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The increasing generation of glycerol as a waste from biodiesel production calls for its 
various consumptions, especially in producing industrial chemicals. However, the focus of 
popular studies in this process is on using noble metals as the catalyst. It should be shifted 
to a low cost and abundant element to ensure sustainability. Therefore, this study uses 
activated carbon from coconut shells to support a bimetal catalyst copper-nickel in 
converting glycerol into value-added products. The catalyst was synthesized via the wet 
impregnation method and was characterized using scanning electron microscopy-energy 
dispersive X-ray spectroscopy, Fourier-Transform infra-red spectroscopy, and a surface 
area analyser. It was revealed that the BET surface area (582 m2/g) is smaller than the 
pristine carbon because of the exposure to high temperature during calcination. The 
average pore size (1.7 nm) is also smaller than the coconut shell carbon due to the same 
effect. The surface functional groups mainly consist of carboxylic acids that is known to 
contribute to the hydrogenolysis of glycerol. At 20 wt% initial glycerol concentration, 20 
bar and 200 °C, acetic acid, propylene oxide, carbon monoxide and acetaldehyde were 
detected as the products. A possible mechanism was proposed considering the aqueous-
phase reforming of glycerol and the dehydration process. The optimum operating 
conditions in this case are 20 wt% initial glycerol concentration, 25 bar and 200 °C. More 
studies are needed to evaluate the reactions involved in aqueous-phase reforming of 
glycerol using the Cu-Ni doped on coconut shell activated carbon. In conclusion, glycerol 
can be converted to valuable chemicals under mild conditions by using the cost-effective 
catalyst. 
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1. Introduction 
 

Biodiesel production is forecast to soar in 2023 due to its sustainability in replacing fossil fuels to 
countries such as the United States, Brazil, Malaysia and Indonesia [1,2]. Malaysia is resuming its 
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biodiesel blend B20 mandate for industrial implementation that was delayed due to the pandemic in 
2020, while Indonesia has announced its policy to start using B35 in 2023 [3]. A review of life-cycle 
analysis (LCA) of biodiesel produced from various feedstock showed that biodiesel from palm oil is 
the only one that meets the Renewable Energy Directive requirement with a 60% Global Warming 
Potential reduction concerning petroleum-based diesel [4]. 

Crude glycerol is generated as a by-product equivalent to 10 wt% of the biodiesel produced [5]. 
This could result in 6.3 million tonnes of crude glycerol by 2025 [6]. The increasing generation of 
glycerol is concerning since it is considered a potential pollutant especially when not treated before 
being released into open waters. At high concentrations, it depletes oxygen content and suffocate 
aquatic animals [7]. However, glycerol is a versatile intermediate in waste valorization reactions such 
as oxidation, pyrolysis, hydrogenolysis, etherification, esterification, dehydration, polymerization 
and carboxylation. The purified glycerol is also commercially consumed in the pharmaceuticals, food 
and beverage industries [8,9]. 

A desirable glycerol processing should consider the mild operating conditions (temperature and 
pressure), and the use of a cost-effective catalyst. Hydrogenolysis is commonly chosen to convert 
glycerol into propanediols in the presence of hydrogen. For that purpose, studies have shown that 
under mild temperature and an inert pressurized atmosphere, in-situ hydrogen via glycerol reforming 
could be generated as in Eq. (1) [10]. 
 
𝐶3𝐻5(𝑂𝐻)3 ↔ 3𝐶𝑂 + 4𝐻2    ∆𝐻250°𝐶 = 349 𝑘𝐽/𝑚𝑜𝑙        (1) 

 
The regime of glycerol reforming can be categorized as steam reforming (SR), auto thermal 

reforming (ATR) or aqueous-phase reforming (APR). SR can be achieved at a high operating 
temperature of at least 630 °C and 1 atm (10 wt%), while the APR operating parameters are much 
milder to keep the water in the liquid state (e.g. 220 °C at 20 bar) [11]. In between SR and APR process 
conditions, it was reported that ATR occurs due to glycerol oxidation [12]. Knowledge of the 
reforming regime is essential in determining the possible occurring reaction. 

