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Water pollution has been identified as one of serious environmental problem that has a 
negative impact on aquatic animals and plants, terrestrial plants and animals, and human 
health. Effective pollution management and decision-making require an understanding of 
the intricate dynamics of water contamination in our environment. There are many 
workable measures that can be adopted to control the menace. Mathematically, water 
pollution can be modelled using differential equations through management. In order to 
describe the pollution of water bodies using a system of differential equations. We 
deployed compartment models to capture the dynamic of pollution in lakes, rivers, and 
other water bodies. The model compartmentalizes various forms of water pollution and 
combines them with purification measures. With this strategy, we showed how water 
pollutants behave in diverse environmental contexts by providing useful knowledge for 
putting pollution management measures into practice by solving the compartmental 
model using the Euler method and the Runge-Kutta of Order 4 numerical method (RK4). 
The quality of results obtained by applying the two mentioned numerical methods is 
queried based on how they respond to different values of step size (h), which represents 
the interval at which the numerical methods approximate the solution trajectory. Our 
findings demonstrate that both numerical approaches are viable for solving 
compartmental equations by computing compartment values over a specified time 
interval. Despite the practicability of both methods, it is noteworthy that Runge-Kutta of 
order 4 consistently emerges as the more effective numerical method in solving our 
compartmental model when compared with Euler formula, particularly when step sizes 
are moderately large. The Runge-Kutta method's robustness and efficiency in accurately 
approximating solutions over the specified time range make us conclude that it is more 
preferable to the Euler method for practical implementations of compartmental models 
with moderately large time steps. 
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1. Introduction 
 

Pollution is the expulsion or introduction of man-made and industrial waste by-products or 
substances into the environment that are susceptible to causing threats to human health, damaging 
living resources, disrupting ecological systems and quality environment [1,2]. Water is regarded as a 
fundamental need for life. It is an important part of our bodies and keeps us alive. Without adequate 
water, the chances of man and other living things in the environment surviving will be jeopardized 
[3]. In our everyday lives, water is helpful and needful. Water from rivers, lakes, and lagoons has been 
utilised for irrigation of farm plants, domestic usage, and industrial usage. However, these greatest 
resources that nature has provided to us have become polluted as a result of human activity [4]. 
Water pollution occurs when harmful liquids like oil, pesticides, and insecticides are discharged from 
industries, humans, institutions, and health centres into water bodies. The presence of these 
pollutants disrupts aquatic ecosystems, interferes with biodiversity, and degrades the quality of 
water supplies for industrial, agricultural, and domestic purposes such as cooking, drinking, and 
bathing [5]. It can also promote the development of water-borne diseases like dysentery, malaria, 
typhoid, cholera, amoebiasis, hookworm, and giardiasis to mention a few [6,7]. Adequate efforts to 
protect the environment against water pollution begin with effective monitoring of pollutants. One 
of the very workable measures to monitor pollution mathematically is the use of differential 
equations. This is achieved by describing the pollution of water using a system of differential 
equations. A compartmental model is introduced to capture the dynamics of pollution in lakes, rivers, 
and other bodies of water [8]. 

Mathematical modelling is series of intelligent activities that helps in turning implementation-
related problems into manageable mathematical symbols, relations, equations, and formulae. 
Numerical and theoretical analysis provides thoughts, solutions, and deductions for the original 
application [9,10], The use of mathematical models to capture intrigue information is widespread 
across many academic fields, including the social sciences, agriculture, medicine, and business, to 
mention but a few. Stochastic or deterministic models, linear or non-linear models, and even 
dynamical models like chaos and neural networks are options for mathematical models that can be 
deployed. In epidemiology, the success of mathematical models has been recorded in the past to 
diagnose, treat, and forecast epidemic outbreaks [11]. Epidemiological models, such as the SIS, SIR, 
and SEIR, have been deployed to provide accurate approximations for stakeholders and policy 
makers to facilitate and determine what is needed to control diseases [12]. In the mathematical 
modelling of infectious diseases to capture the trend in disease dynamics, it can be noted that the 
majority of infectious diseases require a combination of containment, isolation, quarantine, vaccines, 
medicine, and many more to slow the transmission of disease [13]. Recent years have witnessed the 
use of mathematical models to study the dynamics of water contamination and pollution. A 
compartment model may also be used to analyse the dynamics of water pollution in a system. The 
compartments here stand in for various components of pollutants that are present or move back and 
forth [14]. 

To fully understand the transmission of water pollution, numerous scientists and scholars have 
proposed many models to capture the intrigues and dynamics of water pollution. Study conducted 
by Agusto and Bamigbola [15] proposed the application of the Crank-Nicolson numerical approach 
to numerically solve the mathematical models for water contamination in Nigeria. The end result 
demonstrates that in every instance, the pollutant concentration drops more quickly. A mathematical 
model has been deployed to model the dispersal of contaminants via forest resources with the best 
possible management measures [16]. The outcome demonstrates that, both directly via harvesting 
and indirectly through pollution, wood-based businesses lower the density of forest resources. 
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Industries other than wood-based ones only have an indirect impact on forest resources. This 
proposed increasing the amount of forest resources and installing less. This advocated increasing the 
amount of forest resources while reducing the number of industries per person. Finite Element 
Method (FEM), was used to solve a model for the dispersion of river pollution using the concentration 
of pollutant as variables [17]. 

