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The drying kinetics of (Moringa Oleifera) leaves were studied at various microwave 
power levels (300, 500, 800, and 1000 W) using an existing drying mathematical model. 
The best-fitted mathematical models of the drying curves were determined by 
considering the coefficient of determination (R2), SSE, and RMSE based on the 
experimental drying data of moringa leaves. For drying M. oleifera leaves, three out of 
six models exhibited the optimum drying behaviour with the highest R2 and lowest SSE 
and RMSE values, with R2, SSE, and RMSE values ranging from 0.92-0.98, 0.09-0.3, and 
0.06-0.10, respectively. Besides, the effective moisture diffusivity of moringa oleifera 
leaves during microwave drying varied from 1.56 × 10-8 to 5.49 × 10-8 m2/s. The values 
of D0 and Ea from microwave drying of Moringa oleifera leaves were estimated as 9.0 
x 10-8 m2/s and 17.53 W/g. 

Keywords: 
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1. Introduction 
 

Moringa Oleifera Lam., a fast-growing tree, is well-adapted to drought conditions and can be 
found in South, East, and West Africa, tropical Asia and Latin American nations. It is commonly known 
as moringa, ben oil tree or benzoil tree, kelor tree, drumstick and horseradish tree. M. oleifera is a 
medicinal plant found widely in tropical countries and is renowned for its versatility as a multipurpose 
tree. Moringa leaves have gained extensive recognition among healthcare professionals and nutrition 
specialists for their significant protein content utilised in addressing malnutrition and various 
ailments [1]. However, the nutritional contents of M. oleifera differ based on the cultivation location 
[2]. Thus, it is advisable to assess the nutritional composition of M. oleifera beforehand for optimal 
utilisation in medicinal or food applications. 
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Mathematical modelling of the drying process under various drying conditions is critical for better 
operation control and overall product quality improvement. There are plenty of models related to 
drying kinetic. According to research by Karathanos and Belessiotis [3], the model was often 
employed to gather additional information about the process components because optimising the 
operational parameters would enhance the drying kinetics of the product. These are the kinetic 
models widely used in agricultural drying methods, such as the Newton, Page, Midilli et al., Weibull 
Distribution, Logistics, and Demir et al., models. Furthermore, the models mimic moisture transport 
and mass transfer throughout the drying process of various agricultural samples. 

This work aimed to study the effect of microwave power (300 - 1000 W) on the drying properties 
of M. oleifera leaves to determine the best-fitted mathematical model with reference to the 
experimental drying data. Furthermore, the effective moisture diffusivity (Deff) and activation energy 
(Ea) values were calculated. 
 
2. Methodology  
2.1 Preparation of Sample 

 
As in the previous study [4], M. Oleifera Lam’s leaves were acquired from Hadham Enterprise in 

Johor, Malaysia. 
 

2.2 Analysis of Moisture Content and Drying of Moringa Oleifera Leaves 
 
Earlier research [5] was used to carry out the drying treatment steps. Four distinct microwave 

power levels (300, 500, 800 and 1,000 W) were studied in triplicates. The leaves were dried until their 
moisture content (MC) fell below 5% [6]. The dried leaves were then crushed with an electric grinder 
(Waring Commercial Blender 8011S, Model HGB2WTS3, USA) and sieved through a 355 m aperture 
stainless-steel sieve. The dried leaves powder (MOLP) was stored in a sealed container in a dry and 
dark cabinet. 
 
2.3 Mathematical Modelling of Drying 

 
The investigation of drying kinetics and its mathematical modelling is required to build an 

appropriate drier for the researched leaves [7]. 6 distinct thin-layer drying models from the literature 
were utilised to calculate the moisture ratio as a function of drying time, as shown in Table 1. The 
moisture ratio and drying rate of moringa oleifera leaves were calculated using the formula below.: 
 

𝑀𝑅 =  
𝑀𝑡 − 𝑀𝑒

𝑀0 − 𝑀𝑡
              (1) 

 
where MR is the moisture ratio, Mt is the moisture content at a specific time (g water g Dry Matter-

1), Me is the equilibrium moisture content (g water g Dry Matter -1), M0 is the initial moisture content 
(g water g Dry Matter-1). The equilibrium moisture content (Me) was assumed to be zero for 
microwave drying. 
 