The glycerol reforming catalyst developed to break C-O and O-H bonds was reported to be well-
performed by transitional metals. The generated carbon monoxide must be consumed via a water-
gas shift reaction to avoid permanent chemisorption of the catalyst surface [13]. Noble metals (i.e. 
Pt, Re, and Rh) are known to perform this task efficiently, but the earth-abundant elements have also 
been studied and proven to carry out the C-O cleavage in a glycerol reforming, including Ni, Ce, and 
Mg [13]. The application of Ni catalyst in the water-gas shift reaction has made it a suitable candidate 
for glycerol reforming due to the high CO uptake and hydrogen production [8,12,14,15]. Additionally, 
Cu has been shown to produce high selectivity in C-O breaking while preserving the C-C bond [16]. 

The catalyst support also plays an essential role in determining the catalyst’s efficiency. Activated 
carbon has been used in glycerol hydrogenolysis due to the high density of acidic functional groups 
required to provide the acidic sites [17]. Gallegos-Suarez et al., [18] compared glycerol consumption 
using carbon-supported Ru and zeolite-supported Ru and found that the former was superior by 
11 - 28% conversion compared to only 7% for the zeolite-based catalyst. Nonetheless, the selectivity 
towards propanediol formation was lower by half because of the electron donor properties 
contributed by the carbon support and the precious metal that consequently generated methane. In 
a pursuit to replace precious metals in glycerol consumption, it is beneficial to investigate the effects 
of utilizing a combination of earth-abundant metals and carbon-based support. To add to the 
sustainability factor, biomass waste such as coconut shell, could be valorized into a catalyst support. 
Therefore, this work aims to investigate the possible value-added products from glycerol conversion 
using the developed catalyst from earth-abundant elements (Cu and Ni) and biomass-based support 
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(coconut shell activated carbon), under mild operating conditions. Both liquid and gaseous products 
of the reaction are analyzed to understand the behavior of the catalyst in the reaction. 
 
2. Methodology 
2.1 Materials 
 

Palm kernel shell (PKS) and coconut shell (CS) activated carbons were obtained from a Malaysian 
supplier having particle sizes larger than 250 µm. Commercial activated charcoal Norit® (AC) was 
obtained from Sigma-Aldrich, UK, with 150 µm particle size measured using a particle sizer 
Mastersizer Aero S (Malvern Instruments, UK). PKS and CS were grounded and sieved to obtain 
similar size with AC. 
 
2.2 Catalyst Synthesis 
 

The following steps were taken to synthesize the catalyst via the wet impregnation method: Two 
grams of the pristine carbon (PKS and CS) were removed of moisture in a conventional oven at 110 °C 
for 24 hours. Then, the dried carbons were soaked in a 17-mL solution containing copper sulfate and 
nickel chloride at 3:1 mole ratio of Cu:Ni (deionized water as the solvent). The mixture was 
continuously agitated at 25 °C overnight. After that, it was dried using the oven for 24 h. The catalyst 
was rinsed with deionized water several times so the effluent reached pH 7. Finally, the catalyst was 
calcined in a furnace with static air. The furnace was heated at 20 K/min until it reached 300 °C, and 
held for 180 mins. 
 
2.3 Catalyst Characterization 
 

The surface morphology and intensity of metallic species on the catalyst were observed using a 
scanning electron microscopy-energy dispersive X-ray spectroscopy SEM-EDX JSM-6010LA (Jeol, 
USA). Before the analysis, the catalyst was coated with gold for 15 s. Then, it was positioned on the 
sample seat for the analysis under the electron microscope. The surface functional groups were 
determined qualitatively using a Fourier-Transform infra-red spectroscopy IRAffinity-1S (Shimadzu, 
UK) between wavenumbers from 4000 to 400 cm-1. The surface area and pore properties were 
analyzed via a nitrogen adsorption–desorption experiment using a 3Flex Surface Analyzer 
(Micromeritics, USA) at 77 K. 
 