Mathematical modelling is an essential tool for understanding the dynamics of water pollution. 
Using such intuition, researchers can stimulate the behaviour and spread of pollutants in water 
bodies and investigate the effectiveness of different mitigation strategies mathematically [18,19]. 
Robust and good modelling techniques are essential in forecasting pollutant behaviour while creating 
efficient mitigation methods to overcome the threat of water pollution. To effectively handle this 
problem, this research will utilise a compartmental model to determine the impact of soluble and 
insoluble pollutants, modifying the variables of the compartmental model to include pollution rate, 
transmission rate, treatment rate, and many more. In the past, less attention has been given to 
finding the solutions of compartmental models using the numerical method of the ODE method. 
Furthermore, we employed the compartmentalization approach and applied numerical techniques 
to solve the compartmental equations. In particular, we used both the Euler method and Runge-Kutta 
order 4 numerical methods to see how well numerical methods worked at solving these kinds of 
compartmental models and to see how well the numerical methods themselves worked. Based on 
the trend in the obtained solutions, while both methods are practical, it's worth highlighting that the 
Runge-Kutta method of order 4 consistently proves to be the more effective numerical approach for 
solving our compartmental model, especially when dealing with moderately large step sizes [20]. The 
Runge-Kutta method of 4th order demonstrates robustness and efficiency in precisely approximating 
solutions over the specified interval, leading us to infer that the Runge-Kutta method of 4th order is 
the preferred choice over the Euler method for practical implementations of compartmental models 
with moderately large time steps. 
 
2. Mathematical Formulation of the Model 
 

Model formulation is an essential component in conceptualizing a modelling problem; it calls for 
the selection of appropriate variables to describe the major components and features of water 
pollutants and determine the physical or chemical interaction between the components. The system 
description will facilitate and allow us to envisage and comprehend the abstractions in the 
components within the system while providing information that will aid in making proper 
assumptions regarding major components of the underlying system we are trying to model. The 
variables are categorized into compartments that describe the physical attributes of the components, 
such compartments define the rate of change of pollution in a lake as the difference between the 
rate at which pollution enters the water body and the rate at which pollution leaves the lake [21]. 
This can be modified as the rate of change of pollutant in the water bodies, as the difference between 
the rates of pollution in water bodies and the rate at which pollutants depart the water body in the 
case where the water is stagnant. Figure 1 is an illustration of the movement of water pollutants into 
running water. The water pollutants used in this research are made up of two categories of 
pollutants, which are categorized as soluble and insoluble pollutants. 
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Fig. 1. An illustration of the movement of water pollutants into running 
water 

 
We investigate the numerical solutions of the modified compartmental model for transmission 

of water pollution found in the previous study [16]. Our investigation revolves around the use of two 
popular numerical methods, the Euler method and the Runge-Kutta of order 4 method to solve the 
compartmental equations in Eq. (1). 

The interactions among the compartments shown in Figure 2 leading to the emergence of the 
following nonlinear ordinary differential equations 
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2 2 2

1 2
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   

   
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  

 =  − − + −

 = + − +

 = − − + +

 = + −

            (1) 

 

 
Fig. 2. Illustration of the movement of the agents across the 
compartments 

 
where   is the rate at which pollutants are introduced into the water system over a defined period 
of time; it signifies the flow or influx of pollutants into the water body from several sources 
(industries, domestic, and others), and it is measured in concentration per unit time. 

1  represents the rate of dissolution of soluble water pollutants; it indicates how rapidly the 

soluble pollutant dissolves and moves within the water. 

2 represents the rate at which the insoluble pollutants are transported through the water body; 

this can be influenced by water current, turbulence, and other factors. 
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  represents the rate at which pollutants are being taken out of or removed from each individual 

compartment in the system. 
  represents the rate at which water pollutants that were initially insoluble (not capable of 

dissolving in water) are transformed into a soluble form through a treatment process. 
 represents the rate at which initially insoluble water pollutants are converted into forms that 

contribute to water pollution.  

1 2,     are the rate of volume of soluble and insoluble pollutants, respectively, that are subjected 

to treatment within their respective compartments in the water body. 
The compartmental model used in this study is divided into four different compartments. As 

shown in Eq. (1). W denotes the volume of water pollutants, S denotes the volume of soluble water 

pollutants, I  denotes the volume of insoluble water pollutants, and T is the volume of water treated 
by removing both soluble and insoluble pollutants. Eq. (1) demonstrates dynamics in each of the 
compartments, where terms with a negative sign led to a reduction in the volume of the 
correspondent compartment, while those with positive sign basically led to an increase in the cubic 
volume of the compartments. The rate of change in each compartment are described using ordinary 
differential equations, which according to Ziemińska-Stolarska and Skrzypski [22] can be employed 
to depict the dynamics of activities that take place in surface waters linked to the dissemination of 
different pollutants, which can pose a lot of danger to human, animal, and plant health. Using the 
general law of conservation, Eq. (1) can be used to describe each quantity within a non-specified 
control measure in the compartment as well as the volume of each compartment at a certain point 
in time. However, since each compartment equation is described in an ODE, we can apply numerical 
methods to solve the problem to visualize the changes that occur at any interval and the long-term 
implications of treatment on the water body. The description of the numerical methods to be used 
is described in Section 4.1 and Section 4.2. 
 
