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The purpose of this research is to study the problem of mixed convection stagnation-
point flow on a vertical stretching sheet with external magnetic field, with the effect of 
radiation is taken into account. The partial differential equations are reduced to 
ordinary differential equations using similarity transformation. The transformed 
boundary layer equations are then solved numerically via bvp4c in MATLAB software. 
The effects of different values of radiation parameter and Hartmann number on the 
skin friction coefficient and local Nusselt number, velocity and temperature profiles 
are presented and discussed.  The effect of radiation parameter and Hartmann number 
are also considered for both assisting and opposing flows. Dual solutions are found to 
exist in the opposing flow only, while for assisting flow, unique solution exists.  It is also 
found that the radiation parameter enhances the boundary layer separation, and the 
Hartmann number delays the boundary layer separation. 
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1. Introduction 
 

The study of the fluid flow and heat transfer with thermal radiation effect has picked a high 
interest amongst researchers due to its importance applications in industrial and engineering, 
namely, in nuclear reactor cooling system, gas turbines and various propulsion devices or aircraft, 
missiles, satellites and space vehicles. The effect of thermal radiation on the heat transfer processes 
is very important in high operating temperature [1]. Das [2] investigated the radiation effect together 
with melting effect on MHD boundary layer flow over a moving surface. Ishak [3] studied MHD 
boundary layer flow due to an exponentially stretching sheet with radiation effect. Later, Hamid et 
al., [4] investigated Marangoni convection over a flat surface with the effect of radiation.   Recently, 
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Bakar et al., [5] solved the problem of mixed convection flow in a boundary layer saturated by a 
nanofluid in a porous medium with the effect of Soret and Dufour, suction and thermal radiation 
using Runge-Kutta-Fehlberg method.  All the above-mentioned papers showed only unique solution 
exists in their results. 

Many results regarding multiple solutions or specifically dual solutions obtained in boundary layer 
problems [6-16].  Dual solutions reported for a certain range values of suction and unsteadiness 
parameters by Ali et al., [6] and they concluded that the variation in the temperature distribution is 
not significant when high radiation parameter is applied.  Radiation also found to increase the heat 
transfer rate at the surface.  Ingham [7] provided non-unique solutions (dual solutions) for the flow 
due to free convection near continuously moving vertical plate using Runge-Kutta Merson method.  
Later, Ramachandran et al., [8] observed dual solutions in opposing flow case only for the problem 
of mixed convection in stagnation flow adjacent to vertical surface.  On the other hand, dual solutions 
for both opposing and assisting flows reported by Ridha [9], Ishak et al., [10, 11], Bachok et al., [12], 
Rostami et al., [13] and Ali et al., [14]. 

In most cases of dual solutions, researchers verified which branch solution is stable and valid 
physically by performing a stability analysis.  Thus, Bakar et al., [15,16] and Adnan et al., [17] 
performed a stability analysis to verify which solution is stable, and concluded that the upper branch 
solution is stable and physically realizable, while the lower branch solution is not stable.  This is due 
to the upper branch solution initiated decaying disturbances, while the second solution initiated 
growing disturbances.  Other dual solutions problems can be found in [18-24].   

In this present paper, we study the effects of external magnetic field together with radiation 
effect on mixed convection stagnation-point flow over a vertical stretching sheet. The nonlinear 
partial differential equations are reduced to similarity or nonlinear ordinary differential equations, 
which are solved numerically using bvp4c function in MATLAB. 
 
2. Problem Formulation  
 

This study takes into consideration of two-dimensional boundary layer flow of viscous fluid over 
a plate surface where it is assumed that the velocity of the far flow on the stretching surface with the 
velocity of  eu x ax  and the surface is stretched with the velocity of  wu x cx  where a and c are 

positive constants. It is also assumed that the temperature of the plate is  wT x T bx   where T

is the temperature of the ambient fluid, wT  is the wall temperature, and b is a constant.  It is good to 

mention that for a heated surface  wT x T  (when b > 0), there exist assisting flow, while, when b 

< 0, the plate is cooled   wT x T , therefore, opposing flow occurs.  Another assumption for this 

study is the magnetic Reynolds number is small so that the induced magnetic field is negligible.  The 
schematic diagram of the present problem is displayed in Figure 1.   