𝐷𝑅 =  
𝑀𝑡+𝑑𝑡 − 𝑀𝑡

𝑑𝑡
             (2) 

 
where DR (Drying Rate (g water g Dry Matter -1 min -1), Mt+dt (moisture content at t + dt (kg moisture 
kg dry matter -1)), Mt (moisture content at t (g water g Dry Matter -1), and dt (drying time (min)). 
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Table 1 
Thin-layer drying models used for drying of Moringa oleifera leaves 
No Model Name Equation Reference 

1 Newton MR = exp(-k*t)  [6] 
2 Page MR = exp(-k*t^n) [7] 
3 Midilli et al., MR = (a*exp(-k*t^n)) + (b*t) [8] 
4 Weibull Distribution MR = a-(b*exp(-k*(t^n))) [9] 
5 Logistics MR = (a)/(1+(b*exp(k*t))) [10] 
6 Demir et al., MR = (a*exp(-k*t^n)) + c [10] 

 
MR, Moisture Ratio (dimensionless); a, b, c, dimensionless coefficients and n, microwave drying 

exponent specific to each equation; k drying coefficient specific to each equation; t, time in the drying 
model. 

Various mathematical models were developed from the previous literature to calculate the 
moisture ratio as a function of time. To identify which model gives the best-fit curves, the non-linear 
regression was used to evaluate the fit of the mathematical models to the experimental data. The 
parameters used for the evaluation comprise the coefficient of determination (R2) and the reduced 
chi-square (Χ2). The best-fit model shall show a higher value for R2 and lower values for Χ2, Root Mean 
Square Error analysis (RMSE) and Standard Error Estimate (SEE). These parameters can be calculated 
as follows: 
 

𝛸2  =  
∑ (𝑀𝑅𝑒𝑥𝑝,𝑖−𝑀𝑅𝑝𝑟𝑒,𝑖)2𝑁

𝑖=1

𝑁−𝑛
            (3) 

 

𝑅𝑀𝑆𝐸 =  [
1

𝑁
∑ (𝑀𝑅𝑒𝑥𝑝.𝑖 − 𝑀𝑅𝑝𝑟𝑒,𝑖)

2𝑁
𝑖=1 ]1/2          (4) 

 

𝑆𝐸𝐸 =  [
1

𝑁−𝑧
∑ (𝑀𝑅𝑒𝑥𝑝.𝑖 − 𝑀𝑅𝑝𝑟𝑒,𝑖)

2𝑁
𝑖=1 ]1/2          (5) 

 
2.4 Effective Moisture Diffusivity 

 
Effective moisture diffusion could indicate the moisture transfer mechanism inside a food or 

agricultural product. Using drying curves, Fick’s second law of diffusion may be used to compute 
effective moisture diffusivity (Deff). Manzoor et al., [11] provided the following equation for one-
dimensional slab geometry: 
 
𝜕𝑀

𝜕𝑡
=  𝐷𝑒𝑓𝑓(

𝜕2𝑀

𝜕2
+

𝜂

𝑟

𝜕𝑀

𝜕𝑟
)             (6) 

 
where M is the moisture content at any time of drying (kg water/kg dry basis) is the time (s), ƞ is a 
constant, Deff is the moisture-dependent diffusivity (m2 s -1), r is the diffusion path (m) which will be 
0 for planar geometry.  

Moringa oleifera leaves were modelled as an infinite slab geometry with a thickness of L. Hence, 
from Fick’s diffusion equation, and by considering all the assumptions and modifications, Deff can be 
determined by plotting drying data in the form of ln (MR) against drying time, t. 
 

ln (𝑀𝑅) = ln ( 
8 

𝜋2) −(
𝜋2 𝐷𝑒𝑓𝑓

4𝐿2 𝑡)            (7) 
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where MR is moisture ratio, Deff is the effective moisture diffusivity (m2 s-1), t is drying time (s), and L 
is the half thickness (drying from both sides) of Moringa oleifera leaves (L = 0.0005 m). 

 
2.5 Activation Energy 

 
The least energy necessary to activate moisture diffusion from a product’s interior regions is 

called activation energy (Ea). In the microwave mechanism, the temperature is not a directly 
measured quantity for drying in this study. 

As a result, Dadali et al., [12] computed the activation energy using a modified version of the 
Arrhenius equation. In contrast to the drying temperature in the original equation, Ea was related to 
Deff and m/P, which stand for effective moisture diffusivity and the microwave output power to 
sample mass ratio, respectively. In the case of microwave drying, Ea was calculated from the slope of 
ln (Deff) versus m/P, Eq. (8) can be written as follows: 

 

𝑙𝑛(𝐷𝑒𝑓𝑓) = ln (𝐷0)− E𝑎
𝑚

P
            (8) 

 
where D0 denotes Arrhenius or pre-exponential factor (m2 s-1), P denotes microwave output power 
(W), m represents sample mass (g), Ea signifies activation energy (W g-1), and m denotes sample mass 
(g). 

