charges under zero-field and EHD conditions, for different groove dimensions. For 
narrow and shallow grooves (0.6 × 0.6 mm2 cross-section), all the working fluids allow for nearly the 
same heat transport capacity under zero-field and EHD conditions. For large and deep grooves, the 
heat transport capacity is the lowest for R123 under both zero-field and EHD conditions. However, 
R141b gives the best performances under both zero-field and EHD conditions.  
 

  

 
Fig. 21. Maximum heat transport capacities as a function of the fill charge for different groove 
dimensions and working fluids: (a) pentane, (b) R123, and (c) R141b 
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Fig. 22. Maximum heat transport capacity values for optimum fill charges under zero-field and EHD 
conditions for different groove dimensions: (a) pentane, (b) R123, and (c) R141b 

 
Under zero-field conditions, when comparing the maximum heat transport capacity obtained 

with the different working fluids to that reached with R123 (Figure 23(a)), we can conclude that 
pentane and R141b allow for 3 % and 26 % enhancement, respectively, for narrow and shallow 
grooves; however, for large and deep grooves, pentane and R141b allow for nearly the same 
enhancement. Moreover, we can notice that the heat transport capacity increases significantly with 
pentane when operating with wide and deep grooves rather than narrow and shallow ones. For large 
and deep grooves, the heat transport capacity enhancement due to the application of an electric field 
differs from a working fluid to another. It is 7 %, 10 %, and 14 % for R123, pentane and R141b, 
respectively (Figure 23(b)). Finally, under EHD conditions, when comparing the maximum heat 
transport capacity attained with the different working fluids to that obtained with R123, we can 
notice that R141b allows for the highest maximum heat transport capacity enhancement passing 
from 22 % for narrow and shallow grooves to 36 % for wide and deep ones (Figure 23(c)). 

 

   
Fig. 23. Heat transport capacity enhancements under optimum fill charges when referring to (a) R123 
under zero-field, (b) the zero-field conditions, and (c) R123 under EHD conditions, for different groove 
dimensions 

 
The optimum fill charges are plotted in Figure 24 for the different working fluids under zero-field 

and EHD conditions. The optimum fill charge is hardly affected by the electric field whatever the 
working fluid and the groove dimensions. For R123, the optimum fill charge is the highest. The 
variations of the filling ratio as a function of the groove dimensions under zero-field and EHD 
conditions for the different working fluids are depicted in Figure 25. The filling ratio is defined as the 
ratio of the working fluid volume to the geometrical volume of the grooves. As for the optimum fill 
charge, the filling ratio is hardly affected by the action of the electric field whatever the working fluid. 
For pentane, the filling ratio increases slightly with the groove dimensions. For R123, the filling ratio 
variations as a function of the groove dimensions exhibit a minimum which is obtained for 0.8*0.8 
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mm2; however, for R141b, the filling ratio variations exhibit a maximum which is obtained for the 
same groove dimensions. 

 

   
Fig. 24. Optimum fill charge as a function of the groove dimensions under zero-field and EHD conditions for 
the different working fluids: (a) pentane, (b) R123, and (c) R141b 

 

   
Fig. 25. Filling ratio as a function of the groove dimensions under zero-field and EHD conditions for the 
different working fluids: (a) pentane, (b) R123, and (c) R141b 

 
4. Conclusions 
 

This paper reports on the investigation of the influence of the working fluid on the operation of 
an electrohydrodynamic FMHP including axial grooves. The following conclusions are drawn 

i. The electric field affects the liquid distribution along the grooves. Hence, the liquid-vapor 
curvature radius increases in the evaporator and adiabatic zones; however, it decreases in 
the condenser section. Moreover, the electric field has the same effect in the condenser 
section for three working fluids; however, the EHD effect is more pronounced in the 
evaporator zone for R123. 

ii. The liquid velocity is affected by the electric field. Indeed, the liquid velocity decreases in 
the evaporator and adiabatic zones. The highest liquid velocities are obtained with R123 
under zero-field and EHD conditions. 

iii. The vapor velocity is affected slightly by the EHD effects whatever the working fluid. The 
highest vapor velocities are obtained with pentane under zero-field and EHD conditions. 

iv. The vapor pressure drop rises under the action of the electric field. However, the liquid 
pressure drops decreases. Furthermore, the application of the electric field diminishes the 
capillary pumping required for the liquid flow. 

v. R141b allows the highest heat transport capacity under the lowest optimum fill charges in 
zero-field and EHD conditions 
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vi. Best heat transport capacities are obtained for large and deep grooves whatever the 
working fluid. 