 

 
Fig. 1. Physical model and coordinate system 
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The effect of an external magnetic field of constant strength 0H  is included, which is also applied 

normal to the stretching surface. With all these assumptions, together with the Boussinesq 
approximations and Rosseland approximation for radiation, neglecting the viscous dissipation effect, 
the steady two-dimensional flow of viscous and electrically conducting fluid with radiation effect can 
be described by the following governing equations. 
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subject to boundary conditions 
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where u  and v  are the velocity components along the x and y axes, respectively.  The fluid pressure 
is p, T is the fluid temperature, g is the acceleration due to gravity, and , , , , , ,p e ek c       and rq  are 

the thermal conductivity, the specific heat of the fluid at a constant pressure, the kinematic viscosity, 
the fluid density, the thermal expansion coefficient, the electrical conductivity, the magnetic 
permeability, and the Rosseland approximation for radiation, respectively.  Following Sutton and 
Sherman [25], we take 
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where the forces due to the hydrostatic and magnetic pressure gradient would be in equilibrium. 
Therefore, Eq. (2) becomes 
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Using the Rosseland approximation for radiation [26], the radiative heat flux rq is simplified as 
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where * and *k  are the Stefan–Boltzmann constant and the mean absorption coefficient, 
respectively.  Following Bataller [27], it is assumed that the temperature differences within the flow 

are sufficiently small such that the term 4T  can be expressed as a linear function of temperature.  

Hence, expanding 4T  in a Taylor series about T  and neglecting higher-order terms, we obtain 

 
4 3 44 3 .T T T T                                                                                                                         (8) 

 
In view of Eq. (7) and Eq. (8), Eq. (3) can be written as 
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Applying the following similarity transformations 
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to Eq.  (1), Eq. (6) and Eq. (9), where   is the stream function, which is defined as u
y
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Therefore, the continuity equation, Eq. (1) is satisfied, and from Eq. (6) and Eq. (9), we obtain the 

following ordinary differential equations. 
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subject to the new boundary conditions  
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where primes denote differentiation with respect to , and  
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are the wall ratio velocity parameter, the Hartmann number, the Prandtl number, the radiation 
parameter, and the mixed convection or buoyancy parameter, respectively, and μ is the dynamic 
viscosity.    
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Here,   3 2/x wGr g T T x    is the local Grashof number, and  2Re /x eu x x   is the local 

Reynolds number.  In this study, λ > 0 refers to the assisting flow, λ < 0 refers to the opposing flow, 

and λ = 0 refers to the forced convection flow.  For a non-static surface (A  0) and when a magnetic 
field and radiation are absent (Ha = 0 and Rd = 0), the present problem reduces to the problem 
studied by Ishak et al., [28] and Ali et al., [29].  The physical quantities of interest are the skin friction 
coefficient fC  and the local Nusselt number xNu , which are defined as 

 

21

2

w
f

e

C

u





 , 
 

w
x

w

xq
Nu

k T T




                                                                                                     (15) 

 
with w  is the surface shear stress and wq  is the surface heat flux.  Following Bakar et al., [16], 
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and using variables in Eq. (10), Eq. (15) and Eq. (16), we obtain  
 

   1/2 1/2 4
0 , 1 0 .

3
x f x xRe C f Re Nu Rd   

     
 

                                                 (17)  

 

3. Results and Discussion 
 

The set of the ordinary differential Eq. (11) and Eq. (12) with the boundary conditions Eq. (13) 
have been solved numerically by applying the bvp4c method. To verify the numerical results 
obtained, a comparison study is done with those of Ishak et al., [28] and Ali et al., [29] as shown in 
Table 1 and 2, for the cases of assisting flow and opposing flow.  It is found that a good agreement 
between these results.  For both assisting and opposing flows, it is also found that the skin friction 

coefficient,  0f   decrease when Prandtl number, Pr increases, however, the heat transfer rate at 

the surface,  0   increase with Pr.  