2.4 Catalyst Activity Testing 
 

Figure 1 shows a 45-mL batch reactor (Parr Instrument, USA) diagram used in this study to 
perform the glycerol conversion under a controlled environment. Five mL of glycerol solution 
(>99.5%) with an initial concentration of 1, 5, 20 or 30 wt%, was decanted into the reactor. After that, 
0.2 g of the catalyst was added into the solution inside the reactor. The system was purged with 
helium gas through the inlet (V-1) and outlet (V-2), at least thrice before the pressure of the system 
was brought to the desired value with helium gas (20, 25 or 30 bar). Then, the temperature of the 
reactor was increased to 180, 190 or 200 °C at a rate of 4 K/min. The agitation was started at 
1,200 rpm once the desired temperature was reached. Unless otherwise mentioned, the experiment 
was carried out for three hours. At the end of the reaction, the catalyst was filtered and rinsed using 
5 mL acetone that was then re-mixed with the liquid-phase products to ensure minimal product 
losses. Note that this is a 1:1 dilution. 
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A sample from this dilution was further diluted for analysis as follows: 0.2 mL of the liquid sample 
was extracted from the product liquid-phase and equilibrated to 1.0 mL with acetone. Then, a gas 
chromatography-mass spectrometry (GCMS) QP2010SE (Shimadzu, UK) was used to analyze the 
sample. The column used was a 30-m HP-INNOWAX capillary column with 0.25 mm internal diameter 
and 0.25 µm film thickness (Agilent, USA). The initial GC oven was pre-heated to 45 °C where the 
sample was dried for 3 mins before being increased to 240 °C at a temperature ramping rate of 
10 K/min. For a complete analysis, the final temperature was held for 2 mins. The injection and 
interface temperatures were 250 and 245 °C, correspondingly. The helium flow rate was kept 
constant at 30 cm/s with a split ratio of 100. Moreover, the gas-phase products obtained via V-1 were 
collected with a gas bag. The sample was analyzed using a mass spectrometry MS Hiden HPR-20 
(Hiden, UK). The MS peaks deconvolution was examined using NIST MS Search 2.0 software on 
fragmentation peaks. 
 

 
Fig. 1. Batch reactor diagram used for glycerol hydrogenolysis 

 
3. Results 
3.1 Catalyst Characteristics 
 

The surface area, pore size and pore volume of the three carbon supports; commercial activated 
carbon (AC), activated carbon derived from palm kernel shell (PKS), and activated carbon derived 
from coconut shell (CS), are shown in Table 1. AC has the largest surface area, average pore size and 
pore volume. As Cu-Ni was impregnated over AC, the surface area increased while the pore volume 
and size decreased. The SEM images in Figure 2(a) and Figure 2(b) show that the external structure 
collapsed causing more interstices on CuNi/AC with most of the pores being blocked. Such a 
phenomenon commonly takes place over a combustible granular carbon where high temperature 
causes the structure to collapse [19]. On the contrary, surface area, pore size and pore volume are 
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all decreased for PKS and CS upon impregnation with Cu-Ni. The SEM images in Figure 2(d) and Figure 
2(f) exhibited a different structure than the pristine carbons (Figure 2(c) and Figure 2(e), 
correspondingly). The resultant surfaces are flattened with additional cleavages and external 
perforations. It can be inferred that different carbon precursors react differently during impregnation 
and calcination. 
 

Table 1 
Surface properties of the catalysts 
Sample BET surface area, 

m2/g 
Total pore volume, 
cm3/g 

Average pore size, 
nm 

AC 1376 1.105 3.2 
PKS 1126 0.526 1.8 
CS 819 0.612 2.1 
CuNi/AC 1739 0.486 1.1 
CuNi/PKS 1013 0.430 1.7 
CuNi/CS 582 0.242 1.7 

 

  
(a) (b) 

  
(c) (d) 

Interstices 
More interstices 

Cleavage 

Perforations 
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(e) (f) 

Fig. 2. SEM images for; a) AC, b) CuNi/AC, c) PKS, d) CuNi/PKS, e) CS and f) CuNi/CS 

 
Table 2 shows the elemental analysis for inorganic elements of all samples. The impregnation of 

the bimetal Cu-Ni with a loading ratio of 3:1 resulted to only 2:1 ratio for CuNi/PKS and CuNi/CS while 
1:1 for CuNi/AC showing the limited sites available for the catalysts especially Ni over the carbon 
supports. This is attributable to the higher affinity of the carbon supports towards copper than nickel 
[20]. In addition, the lower loadings observed over all carbon supports (as compared to the intended 
loadings) could also be caused by the loss of metal precursors during the process of incipient wetness. 
 