3. Data Source, System and Software Requirement 
 

In this research, we used data from Bonyaha et al., [9] to visualize the dynamic of the system 
involving water pollution and the movement of entities from one compartment to another. 
Simulated datasets are artificial datasets that are adopted to imitate real-world instances and can be 
used to examine how the compartmental model responds in controlled environments. We 
investigate the dynamics of the system of differential equations in Eq. (1) and the parameter values 
shown in Table 1, which were extracted from the source. To effectively model the dynamics of the 
system and reduce the computational burden, we used the MATLAB programming language R2022b 
version running on Microsoft Windows 10, 8 GB of RAM and a 64-bit multi-core processor. We set 

W(0) 500,= (0) 100I = (0) 400,S = and (0) 0T =  as initial values and other parameters as adopted 

in Bonyaha et al., [9] and Shah et al., [16]. Table 1 shows other parameters used in the studies. 
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Table 1 
Symbols used and parametric values 
Notation Description Parameter Value 

  Rate of flow of water pollutants into the water 0.8 

1  Rate of transmission of soluble water pollutants  0.18 

2  Rate of transmission of insoluble water pollutants  0.02 

  Rate of removal of water pollutant from each compartment  0.4 

  Conversion rate of insoluble water pollutants to solute after 
treatment  

0.3 

  Rate if conversion of insoluble water pollutants into water pollution  0.25 

1  Rate of volume of soluble water pollutants treated  0.2 

2  Rate of volume of insoluble water pollutant treated  0.5 

 
4. Methodology 
 

The compartmental model used in carrying out these numerical comparative studies is a modified 
version of Shah et al., [16], together with the data and the parameters in a study by Isa et al., [6]. We 
investigate how the Euler numerical method and the Runge-Kutta method of the 4th-order method 
behave when used in solving the compartmental model in Eq. (1). Having riven the complex systems 
into interrelated compartments, the obtained compartmental equations are used to describe and 
analyse the behaviour of the complex systems. The interactions between the compartments are 
defined by compartmental equations; as such, each compartmental equation represents a unique 
component of the system. Here we used the Euler numerical methods and the Runge-Kutta method 
of order 4 that were described in subsections 4.1 and 4.2, respectively, to see the dynamic of each 
component in the compartmental models. Figure 3 and Figure 4 depict the flow chart for the 
methodology used in this study. 
 
4.1 Euler Numerical Method 
 

In the field of computational science and mathematics, the Euler method is also known as the 
forward Euler method [23]. It is a numerical technique for solving ordinary differential 
equations (ODEs) when the initial value is known. It is regarded as the simplest Runge-Kutta 
technique and the most explicit approach for the numerical solution of an ODE [24]. One of the 
milestones ever reached in continuous time dynamics is the discovery of numerical ODE solutions, 
since the majority of ODEs cannot be solved analytically. Hence, one of the available options to reveal 
the trajectory of such solutions is numerical integration. To solve various forms of ODEs properly, a 
variety of approaches have been proposed. Numerical methods strive to achieve the same goal as 
analytical methods, and the dynamics of their function closely resemble those of differential equation 
[25]. Several studies have shown that any first-order ordinary differential equation (ODE) of the form 
shown in Eq. (2) can be solved using the Euler numerical formula shown in Eq. (3) [26,27]. 
 

0 0( , ), ( )
dy

f x y y x y
dx

= =             (2) 

 
where, 

0 0( )y x y=  is an initial condition. The Euler method, aside from being a popular technique for 

solving ordinary differential equations, is also the source from which most of the numerical methods 
for solving first-order ODEs were derived. The scheme for its implementation is shown in Eq. (3). 
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1 ( , ).n n n ny y hf x y+ = +  0, 1, 2,. . .n = Z           (3) 

 
where h is step-size, the difference between consecutive independent variables is calculated using 

1n nh x x+= − , this can be written as 
1n nx x h+ = + , and from the algebraic perspective slope is defined 

as / runrise , we can then write ( , )n n

y
f x y

x


=


, or equivalently, ( , )n n

y
f x y

h


= , rearranging we have, 

( , )n ny hf x y =  and since our target is to get an expression of the form 
1ny +
, we write 

1n ny y y+ =  +

, substituting y  as shown earlier, and rearranging led to Eq. (3). The Euler method provides 

substantial solutions to most first-order ODEs. The Euler formula is built around using a known point 
as a starter and then utilising the tangent line through that point to find new related points. The 
sequence of these points generated in this pattern will approximate the solution of the analytic 
solution of the ODE. Although errors during the iterations are a bit higher when compared to other 
numerical methods, efforts to mitigate the error magnitude have led to modifications of the classical 
Euler scheme; most of the attempts mainly focus on improving the method’s efficiency by reducing 
the size of errors during iterations. However, findings from research in the field of numerical analysis 
affirm that the Euler formula is not free from errors when the step size is large but also converges 
slowly [28]. In this paper, we used the Euler numerical method to solve the compartmental models 
by treating each compartmental equation as a separate ODE. Such that the system of equations in 
Eq. (1) can be modified as 
 

( , , , , )w n n n n n

dW
f t W S I T

dt
= , ( , , , , )s n n n n n

dS
f t W S I T

dt
= , ( , , , , )I n n n n n

dW
f t W S I T

dt
=  and ( , , , , )T n n n n n

dW
f t W S I T

dt
=   

 
where W is the cubic volume of water pollutant, S is the cubic volume of soluble water pollutant, I is 
the cubic volume of insoluble water pollutant, and T is the treated water pollutant. We transform the 
compartmental model in Eq. (1) using the Euler formula while taking 