 
 
 
 
 
 
 

Table 1 

The skin friction coefficient  0f   and the local Nusselt number  0   for different 

values of Pr when A = 1, Ha = 0, Rd = 0 and  = 1 (assisting flow) 
 Ishak et al., [28] Ali et al., [29] Present 

Pr  0f    0    0f    0    0f    0   

0.72 0.3645 1.0931 0.3645 1.0931 0.3645 1.0931 
6.8 0.1804 3.2902 0.1804 3.2897 0.1804 3.2896 
20 0.1175 5.6230 0.1175 5.6208 0.1175 5.6201 
40 0.0873 7.9463 0.0873 7.9403 0.0873 7.9383 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 80, Issue 2 (2021) 22-32 

 

27 
 

60 0.0729 9.7327 0.0729 9.7217 0.0728 9.7180 
80 0.0640 11.2414 0.0640 11.2244 0.0639 11.2187 
100 0.0578 12.5726 0.0578 12.5490 0.0577 12.5411 

 

Table 2 

The skin friction coefficient  0f   and the local Nusselt number  0   for different 

values of Pr when A = 1, Ha = 0, Rd = 0 and  = 1 (opposing flow) 
 Ishak et al., [28] Ali et al., [29] Present 

Pr  0f    0    0f    0    0f    0   

0.72 0.3852 1.0293 0.3852 1.0293 0.3852 1.0293 

6.8 0.1832 3.2466 0.1832 3.2463 0.1832 3.2461 

20 0.1183 5.5923 0.1183 5.5903 0.1183 5.5896 

40 0.0876 7.9227 0.0876 7.9169 0.0876 7.9145 

60 0.0731 9.7126 0.0731 9.7018 0.0730 9.6982 

80 0.0642 11.2235 0.0641 11.2068 0.0641 11.2012 

100 0.0579 12.5564 0.0579 12.5329 0.0578 12.5252 

 
Figure 2 and 3 show the velocity and temperature profiles for different values of radiation 

parameter, Rd for both assisting and opposing flows, when A < 1, respectively.   For assisting flow, 
the velocity profiles increase with Rd, however, opposite effect found in opposing flow.  On the other 
hand, higher value of Rd, results in increasing the temperature profiles for both assisting and 

opposing flows.  The effect of buoyancy parameter ( < 0) on the velocity profiles, when A < 1, can 

be seen from Figure 4. The velocity profiles of the first solution reduce with , however, for the 

second solution, the profiles increase with . Figure 4 also displays dual velocity profiles, for the case 
of opposing flow, thus, there exist second solution of the problem.   

The skin friction coefficient and the local Nusselt number for various values of Rd and , when     
A < 1 are displayed in Figure 5 and 6, respectively. Dual solutions exist for opposing flow, while for 
assisting flow, only unique solution exists.  For upper solution, the skin friction coefficient and the 
local Nusselt number reduce as Rd increases.  It is found that Rd enhances the boundary layer 

separation.  This can be observed in Figure 5 and 6, by looking at the critical values, c, where c = 

8.46, 8.20, 8.02 when Rd = 0.6, 1.0, 1.4, where beyond these critical values, the boundary layer 
separation occurs. 

 

 
Fig. 2. Velocity profiles for different values of Rd 

when A = 0.5 when  = 2.0 (assisting flow) and  = 

2.0 (opposing flow) 
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Fig. 3. Temperature profiles for different values of Rd 

when A = 0.5 when  = 2.0 (assisting flow) and  = 2.0 
(opposing flow) 

 

 
Fig. 4. Velocity profiles for different values of  when 
A = 0.5 
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Fig. 5. Skin friction coefficient as function of  for various 
values of Rd when A = 0.5 

 

 
Fig. 6. Local Nusselt number as function of  for various values 
of Rd when A = 0.5 