 
References 
[1] Mansouri, J., S. Maalej, M. B. H. Sassi, and M. C. Zaghdoudi. "Experimental study on the thermal performance of 

enhanced flat miniature heat pipes." International Review of Mechanical Engineering 5, no. 1 (2011): 196-208. 
[2] Zaghdoudi, M. C., C. Tantolin, and C. Samo. "Experimental investigation on the use of flat mini heat pipes for 

avionics electronic modules cooling." International Review of Mechanical Engineering 5, no. 4 (2011): 770-783. 
[3]  Dunn, P.D., and Reay, D.A. Heat Pipe. Pergamon press, Oxford, 1976. 
[4]  Saad, I., S. Maalej, and M. C. Zaghdoudi. "Numerical Study on an Electrohydrodynamically Driven Axially Grooved 

Flat Miniature Heat Pipe." Journal of Thermophysics and Heat Transfer 34, no. 1 (2020): 13-25. 
 https://doi.org/10.2514/1.T5623 
[5]  Durand, Émile. Méthodes de calcul diélectriques. Masson, 1966.  
[6] Jones, Thomas B. "The feasibility of electrohydrodynamic heat pipes." (1971). 
[7] Jones, Thomas B., and Michael P. Perry. "Electrohydrodynamic heat pipe experiments." Journal of applied 

physics 45, no. 5 (1974): 2129-2132. 
 https://doi.org/10.1063/1.1663557 
[8] Loehrke, R. I. "An investigation of electrohydrodynamic heat pipes." (1977). 
[9] Shkilev, V. D., and BOLOGA MK. "EFFECTS OF AN ELECTRIC FIELD ON HEAT TRANSFER CHARACTERISTICS OF A HEAT 

PIPE." Applied Electrical Phenomena 2, no. 2 (1977): 61-64.  
[10] Loehrke, R. I., and W. J. Day. "Performance characteristics of several EHD heat pipe designs." Journal of 

Electrostatics 5 (1978): 285-296. 
 https://doi.org/10.1016/0304-3886(78)90024-4 
[11] Shkilev, V. D. "Operation of an electrohydrodynamic heat pipe against gravity." Akademiia Nauk Moldavskoi SSR, 

Izvestiia, Seriia Fiziko-Tekhnicheskikh i Matematicheskikh Nauk 1 (1978): 89-91. 
[12] Bologa, M. K., L. L. Vasil'Ev, and V. D. Shkilev. "Effects of electric fields on heat-pipe characteristics." Journal of 

engineering physics 36, no. 6 (1979): 748-756. 
 https://doi.org/10.1007/BF01086675 
[13] Shkilyev, V. D., and M. K. Bologa. "Heat transfer characteristics and constructive peculiarities of heat pipes utilizing 

the effect of electric fields." In Advances in Heat Pipe Technology, pp. 663-672. Pergamon, 1982. 
 https://doi.org/10.1016/B978-0-08-027284-9.50062-0 
[14] Kikuchi, K., T. Taketani, M. Shiraishi, and T. Yamanishi. "Large scale EHD heat pipe experiments." In Advances in 

Heat Pipe Technology, pp. 643-650. Pergamon, 1982. 
 https://doi.org/10.1016/B978-0-08-027284-9.50060-7 
[15] Bologa, M. K., and L. M. Moldavskij. "Heat pipes regulated by electric and magnetic fields." In 6th Int. Heat Pipe 

Conf., May 25-29, Grenoble, France, pp. 653-660. 1987. 
[16] Bologa, M.K. and Savin, I.K. "Electrohydrodynamic Heat Pipes." In Proceedings of the 7th International Heat Pipe 

Conference, Minsk, USSR, New York: Hemisphere, pp. 549–562, 1990. 
[17] Mazurek, Wojciech B., Anna Bryszewska, and Z. Nadolny. "The influence of electric field distribution on the 

dielectric heat pipe performance." In Proceedings of the 6th International Conference on Properties and 
Applications of Dielectric Materials (Cat. No. 00CH36347), vol. 2, pp. 899-902. IEEE, 2000. 