Table 2 
Inorganic elemental analysis of the catalysts 
Element AC PKS CS CuNi/AC CuNi/PKS CuNi/CS 

Si 28.6 Nd 1.2 13.2 11.3 Nd 
Cl 1.6 15.4 0.3 26.6 27.9 22.6 
K Nd 35.7 8.5 Nd 0.8 0.6 
Ca 2.4 3.1 0.5 1.3 Nd 0.2 
Ni Nd Nd 0.6 18.4 12.7 19.6 
Cu Nd Nd 0.8 13.8 25.8 46.8 

*Nd = not detectable 

 
Figure 3(a) shows the surface functional groups observed over all carbon surfaces, while Figure 

3(b) shows the resulting surface functional groups over the catalysts derived from the carbon 
supports. It can be seen that carboxylic acids (peaks around 2600 cm-1 and broad peaks stretched 
from 1950 to 1600 cm-1, denoted as β) and alkynes (various peaks within 2380 – 2000 cm-1, denoted 
as γ) are present over all samples but the intensity reduced after impregnation of catalyst and 
calcination process [21]. Carboxylic acids tend to donate protons making them a good BrØnsted-
Lowry acid that is preferred in the hydrogenolysis of glycerol [22]. Yu et al., [23] reported that the 
KBH4 treatment of a coconut shell used to support Ni greatly increased the presence of acidic groups, 
contributing 43% glycerol conversion and 76% 1,2-propanediol selectivity. 
 

Cleavage 

Perforations 
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(a) 

 
(b) 

Fig. 3. FTIR spectra for; (a) different carbon supports, and (b) 
derivative catalysts 

 
3.2 Catalyst Activity 
 

The conversion of glycerol over the carbon catalysts in an inert environment is shown in Figure 4. 
CuNi/CS has similar glycerol consumption to CuNi/AC, while CuNi/PKS has about 2.5% lower 
conversion. In this system, the P/dP shows the true equilibrium pressure, so it can be recognized that 
the glycerol consumption happened in the APR regime as P/dP > 1.0 indicates that the water is still 
in the liquid state. Besides, higher values indicate more gaseous products have been released during 
the conversion contributing to the total pressure. CuNi/CS was selected to be further investigated 
because of the competitive consumption with the commercial carbon-supported catalyst (CuNi/AC) 
and due to the generation of gaseous products. Figure 5 shows the glycerol conversion profile and 

β γ β 

β γ β 
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formation of a liquid product – acetic acid. It can be observed that acetic acid is gradually formed in 
the first 200 min and then intensely generated until it stops at the 600th minute with no observable 
glycerol consumption. The gaseous products were also detected, including carbon monoxide, 
propylene oxide and acetaldehyde, as determined via deconvolution of the mass spectrum in 
Figure 6. 
 

 

 

 
Fig. 4. Effect of catalyst supports on glycerol 
conversion at 20 wt% initial glycerol 
concentration, 200 °C, 25 bar and 180 mins 

 Fig. 5. Glycerol conversion profile over CuNi/CS at 20 
wt% initial glycerol concentration, 20 bar and 200 °C 

 

 
Fig. 6. Deconvolution of MS spectrum of gaseous 
products 

 
The reaction of glycerol by using CuNi/CS exhibits C-C and C-O bonds breakage and dehydration. 

Acetic acid is a product of glycerol dehydration to 3-hydroxypropanal, which could produce other 
compounds such as acetaldehyde, 1,3-propanediol and propanoic acid, if the reaction condition 
permits [24]. Meanwhile, carbon monoxide is co-generated from glycerol reforming to hydrogen 
based on Eq. (2). However, no hydrogen detected in the gas-phase products signifying total 
consumption in the reaction. Glycerol is also suggested to convert to propylene glycol and 
subsequently dehydrated to propylene oxide [25]. The high C-C and C-O breakages can occur at low 
temperatures and in an acidic medium [8,23,24]. Therefore, it is proposed that the routes of acetic 
acid and propylene oxide formation are as illustrated in Figure 7. 
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𝐶3𝐻5(𝑂𝐻)3 ↔ 3𝐶𝑂 + 4𝐻2            (2) 

 

 

 
Fig. 7. Proposed mechanism for the aqueous-phase 
reforming of glycerol over CuNi/CS 

 
Coke may also be formed according to Eq. (3) and Eq. (4), which could deactivate the catalyst. 