 
The effect of the Hartmann number on the skin friction coefficient and the local Nusselt number 

for A < 1 can be found in Figure 7 and 8, respectively.  As the Hartmann number increases, the skin 
friction coefficient and the local Nusselt number also increase.  The same phenomenon can be 

observed with .  The Hartmann number are known related to the Lorentz force, whereby, when Ha 
increases, the Lorentz force also increases.  Hence, this will slow down the momentum of the fluid 
flow and increase the drag at the surface, therefore, increases the skin friction coefficient and the 
local Nusselt number.  The Hartmann number found to delay the boundary layer separation and 

broaden the range of λ for which the solutions exist, where the critical values c = 14.4, 25.5, 38.5 

when Ha = 3.0, 4.0, 5.0.  In Figure 7 and 8, dual solutions also exist for certain region of  (opposing 
flow). 

 
Fig. 7. Skin friction coefficient as function of  for various values of 
Ha when A = 0.5 

 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 80, Issue 2 (2021) 22-32 

 

30 
 

 
Fig. 8. Local Nusselt number as function of  for various values of 
Ha when A = 0.5 

 
4. Conclusions 
 

The problem of mixed convection stagnation-point flow of an incompressible viscous fluid on a 
vertical stretching sheet with the presence of external magnetic field and radiation effect is studied.  
Dual solutions are found to exist for opposing flow only. However, for assisting flow, only unique 
solution exists.  We also conclude that the radiation parameter enhances the boundary layer 
separation. While, the Hartmann number delays the boundary layer separation. 
 
Acknowledgement 
The authors gratefully acknowledged the financial support received in the form of a FRGS research 
grant (FRGS/1/2019/STG06/UPM/02/6) from the Ministry of Higher Education, Malaysia. The authors 
thank the reviewers for their valuable comments and suggestions. 
References  
[1] Seddeek, M.A. “Effects of radiation and variable viscosity on a MHD free convection flow past a semi-infinite flat 

plate with an aligned magnetic field in the case of unsteady flow.” International Journal of Heat and Mass Transfer 
45 (2002): 931-935. 

 https://doi.org/10.1016/S0017-9310(01)00189-2 
[2] Das, Kalidas. “Radiation and melting effects on MHD boundary layer ow over a moving surface.” Ain Shams 

Engineering Journal 5, no. 4 (2014): 1207-1214. 
 https://doi.org/10.1016/j.asej.2014.04.008 
[3] Ishak, Anuar. “MHD boundary layer flow due to an exponentially stretching sheet with radiation effect.” Sains 

Malaysiana 40, no. 4 (2011): 391-395. 
[4] Hamid, Rohana Abdul, Norihan Md Arifin, Roslinda Nazar and Fadzilah Md Ali. “Radiation effects on Marangoni 

convection over a flat surface with suction and injection.” Malaysian Journal of Mathematical Sciences 5, no. 1 
(2011): 13-25. 

[5] Bakar, Shahirah Abu, Norihan Md Arifin, Fadzilah Md Ali and Norfifah Bachok. “The effects of soret and dufour on 
mixed convection boundary layer flow of a porous media along a permeable surface filled with a nanofluid and 
radiation.” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 53, no. 1 (2019): 35-46. 

[6] Ali, Fadzilah Md, Roslinda Nazar, Norihan Md Arifin and Ioan Pop. “Unsteady flow and heat transfer past an 
axisymmetric permeable shrinking sheet with radiation effect.” International Journal for Numerical Methods in 
Fluids 67, no. 10 (2011): 1310-1320. 

 https://doi.org/10.1002/fld.2435 

https://doi.org/10.1016/S0017-9310(01)00189-2
https://doi.org/10.1016/j.asej.2014.04.008
https://doi.org/10.1002/fld.2435


Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 80, Issue 2 (2021) 22-32 

 

31 
 

[7] Ingham, D. B. “Singular and non-unique solutions of the boundary layer equations for the flow due to free 
convection near continuously moving vertical plate.” Journal of Applied Mathematics and Physics 37 (1986): 559-
572. 