1i ih t t+= −  

 

n 1 1 2 2( , , , , ) ( )n w n n n n n n n n n n n nW W hf t W S I T W h W S W I I W   + = + = + − − + −      (4) 

 

( )n 1 1 1S ( , , , , ) ( )n s n n n n n n n n n nS hf t W S I T S h W S I S   + = + = + + − +        (5) 

 

( )n 1 2 2 2( , , , , ) ( )n I n n n n n n n n n nI I hf t W S I T I h W I I I    + = + = + − − + +       (6) 

 

n 1 1 2( , , , , ) ( )n T n n n n n n n nT T hf t W S I T T h S I T  + = + = + + −         (7) 

 
Hence, we set 0(0)W W= , 0(0)S S= , 0(0)I I=  and 0(0)T T=  as the initial values of each of the 

compartments at 0t = . We choose the time steps as 0.1, 0.01, 0.001h = , and we obtain the numerical 

solutions of ( )W t ,S( )t , ( )I t  and ( )T t  we compute 
1 0 1( ) ( , , , )n nW t W hf W S I T+ = + , 

1 0 2( ) ( , , , )n nS t S hf W S I T+ = + , 
1 0 3( ) ( , , , )n nI t I hf W S I T+ = +  and 

1 0 4( ) ( , , , )n nT t T hf W S I T+ = +  with 

0.1h = . The sequence of results obtained was used in plotting the graphs shown in the results and 
discussion section, using Eq. (4) to Eq. (7) while varying the value of h  and the number of specified 
iterations; this resulted in the sequence of solutions that represent the dynamics of each 
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compartment at any given time. The source of the initial values used in this research work for all the 
compartmental equations was obtained from the source indicated in Section 3. 
4.1.1 Procedures for solving the compartmental model using Euler model 
 
Step 1: Formulation of the compartmental equations; compartmental model shown in Eq. (1) is made 
up of four distinct compartments, each compartment is a unique entity within the system (water 
pollution), and it is described using a differential equation. 
 
Step 2: Step size (h) selection or time discretization; time is the independent value in our studies, and 
the dynamic of each of the entities in the system is investigated with step-size 0.1h = , 0.01h = , and

0.01h = . The choice of step size is done randomly so as to investigate the dynamics of the 
compartmental equations by varying the step size for each simulation.  
 
Step 3: Setting of initial values for each of the compartments, at 0t =  the set initial values, as 
presented in Section 3 for each of the compartments. 
 
Step 4: We then compute the value of each of the compartmental equations iteratively; setting the 
initial values 

0 0 0 0, ,W S I and T  and the parameters in Table 1 to calculate the subsequent values of

, ,n n n nW S I and T  , where 1,2,3,4,5...n =  until the desired time interval. The is done using 

 

1

1

1

1

( ) ( ) . ( , , , , )

( ) ( ) . ( , , , , )

( ) ( ) . ( , , , , )

( ) ( ) . ( , , , , )

n n n n n n n

n n n n n n n

n n n n n n n

n n n n n n n

W t W t h f t W S I T

S t S t h f t W S I T

I t I t h f t W S I T

T t T t h f t W S I T

+

+

+

+

= +

= +

= +

= +   
 

Step 5: Time is updated using the relation 1( )n nt t h+ = +  at the end of each iteration. This is continued 

for the predefined number of iterations of defined time interval, subsequent values of each 
component are computed and recorded. 
 

Step 6: We plot the graphs of sequences of solutions for , , andn n n nW S I T  on the y-axis and against 

the values t on the x-axis for individual methods. 
 
Step 7: Analysis, interpretation, and visualisation of observable trends in the comparative graphs of 
each approach are carried out. 
 
4.1.2 Pseudocode for the Euler method 
 

1. Start 
2. Define the functions in form of compartmental model  

                     

3. Read values of initial conditions , compute number of steps and calculation point  

4. Calculate step size using  

1

1

1

1

( , , , )

( , , , )

( , , , )

( , , , )

i i i i i i

i i i i i i

i i i i i i

i i i i i i

W W hf W S I T

S S hf W S I T

I I hf W S I T

T T hf W S I T

+

+

+

+

= +

= +

= +

= +

( )0 0 0 0, ,W S I and T n nt

( )n 0h t t n= −
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5. Set  

6. Loop 

                     

 

while  

7. Display  as results 

8. Stop 

 
4.1.3 Flow chart of Euler numerical method in solving compartmental model 
 
 

 
Figure 3 depicts the steps involved in simulating the model. It lays out the initial conditions, step 

sizes, parameters and defines the flow rates between each of the compartments. It also specifies 
how the Euler numerical method updates the compartment sizes at each iteration, based on the 
relationship between the previous solution and current solution.  
 