 
2.6 Computational Work 

 
The numerical computations were carried out with the help of the software application MATLAB 

R2021a. The parameters were assessed using the Marquardt-Levenberg process’s non-linear least 
squares approach. The important criteria for determining the best equation to account for variance 
in dried sample drying curves were the coefficient of determination (R2), standard error estimate 
(SEE), root mean square error analysis (RMSE), and reduced chi-square (X2). The model with the 
greatest R2 and the least reduced chi-square (X2) and RMSE would be the best-fit model in the drying 
properties of Moringa oleifera leaves. These statistical characteristics can be used to forecast 
moisture ratio values, with unity being more accurate. 
 
3. Results  
3.1 Drying Kinetic Model 

 
The thin layer drying properties of Moringa oleifera leaves were tested at four microwave power 

levels of 300, 500, 800, and 1000 W, and the experimental data was used as the benchmark of drying 
models. The model parameters were determined using non-linear regression analysis, and the best-
fitted model was determined using the coefficient of determination (R2) and standard error of 
estimate (SEE). 

The mathematical modelling results are shown in Table 2. The coefficient of determination (R2), 
SSE, and RMSE were employed to identify the best-fitted mathematical model for the drying curves. 
Doymaz [13] defined R2 as the primary parameter for selecting the best-fit agricultural product drying 
kinetics model. Demir et al., Weibull Distribution, and Midili model were identified as the best drying 
behaviour as they have the highest values of R2 and lowest values of SSE and RMSE. The results for 
R2, SSE and RMSE values are in the range between 0.92-0.98, 0.09-0.3 and 0.06-0.10, respectively. 
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Another study found the Demir et al., model as the best model in the literature for describing 
drying curves of green olives by Demir et al., [10]. Demir et al., [10]model is a modification from Page, 
Logarithmic and Midilli et al., models. However, in the case of drying celery leaves [9] and quince 
slices [14], the Weibull Distribution model was found to be a more accurate fit. Several other authors 
have found the Midilli et al., model to be well fitted to the drying of Lime slices [15], Mint leaves [8], 
Black mulberry [16], Green pepper [17] and mango ginger [18]. 
 
3.2 Effective Moisture Diffusivity and Activation Energy 

 
Effective moisture diffusivity means the impact of all input factors on mass transfer throughout 

the drying process. The effective moisture diffusivity of moringa oleifera leaves during microwave 
drying ranged from 1.56 × 10-8 to 5.49 × 10-8 m2/s, as shown in Table 3. As the power of the microwave 
increased, the time required for drying decreased, and the diffusion of moisture increased due to the 
rise in temperature and higher energy input. The values reported in this study were within the range 
of 10-6 to 10-12 m2/s for drying food materials, which agreed well with the previous studies [19,20].  

The maximum diffusivity value was achieved after microwave drying at 1000 W, whereas the 
lowest was obtained at 300 W. The increased heating energy can explain the increase in moisture 
diffusivity with increasing microwave power. Higher heating energy enhanced water molecule 
activity as the samples were dried at increasing microwave power, resulting in greater moisture 
diffusivity [21]. This result has a similar trend reported by previous studies in drying Adathoda vasica 
leaves and Cymbopogon citratus leaves [7], celery leaves [9], mint leaves [8] and black mulberry [16]. 

The minimum energy necessary to activate moisture diffusion from a product’s interior regions 
is called activation energy (Ea). Figure 1 depicts the Ea generated from the logarithmic of moisture 
diffusivity versus sample weight/power level (m/P) plot. The outputs indicate a linear connection 
because of the modified Arrhenius-type exponential equation dependency. 

Based on Figure 1, the values of D0 and Ea were estimated as 9.0 x 10-8 m2/s and 17.53 W/g, 
respectively. Ea obtained in this study were higher than those reported for drying celery leaves (13.51 
W/g) [9], Mint leaves (12.28 and 11.049 W/g) [8] but lower than the values found in the study in 
Adathoda vasica leaves (31.88 W/g) [7] and Mango ginger (21.6 W/g) [19]. Table 3 shows the fitness 
of different models at different microwave power. 
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Table 2  
The fitness of different models at different microwave power 
Model Name Equation MW (W) SSE R^2 adj R^2 RMSE a b c k g h n 

Newton MR = exp(-k*t) 

300 0.5670 0.8836 0.8836 0.1273    0.0974    

500 0.6326 0.8529 0.8529 0.1406    0.1877    

800 0.3309 0.9249 0.9249 0.1068    0.3123    

1000 0.2392 0.9309 0.9309 0.1020    0.3430    

Page MR = exp(-k*t^n) 