 https://doi.org/10.1007/BF00945430 
[8] Ramachandran, N., T. S., Chen, and B. F. Armaly. “Mixed convection in stagnation flows adjacent to vertical 

surfaces.” Journal of Heat Transfer 110 (1988): 373-377. 
 https://doi.org/10.1115/1.3250494 
[9] Ridha, A. “Aiding flows non-unique similarity solutions of mixed convection boundary layer equations.” Journal of 

Applied Mathematics and Physics 47 (1996): 341-352. 
 https://doi.org/10.1007/BF00916642 
[10] Ishak, Anuar, Roslinda Nazar, Norihan Md Arifin and Ioan Pop. “Dual solutions in mixed convection flow near a 

stagnation point on a vertical porous plate.” International Journal of Thermal Sciences 47 (2008): 417-422. 
 https://doi.org/10.1016/j.ijthermalsci.2007.03.005 
[11] Ishak, Anuar and Roslinda Nazar, Norfifah Bachok and Ioan Pop. “MHD mixed convection flow adjacent to a vertical 

plate with prescribed surface temperature.” International Journal of Heat and Mass Transfer 53 (21-22) (2010):  
4506-4510.  

 https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.043 
[12] Bachok, Norfifah, Anuar Ishak and Ioan Pop. “Mixed convection boundary layer flow near the stagnation point on 

a vertical surface embedded in a porous medium with anisotropy effect.” Transport in Porous Media 82, no. 2 
(2010): 363-373.  

 https://doi.org/10.1007/s11242-009-9431-0 
[13] Rostami, Mohammadreza Nademi, Saeed Dinarvand and Ioan Pop. “Dual solutions for mixed convective stagnation-

point flow of an aqueous silica-alumina hybrid nanofluid.” Chinese Journal of Physics 56 (2018): 2465–2478.    
  https://doi.org/10.1016/j.cjph.2018.06.013 
[14] Ali, Fadzilah Md, Kohilavani Naganthran, Roslinda Nazar and Ioan Pop. "MHD mixed convection boundary layer 

stagnation-point flow on a vertical surface with induced magnetic field: A stability analysis." International Journal 
of Numerical Methods for Heat and Fluid Flow 

 https://doi.org/10.1108/HFF-11-2016-0436. 
[15] Bakar, Shahirah Abu, Norihan Md Arifin, Fadzilah Md Ali, Norfifah Bachok, Roslinda Nazar and Ioan Pop. “A stability 

analysis on mixed convection boundary layer flow along a permeable vertical cylinder in a porous medium filled 
with a nanofluid and thermal radiation.” Applied Sciences 8, no. 483 (2018): 1-13. 

 https://doi.org/10.3390/app8040483 
[16] Bakar, Shahirah Abu, Norihan Md Arifin, Roslinda Nazar, Fadzilah Md Ali, Norfifah Bachok, and Ioan Pop. “The 

effects of suction on forced convection boundary layer stagnation point slip flow in a Darcy porous medium towards 
a shrinking sheet with presence of thermal radiation: A stability analysis.” Journal of Porous Media 21, no. 7 (2018): 
623-636. 

 https://doi.org/10.1615/JPorMedia.2018019722 
[17] Adnan, Nurul Shahirah Mohd, Norihan Md Arifin, Norfifah Bachok and Fadzilah Md Ali. “Stability analysis of MHD 

flow and heat transfer passing a permeable exponentially shrinking sheet with partial slip and thermal radiation.” 
CFD Letters 11, no. 12 (2019): 34-42. 

[18] Lok, Y. Y., N. Amin, D. Campean and I. Pop. “Steady mixed convection flow of a micropolar fluid near the stagnation 
point on a vertical surface.” International Journal for Numerical Methods in Fluids 15 (2005): 654-670. 

 https://doi.org/10.1108/09615530510613861 
[19] Merrill, Keith, Matthew Beauchesne, Joseph Peter Previte, Joseph E. Paullet and Patrick Weidman. “Final steady 

flow near a stagnation point on a vertical surface in a porous medium.” International Journal of Heat and Mass 
Transfer 49 (2006): 4681-4686. 