 
Fig. 3. Flow chart showing Euler method procedures for 
solving compartmental model 

4.2 Runge-Kutta of Order 4 (RK4) Numerical Method 
 

0i =

1

1

1

1

* ( , , , )

* ( , , , )

* ( , , , )

* ( , , , )

i i i i i i

i n i i i i

i n i i i i

i n i i i i

W W h f W S I T

S S h f W S I T

I I h f W S I T

T T h f W S I T

+

+

+

+

= +

= +

= +

= +

1i i= +

i n

( ), ,i i i iW S I and T
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Runge-Kutta is another numerical technique that is well known as an efficient and effective 
method for solving first-order differential equations with a specified initial condition. The Runge-
Kutta technique has the benefit of being the most used numerical method since it provides calculable 
values, making it especially effective for computing difficult higher-order derivatives [29]. Its 
provision of better accuracy, when compared to Euler’s method in most instances, made it more 
suitable. Additionally, it is simple to alter the step size for a unique initial value, which cuts down on 
computation time. Several studies revealed that the Runge-Kutta technique has been deployed in 
many applications [30,31]. They asserted that the Runge-Kutta fourth-order method (RK4) produced 
more accurate results. Podisuk [31] asserted in a review of the Euler method, the modified Euler 
method, and the Runge-Kutta fourth-order method that the Runge-Kutta fourth-order method is the 
best of the remaining three methods he reviewed. Following the same approach as shown in the 
Euler method above, we formulate the compartmental model using Runge-Kutta. In general, given 

that ( , )
dy

f x y
dx

=  and 0 0( )y x y= , Let 0, 1, 2,. . .n = Z  and h as the step size, the formula to compute 

the solution of ODE using RK4 is given as 
 

( )1 1 2 3 42 2
6

n n

h
y y k k k k+ = + + + + .           (8) 

 
where 
 

( )

1

1
2

2
3

4 3

( , ) ,

, ,
2 2

, ,
2 2

, .

i i

i i

i i

i i

k f t y

hkh
k f t y

hkh
k f t y

k f t h y hk

=

 
= + + 

 

 
= + + 

 

= + +

 

 
We can approximate the solution at each point using 1ny + . We utilized RK4 method to solve the 

compartmental model from time = 0 to any desired number of times. By modifying the first-order 

ODE so that, ( , , , , )w n n n n n

dW
f t W S I T

dt
= , ( , , , , )s n n n n n

dS
f t W S I T

dt
= , ( , , , , )I n n n n n

dW
f t W S I T

dt
=  and 

( , , , , )T n n n n n

dW
f t W S I T

dt
=  where , , ,W S I T  are defined above. We transform the compartmental 

model in Eq. (1) using RK4 and taking 1i ih t t+= −  such that 

 

( )1 1 2 3 42 2 .
6

W W W W

n n

h
W W k k k k+ = + + + +           (9) 

 
where 
 

1 n 1 2 2( , W , , I , ) ( )W

W n n n n n n n n n nk f t S T h W S W I I W   = =  − − + −
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2 1 1 1 1

1 1 1 2 1 1 2 1

1

1 1 1 1 1
( h, h , h , I h ,T h )

2 2 2 2 2

1 1 1 1 1
h h h h h

2 2 2 2 2

1
h

2

w w s I T

W n n n n n

w S w I I

n n n n n

w

n

k f t W k S k k k

W k S k W k I k I k

W k

  



= + + + + +

       
=  − + + − + + + +       

       

 
− + 

   
 

3 2 2 2 2

1 2 2 2 2 2 2 2

2

1 1 1 1 1
( h, W h , h , I h , h )

2 2 2 2 2

1 1 1 1 1
h h h h h

2 2 2 2 2

1
h

2

W w s I T

W n n n n n

w S w I I

n n n n n

w

n

k f t k S k k T k

W k S k W k I k I k

W k

  



= + + + + +

       
=  − + + − + + + +       

       

 
− + 

   
 

( )( ) ( )( ) ( ) ( )
4 3 3 3 3

1 3 3 2 3 3 2 3 3

( h, h , h , I h ,T h )

(

W w s I R

W n n n n n

w S w I I W

n n n n n n

k f t W k S k k k

W k S k W k I k I k W k   

= + + + + +

= − + + − + + + + − +
 

 
For soluble pollutants we have 
 

( )1 1 2 3 42 2 .
6

S S S S

n n

h
S S k k k k+ = + + + +                     (10) 

 
where 
 

( )1 1 1( , W , I , ) ( ),S

s n n n n n n n n n nk f t S T S h W S I S   = = + + − +
 

 

( )

1 1 1 1
2

1 1 1 1
1 1

hk hk hk hkh
, W , I ,

2 2 2 2 2

2 2 2 2

W S I s
S

s n n n n n

W S I S

n n n n

k f t S T

hk hk hk hk
W S I S   

 
= + + + + + 

 

      
= + + + + − + +      

        
 

( )

2 2 2 2
3

2 2 2 2
1 1

hk hk hk hkh
, W , I ,

2 2 2 2 2

2 2 2 2

W S I s
S

s n n n n n

W S I S

n n n n

k f t S T

hk hk hk hk
W S I S   

 
= + + + + + 

 

      
= + + + + − + +      

        
 

( )( ) ( ) ( )( )
4 3 3 3 3

1 3 3 3 1 3

( h, W , , I ,T )S w s I I

s n n n n n

W S I S

n n n n

k f t hk S hk hk hk

W hk S hk I hk S hk   

= + + + + +

= + + + + − + +
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For the insoluble pollutant compartment, we have 
 

( )1 1 2 3 42 2 ,
6

I I I I

n n

h
I I k k k k+ = + + + +                      (11) 

 
where 
 

( )1 n 2 2 2( , W , , I , )I

I n n n n n n n nk f t S T W I I I    = = − − + +
 

 

( )