300 0.2158 0.9557 0.9544 0.0797    0.0115   1.901 

500 0.3462 0.9195 0.9169 0.1057    0.0454   1.851 

800 0.1087 0.9753 0.9745 0.0623    0.1000   1.904 

1000 0.0904 0.9739 0.9727 0.0641    0.1401   1.756 

Midilli et al., MR = (a*exp(-k*t^n))+(b*t) 

300 0.2129 0.9563 0.9522 0.0816 0.9865 0.0013  0.0088   2.033 

500 0.3444 0.9233 0.9156 0.1071 0.9828 -0.0014  0.0415   1.874 

800 0.0971 0.97798 0.9754 0.0611 1.0010 0.0054  0.0913   2.049 

1000 0.0904 0.9739 0.9700 0.0672 1.0000 0.0003  0.1397   1.763 

Weibul Distribution MR = a-(b*exp(-k*(t^n))) 

300 0.2131 0.9563 0.9522 0.0816 0.0287 -0.9577  0.0084   2.057 

500 0.3444 0.9233 0.9156 0.1071 -0.0163 -0.9993  0.0421   1.861 

800 0.0966 0.9781 0.9755 0.0610 0.0425 -0.9578  0.0884   2.104 

1000 0.0904 0.9739 0.9700 0.0672 0.0025 -0.9975  0.1397   1.764 

Logistics MR = (a)/(1+(b*exp(k*t))) 

300 0.2090 0.9571 0.9545 0.0796 1.0830 0.0888  0.2938    
500 0.3338 0.9256 0.9208 0.1038 1.0750 0.0928  0.5655    
800 0.1058 0.9760 0.9742 0.0626 1.1030 0.1002  0.8921    
1000 0.0905 0.9739 0.9714 0.0656 1.1500 0.1505  0.8625    

Demir et al., MR = (a*exp(-k*t^n))+c 

300 0.2131 0.9563 0.9522 0.0816 0.9577  0.0288 0.0084   2.058 
500 0.3456 0.9287 0.9221 0.1039 0.9837  -0.0017 0.0412   1.890 
800 0.0966 0.9781 0.9755 0.0610 0.9578  0.0425 0.0884   2.104 
1000 0.0904 0.9739 0.9700 0.0672 0.9975  0.0025 0.1397   1.764 

 
MR, Moisture Ratio (dimensionless); a, b, c, dimensionless coefficients and n, microwave drying exponent specific to each equation; k drying 

coefficient specific to each equation; t, time in the drying model; r2, coefficient of determination; RMSE, Root Mean Square Error analysis; SSE, 
Standard Error Estimate. 
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Table 3 
Effective moisture diffusivity of Moringa oleifera leave at various 
microwave power 
Microwave Power  
Level (W) 

Time required for  
drying (min) 

MASS/POWER  
(g/W) 

Effective Diffusivity, 
 Deff (m2/s) 

300 20 0.100 1.56 x 10-8 
500 10 0.060 3.11 x 10-8 
800 8 0.038 4.45 x 10-8 
1000 6 0.030 5.49 x 10-8 

 

 
Fig. 1. The plot of ln (Deff) against m/P (kg/W) 

 
3.3 Validation Modelling Results 

 
Figure 2 illustrates the relations between the predicted and experimental values with fitted data 

for Moringa oleifera leaves samples at different microwave power. Considering the gradient of each 
of the best-fit models was close to 1, the predicted values were in excellent agreement with the 
experimental drying values.  
 

   
Fig. 2. Comparison of predicted versus experimental moisture ratio values Moringa oleifera leaves dried 
in microwave method using different mathematical models  

 
4. Conclusions 

 
In conclusion, the drying kinetics of (Moringa Oleifera) leaves were evaluated at different 

microwave power levels (300, 500, 800, and 1000 W) by altering the drying properties of Moringa 
oleifera leaves to determine which mathematical model best fits the experimental drying data. From 
the results obtained, Demir et al., Weibull Distribution, and Midili model show the best drying 
behaviour with the highest R2 and lowest SSE and RMSE values for drying M. oleifera leaves, with R2, 
SSE, and RMSE values ranging from 0.92-0.98, 0.09-0.3, and 0.06-0.10, respectively. Besides, the 
effective moisture diffusivity of moringa oleifera leaves during microwave drying varied from 1.56 × 
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10-8 to 5.49 × 10-8 m2/s. As microwave power increased, moisture diffusivity increased due to higher 
heating energy from the microwave output from the drying process. The values of D0 and Ea from 
microwave drying of Moringa oleifera leaves were estimated as 9.0 × 10-8 m2/s and 17.53 W/g, 
respectively. 
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