 https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.056 
[20] Bachok, Norfifah and Anuar Ishak. “Mixed convection boundary layer flow over a permeable vertical cylinder with 

prescribed surface heat flux.” European Journal of Scientific Research 34, no. 1 (2009): 46-54.  
[21] Arifin, Norihan Md, Rohana Abdul Hamid, Roslinda Nazar, Fadzilah Md Ali and Ioan Pop. “Dual solutions on 

thermosolutal marangoni forced convection boundary layer with suction and injection.” Mathematical Problems in 
Engineering 2011 (2011): 1-19.  

 https://doi.org/10.1155/2011/875754 
[22] Ali, Fadzilah Md, Roslinda Nazar, Norihan Md Arifin and Ioan Pop. “Dual solutions in MHD flow on a nonlinear 

porous shrinking sheet in a viscous fluid.”  Boundary Value Problems 2013, no. 32 (2013): 1-7. 
 https://doi.org/10.1186/1687-2770-2013-32 

https://doi.org/10.1007/BF00945430
https://doi.org/10.1115/1.3250494
https://doi.org/10.1007/BF00916642
https://doi.org/10.1016/j.ijthermalsci.2007.03.005
https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.043
https://doi.org/10.1007/s11242-009-9431-0
https://doi.org/10.1016/j.cjph.2018.06.013
https://doi.org/10.1108/HFF-11-2016-0436
https://doi.org/10.3390/app8040483
https://doi.org/10.1615/JPorMedia.2018019722
https://doi.org/10.1108/09615530510613861
https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.056
https://doi.org/10.1155/2011/875754
https://doi.org/10.1186/1687-2770-2013-32


Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 80, Issue 2 (2021) 22-32 

 

32 
 

[23] Bachok, Norfifah, Anuar Ishak, and Ioan Pop. “Stagnation point flow toward a stretching/shrinking sheet with a 
convective surface boundary condition.” Journal of the Franklin Institute 350, no. 9 (2013): 2736-2744.  

 https://doi.org/10.1016/j.jfranklin.2013.07.002 
[24] Salleh, Siti Nur Alwani, Norfifah Bachok, Norihan Md Arifin, Fadzilah Md Ali and Ioan Pop.  “Stability Analysis of Mixed 

Convection Flow towards a Moving Thin Needle in Nanofluid.” Applied Sciences 8, no. 6 (2018): 842. 
 https://doi.org/10.3390/app8060842 
[25] Sutton, G. W., and A. Sherman. “Engineering Magnetohydrodynamics”, McGraw-Hill, New York (1965).   
[26] Raptis, A., C. Perdikis, and H. S. Takhar. “Effect of thermal radiation on MHD flow.” Journal of Applied Mathematics 

and Computing 153 (2004): 645-649. 
 https://doi.org/10.1016/S0096-3003(03)00657-X 
[27] Bataller, Rafael Cortell. “Similarity solutions for flow and heat transfer of a quiescent fluid over a nonlinearly 

stretching surface.” Journal of Materials Processing Technology 203 (2008): 176–183.   
 https://doi.org/10.1016/j.jmatprotec.2007.09.055 
[28] Ishak, Anuar, Roslinda Nazar and Ioan Pop. “Mixed convection boundary layers in the stagnation-point flow toward 

a stretching vertical sheet.” Meccanica 41 (2006): 509-518.  
 https://doi.org/10.1007/s11012-006-0009-4 
[29] Ali, Fadzilah Md, Roslinda Nazar, Norihan Md Arifin and Ioan Pop. “Mixed convection stagnation-point ow on 

vertical stretching sheet with external magnetic field.” Applied Mathematics and Mechanics 35, no. 3 (2014): 155-
166. 

 https://doi.org/10.1007/s10483-014-1780-8 
 

https://doi.org/10.1016/j.jfranklin.2013.07.002
https://doi.org/10.3390/app8060842
https://doi.org/10.1016/S0096-3003(03)00657-X
https://doi.org/10.1016/j.jmatprotec.2007.09.055
https://doi.org/10.1007/s11012-006-0009-4
https://doi.org/10.1007/s10483-014-1780-8