1 1 1 1
2 n n

1 1 1 1
2 2 2

hk hk hk hkh
, W , , I ,T

2 2 2 2 2

2 2 2 2

w s I T
I

I n n n
n

W I I I

n n n n

k f t S

hk hk hk hk
W I I I    

 
= + + + + + 

 

      
= + + − + − + + +      

        
 

( )

2 2 2 2
3 n

2 2 2 2
2 2 2

, W , , I ,T
2 2 2 2 2

2 2 2 2

W W I T
I

I n n n n

W I I I

n n n n

hk hk hk hkh
k f t S

hk hk hk hk
W I I I    

 
= + + + + + 

 

      
= + + − + − + + +      

        
 

( )( ) ( ) ( )( )4 n 2 3 2 2 3 2 3( h, W , , I ,T )I W I I I

I n n n n n n n nk f t S W hk I hk I hk I hk    = + = + + − + − + + +
 

 
For the rate of treated water pollutant 
 

( )1 1 2 3 42 2 .
6

T T T T

n n

h
T T k k k k+ = + + + +                     (12) 

 
where 
 

1 n 1 2( , W , , I ,R )T

T n n n n n n nk f t S S I T  = = + −
 

 

1 1 1 1
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1 1 1
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hk hk hk hkh
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2 2 2 2 2
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T
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T I T

n n n

k f t S T

hk hk hk
S I T  

 
= + + + + + 

 

     
= + + + − +     

       
 

2 2 2 2
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2 2 2
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2 2 2 2 2
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W S L T
T
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k f t S T

hk hk hk
S I T  

 
= + + + + + 

 

     
= + + + − +     
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( ) ( ) ( )
4 n 3 3 3 3

1 3 2 3 3

( h, W hk , hk , I hk ,T hk )T T T T T

T n n n n

T I T

n n n

k f t S

S hk I hk T hk  

= + + + + +

= + + + − +
 

 

Setting 0(0)W W= , 0(0)S S= , 0(0)I I=  and 0(0)T T=  as the initial values of each of the 

compartments at 0t = , and 0.1h =  using the formula 
1 0 1( ) ( , , , )n nW t W hf W S I T+ = + ,

1 0 2( ) ( , , , )n nS t S hf W S I T+ = + , 
1 0 3( ) ( , , , )n nI t I hf W S I T+ = + and 

1 0 4( ) ( , , , )n nT t T hf W S I T+ = + . 

The sequence of results obtained for (t), (t), (t) and (t)W S I T were deployed in plotting the graphs 

shown in the result and discussion section. The Eq. (9) to Eq. (12) were reused with value 

of 0.01 and 0.001h = for a number of specified iterations. This resulted in a sequence of solutions for 

each compartment that represent the dynamics of each compartment at any given time. The flow 
chart below shows the procedure used in developing the model, and the graphs showing the 
dynamics of each of the compartments are shown in Section 5. 
 
4.2.1 Procedures for solving the compartmental model using the Runge–Kutta method of 4th Order 
 
Step 1:  The compartmental model consists of four distinct compartments representing unique 
entities in a water pollution system, each represented by a differential equation in Eq. (1) illustrating 
their rate of change over time. 
 
Step 2: Selection of an appropriate step size to determine the progression of each of the 
compartments over a defined time interval. It is done using time discretization, the step-size used in 
this research are 0.1h = , 0.01h = , and 0.01h = . 
 

Step 3: Identify initial values 0 0 0 0, , andW S I T  for each of the entities in the compartment; the value 

at 0t =  the set initial values, as presented in Section 3. 
 
Step 4: The computation of the dynamic of each of the compartmental equations is done iteratively 

by first finding the values of the 1, 2,3, 4ik i =  since we are using the Runge-Kutta method of 4th 

order. 
 

( )

1

1 1 1 1
2

2 2 2 2
3

4 3 3 3 3

( , , , , ) ,

, , , , , ,
2 2 2 2 2

, , , , ,
2 2 2 2 2

, , , , .

i i i i i

i i i i i

i i i i i

i i i i i

k f t W S I T

hk hk hk hkh
k f t W S I T

hk hk hk hkh
k f t W S I T

k f t h W hk S hk I hk T hk



   


   


    

=

 
= + + + + + 

 

 
= + + + + + 

 

= + + + + +

 

 
where ( , , , )W S I T =  is taking over each of the compartmental equations in the model, each of the 

compartments is updated using the formula in Eq. (13). 
 

( )1 1 2 3 42 2 .
6

W W W W
n n

h
W W k k k k+ = + + + +   
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( )1 1 2 3 42 2 .
6

S S S S
n n

h
S S k k k k+ = + + + +   

( )1 1 2 3 42 2 .
6

I I I I
n n

h
I I k k k k+ = + + + +   

( )1 1 2 3 42 2 .
6

T T T T
n n

h
T T k k k k+ = + + + +                      (13) 

 

Step 5: We update t using the relation 1( )i it t h+ = +  at the end of each Iteration. We continue the 

iterations for a predefined number of time (steps), while the subsequent values of each component 
are computed. 
 

Step 6: We plot the graphs of sequences of solutions for , , andn n n nW S I T  on the y-axis and against 

the values t on x-axis for individual methods. 
 
Step 7: Analysis, interpretation, and visualisation of observable trends in the comparative graphs of 
each approach are carried out. 
 