[18] Hallinan, Kevin P., Wilber Bhagat, Balamurali Kashaboina, and A. Reza Kashani. "Electro-hydrodynamic 
augmentation of heat transport in micro heat pipe arrays." ASME HEAT TRANSFER DIV PUBL HTD 361 (1998): 165-
171. 

[19] Hallinan, Kevin P., and A. R. Kashani. Electrohydrodynamic Control of Thin Film Evaporative Heat Transfer in Micro 
Groove Arrays. DAYTON UNIV OH DEPT OF MECHANICAL ENGINEERING, 1999. 

 https://doi.org/10.21236/ADA378389 
[20] Bhagat, Wilbur W. "Electrohydrodynamic enhancement of heat transport capacity of micro heat pipe 

arrays." PhDT (1999): 478. 
[21] Yu, Zhiquan, Kevin Hallinani, Wilbur Bhagat, and Reza Kashani. "Electrohydrodynamically augmented micro heat 

pipes." Journal of thermophysics and heat transfer 16, no. 2 (2002): 180-186. 
 https://doi.org/10.2514/2.6682 
[22] Yu, Zhiquan, Kevin P. Hallinan, and Reza A. Kashani. "Temperature control of electrohydrodynamic micro heat 

pipes." Experimental thermal and fluid science 27, no. 8 (2003): 867-875. 
 https://doi.org/10.1016/S0894-1777(03)00059-1 

https://doi.org/10.2514/1.T5623
https://doi.org/10.1063/1.1663557
https://doi.org/10.1016/0304-3886(78)90024-4
https://doi.org/10.1007/BF01086675
https://doi.org/10.1016/B978-0-08-027284-9.50062-0
https://doi.org/10.1016/B978-0-08-027284-9.50060-7
https://doi.org/10.21236/ADA378389
https://doi.org/10.2514/2.6682
https://doi.org/10.1016/S0894-1777(03)00059-1


Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 79, Issue 1 (2021) 128-152 

152 
 

[23] Suman, Balram. "A steady state model and maximum heat transport capacity of an electrohydrodynamically 
augmented micro-grooved heat pipe." International journal of heat and mass transfer 49, no. 21-22 (2006): 3957-
3967. 

 https://doi.org/10.1016/j.ijheatmasstransfer.2006.04.011 
[24] Chang, Fun Liang, and Yew Mun Hung. "Dielectric liquid pumping flow in optimally operated micro heat 

pipes." International Journal of Heat and Mass Transfer 108 (2017): 257-270. 
 https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.018 
[25] Saad, I., S. Maalej, and M. C. Zaghdoudi. "Numerical study of the electrohydrodynamic effects on the two-phase 

flow within an axially grooved flat miniature heat pipe." International Journal of Heat and Mass Transfer 107 
(2017): 244-263. 

 https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.089 
[26] Saad, I., S. Maalej, and M. C. Zaghdoudi. "Modeling of the EHD effects on hydrodynamics and heat transfer within 

a flat miniature heat pipe including axial capillary grooves." Journal of Electrostatics 85 (2017): 61-78. 
 https://doi.org/10.1016/j.elstat.2016.12.004 
[27] Saad, I., S. Maalej, and M. C. Zaghdoudi. "Combined effects of heat input power and filling fluid charge on the 

thermal performance of an electrohydrodynamic axially grooved flat miniature heat pipe." Applied Thermal 
Engineering 134 (2018): 469-483. 

 https://doi.org/10.1016/j.applthermaleng.2018.01.099 
[28]  Lemmon, E. W., M. L. Huber, and M. O. McLinden. "NIST Standard Reference Database 23: Reference Fluid 

Thermodynamic and Transport Properties-REFPROP, Version 8.0. National Institute of Standards and Technology, 
Standard Reference Data Program." Standard Reference Data Program, Gaithersburg (2018). 

[29] Suman, Balram, and Nazish Hoda. "Effect of variations in thermophysical properties and design parameters on the 
performance of a V-shaped micro grooved heat pipe." International Journal of Heat and Mass Transfer 48, no. 10 
(2005): 2090-2101. 

 https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.007 

https://doi.org/10.1016/j.ijheatmasstransfer.2006.04.011
https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.018
https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.089
https://doi.org/10.1016/j.elstat.2016.12.004
https://doi.org/10.1016/j.applthermaleng.2018.01.099
https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.007