4.2.2 Pseudocode for the Runge–Kutta method of 4th Order 
 

1. Start 
2. Define the functions in form of compartmental model  

                     

3. Read values of initial conditions , compute number of steps and calculation point  

4. Calculate step size  

5. Set  

6. Loop 
 

 for  

 

 

 

           

                

end  

                  

 

while  

1

1

1

1

( , , , )

( , , , )

( , , , )

( , , , )

i i i i i i

i i i i i i

i i i i i i

i i i i i i

W W hf W S I T

S S hf W S I T

I I hf W S I T

T T hf W S I T

+

+

+

+

= +

= +

= +

= +

( )0 0 0 0, ,W S I and T n nt

( )0nh t t n= −

0i =

( , . , )W S I T =

1 0 0 0 0 0( , , , , )k f t W S I T =

1 1 1 1

2 0 0 0 0 0

h
, , , ,

2 2 2 2 2

k k k k
k f t W S I T  

= + + + + + 
 

2 2 2 2

3 0 0 0 0 0

h
, , , ,

2 2 2 2 2

k k k k
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= + + + + + 
 

( )4 0 0 3 0 3 0 3 0 3, , , ,k f t h W k S k I k T k = + + + + +

( )1 1 2 3 42 2
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h
Y Y k k k k   
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7. Display  as results 

8. Stop 

 
4.2.3 Flow chart of Runge–Kutta integrated compartmental hybrid model 
 

Figure 4 shows the initial conditions and parameters used in the model development. 
Additionally, it depicts the iterative process of the 4th-order Runge-Kutta method, where the model 
equations are discretized and solved over successive time steps. Each step of the flowchart 
corresponds to a specific calculation involved in the numerical solution, ranging from evaluating the 
derivative functions, updating the state variables, and advancing the simulation time. Additionally, 
the flowchart incorporates decision points to handle termination criteria, leading to the effectiveness 
and convergence of the solution. 
 

 
Fig. 4. Flow chart Runge-Kutta method of 4th Order procedures for 
solving compartmental model 

 
 
5. Results and Discussion 

( ), ,i i i iW S I and T
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Using the pseudocodes provided in subsections 4.1.2 and 4.2.2, we obtained the corresponding 

values of , ,n n n nW S I and T  as the simulated solutions for both methods, which we deployed to 

demonstrate the applicability of numerical methods in solving compartmental models and 
scrutinized the dynamics as well as the behaviour of pollutants in water systems. The compartmental 
model shown in Eq. (1) and corresponding parameter values detailed in the provided Table 1 were 
utilized to investigate the responses of water pollutants (W), soluble water pollutants (S), insoluble 
water pollutants (I), and the rate of treated water pollutants by solving numerically with step sizes 
ranging from 0.1, 0.01, and 0.001. The discussion of the accuracy of both methods using different 
step size values is as follows: 

From Figure 5(a) and Figure 5(b), it can be clearly observed that both methods were not able to 
capture any trend in the data. This can be attributed to the fact that the step size is large, justifying 
the fact that most numerical techniques work better at approximating the solution of an ODE when 
the small step size is utilised for each iteration. Overshooting or undershooting might occur if the 
step size is too large, leading to inaccurate solutions. 
 

  
(a) Solution with Euler Method (b) Solution with Runge-Kutta order 4 

Fig. 5. Compartmental solutions using  for Euler method and Runge-Kutta method 

 

In Figure 6(a) and Figure 6(b), we set, , Runge-Kutta method approximates the solution 
better; as seen in Figure 4, the graph of the Runge-Kutta is smoother than that of the Euler method. 

A closer look at the solution produced by the Euler method shows a negative value for graph  

and it has some ‘spikes’ at the beginning. attaining some negative values at the beginning 

invalidates our initial condition. Here, we can only infer that we obtain a better solution when 

compared with . Thus, it can be seen that the Runge-Kutta method provides a better 
approximated solution when compared to the solution obtained using the Euler method at . 
 

0.1h =

0.01h =

( )T t

( )W t

0.1h =

0.01h =
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(a) Solution with Euler Method (b) Solution with Runge-Kutta order 4 

Fig. 6. Compartmental solutions using for Euler method and Runge-Kutta method 

 

From Figure 7(a) and Figure 7(b), it can be observed that at , the graphs of both methods 
look similar. Showing the effectiveness of both approaches in providing reasonable approximations 
when the step size is small, several studies have shown the effectiveness of Runge-Kutta, especially 
the fourth-order (RK4), as it shows higher accuracy, stability, and versatility [22,24]. They justified 

their proclamation by citing that the Euler method has an error of order while the Runge-Kutta 

method has an error of order  that is much smaller when compared to the error in the Euler 

method. We can infer that even with reasonably large step size. The Runge-Kutta method will 
produce a more accurate result. 

Moreover, from Figure 7(a) and Figure 7(b), it can be seen that as the number of days increases, 
the concentration of water pollutants does not change much. An indication of equilibrium in the 
concentration of pollutants as time progresses. Soluble water pollutants increase quickly at first, from 
400 mg/l to 900 mg/l, and then decline as the number of day’s increases. The sudden increase in 
soluble water pollution is probably a result of interactions with other pollutants in the water, along 
with the conversion of insoluble pollutants to solute pollutants. On the other hand, treatment of 
soluble water pollutants may be responsible for the decline in soluble water pollutants. Also, the 
curve for insoluble water pollutants slopes downward, justifying the presence of adequate water 
purification procedures. 
 

0.01h =

0.001h =

( )2O h

( )5O h



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 115, Issue 1 (2024) 30-50 

47 
 

  
(a) Solution with Euler Method (b) Solution with Runge-Kutta order 4 

Fig. 7. Compartmental solutions using  for Euler method and Runge-Kutta method 

 
Adequate purification procedures and awareness may contribute to the declining trend in 

insoluble pollutants, and the conversion of insoluble water pollutants to solutes can also contributed 
to the decline in it. To clearly visualise the above assumption and hypothesis, we investigate the role 
plays by the two recruitment agents in our model using Figure 8(a) and Figure 8(b). 
 

  

(a) Graphs showing perturbation of  (b) Graphs showing perturbation of  

Fig. 8. Graph showing solutions of soluble and insoluble compartments with perturbed  

using with Runge-Kutta method of 4th order 

 
One might do a sensitivity analysis and parameter verification to increase the numerical 

simulation's effectiveness. Sensitivity analysis revolves around how variations in model parameters 
affect the outcomes of the simulation. Gaining knowledge about important factors and how they 
affect the model's predictions will help to comprehend how the system behaves. Furthermore, by 
fitting the simulated results more closely to observable data, parameter estimation techniques may 
be used to optimise model parameters. Through this iterative process, the simulation's predictive 
power and accuracy may be improved. The model's dependability and practicality would also be 
enhanced with the inclusion of real-world data for validation and calibration. It is imperative to 

0.001h =

1 2

1 2and 

0.001h =
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investigate the predominant forms of pollution in our studies, namely soluble and insoluble 
pollutants. These two pollutants contribute massively to the pollution of water bodies. To 
comprehend the situation and evaluate the implications of the dynamic in water bodies, we alter the 
parameters that describe the transmission rates of soluble and insoluble pollutants in our 
compartmental equations. To better grasp the implications, we extended the observation period to 
10–12 months and analyzed the effects of varying these transmission rates. 

Figure 8(a) illustrates the consequences of different values of the parameter 1  for 0.08, 0.18, 

0.28, and 0.38. Each value produces varying volumes of pollutants available at the 12th month, with 
(0.08, 1.159) as the lowest and (0.38, 1.5333) highest volume of pollutants, suggesting that 
implementing better waste disposal policies and purification processes can reduce the transmission 

rate of soluble water pollutants to a bearable rate. When 1 0.08 = , the available quantity of 

pollutants in the water has reduced significantly at 12th month compared to the value obtained when 

1  is higher. In a similar manner, Figure 8(b) demonstrates that lower rate of insoluble water 

contaminants favours treatment and disappearance of pollutants within the water body. This can be 
achieved by making a policy that disallows unlimited access to activities that can contaminate the 

water while intensifying treated process, with the value of 2 0.02   these pollutants disappear over 

time. 
However, another important thing to be noted here is that an increase in the insoluble water 

pollutant will facilitate the creation of homes for vectors that can cause diseases, distort ecosystem 
formation, and cause nuisance to plants and animals, rendering water unfit for consumption and 
other purposes it is meant for. The combined effect of the impurities in water bodies in the form of 
soluble and insoluble impurities might increase the turbidity of the water and change the pH of the 
water, forcing the water to be acidic or alkalinic and causing an increase in live germs with a high 
tendency to make plants, animals, and humans’ sick. This research has demonstrated the effect as a 
result of the treatment of water pollutants. The decline in both soluble and insoluble pollutants in 
the water bodies is a result of the treatment compartments, leading to an increase in the volume of 
water available for usage while preventing disease incidences among the population through water-
borne disease in plants and animals. The solution obtained shows good water quality Thus, we can 
also gain a better understanding of the dynamics of water contamination if the model can 
incorporate more components, such as changes in the climate, changes in land use, or industrial 
activity. By adding these elements, the simulation would be more accurate, and the model's 
predictive power would increase. The model has the potential to be an effective tool for proactive 
water management plans by including scenarios of anticipated changes in pollution sources and 
extrapolating existing data patterns. 
 
6. Conclusion 
 

We looked at how the Euler method and the Runge-Kutta methods of order four worked when 
solving compartmental models related to water pollution transmission. Our main objective revolves 
around investigation and evaluating the accuracy of these methods in determining which one of them 
provides a better approximation in the context of the compartment model. The results of our 
comparison revealed that the Runge-Kutta method outperformed the Euler method in terms of 
accuracy, even when using a reasonably large step size. This superiority can be attributed to the 
smaller truncation error associated with the Runge-Kutta method. Therefore, we can confidently 
state that the Runge-Kutta method is a more reliable approach for solving compartmental models in 
this specific scenario. 
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Furthermore, our findings suggest that numerical methods, like the ones utilised in this study, 
play a crucial role in proffering solutions for differential equations when analytical solutions are 
difficult or unavailable. Our research demonstrated that numerical methods can produce accurate 
results, especially when the step size is relatively small. Additionally, we analysed the responses and 
trends of variations in the solutions obtained for each compartment as the number of days increased. 
This analysis permitted us to scrutinise the impact of certain parameters on water pollutants. 
Notably, our study inferred that increasing the treatment rate of both soluble and insoluble water 
pollutants will facilitate a quicker elimination of pollution from water sources. Overall, our research 
highlights the significance and trustworthiness of numerical methods in solving complex problems 
associated with water pollution transmission. 
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