About 10 mg of the catalyst was combusted in a thermogravimetric analyzer TGA4000 (PerkinElmer, 
UK) at 950 °C to obtain the weight of coke formed. It was observed that the coke formation was 
constant as the reaction proceeded, suggesting no additional coke that caused the deactivation of 
the catalyst. 
 
2𝐶𝑂 ↔ 𝐶𝑂2 + 𝐶             (3) 
 
𝐶𝑂 + 𝐻2 ↔ 𝐶 + 𝐻2𝑂             (4) 
 
3.3 Effects of Operating Parameters 
 

The influence of operating parameters on glycerol consumption and acetic acid formation was 
also studied. Figure 8 shows that the glycerol consumption increased from 10 to 38% when increasing 
the pressure from 20 to 25 bar. The activity of the catalyst was zeroed at higher pressure. The 
optimum P/Psat was reported in the literature to be 1 to 1.2, while the values for 20, 25 and 30 bar 
at 200 °C in this study were 1.0, 1.3 and 1.6, respectively [26]. The higher value at 30 bar caused 
insufficient energy for the reaction to occur at the same temperature. In the meantime, the 
formation of acetic acid decreased, attributable to the lower formation and degradation of 3-
hydroxypropanal. A separate study showed that the selectivity towards 1,3-propanediol formation 
(also a product of 3-hydroxypropanal reduction) is proportional to the pressure from 1 to 3.6 bar at 
190 °C [27]. Furthermore, Rode et al., [28] on using a copper-based catalyst, suggested that the 
catalyst favors C-O breakage compared to C-C cleavage at high pressure. This means increasing the 
pressure further does not affect the C-C bond breaking of 3-hydroxypropanal [28]. 
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Fig. 8. Effect of operating pressure on glycerol 
conversion over CuNi/CS at 20 wt% initial glycerol 
concentration, 200 °C and 180 mins 

 
Figure 9 shows the effect of temperature on glycerol conversion and acetic acid formation. As the 

temperature increased, the conversion and the production of acetic acid showed a proportionality 
relationship. However, no acetic acid was formed at a temperature lower than 200 °C. A similar 
finding was reported by Gandarias et al., [24] where acetic acid production was observed between 
220 – 240 °C at 45 bar. It was suggested as a cracked product during glycerol consumption [24]. 
Nevertheless, it can be implied that the influence of temperature on glycerol consumption is not as 
pronounced as the influence of pressure. 
 

 
Fig. 9. Effect of operating temperature on glycerol 
conversion over CuNi/CS at 20 wt% initial glycerol 
concentration, 25 bar and 180 mins 

 
The experiment of varying the initial glycerol concentration revealed that, in this study, at least 

20 wt% is required for consumption. Meanwhile, at higher concentration (30 wt%), no presence of 
acetic acid in the liquid products was shown (Figure 10). Different products could be formed through 
a different route of reaction because of the lower saturation pressure at 30 wt% glycerol 
concentration. This provides another opportunity for research and application of glycerol 
consumption at higher concentrations. 
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Fig. 10. Effect of initial glycerol concentration on 
conversion over CuNi/CS at 200 °C, 25 bar and 180 
mins 

 
A simulation by Gandarias et al., [24] illustrated that a water-to-glycerol ratio of 9 (about 10 wt%) 

gave the best glycerol conversion by using a Pt-based catalyst. Considering that this current study 
uses fewer precious metals as catalysts and could convert glycerol of higher concentration, a 
promising alternative in glycerol utilization can be provided in the future. 
 
4. Conclusions 
 

Various studies have shown glycerol as a flexible and essential feedstock for producing valuable 
chemicals via multiple routes involving catalytic conversion. In this study, a CuNi catalyst was 
impregnated over coconut shell-activated carbon. The BET surface area decreased after the 
impregnation of the catalyst but the average pore size improved to a smaller value. The catalyst 
exhibits the presence of carboxylic acids, which is vital in hydrogenolysis or reduction of glycerol into 
shorter C-C chains. CuNi/CS was used to convert glycerol into value-added products under mild 
conditions (temperature between 180 to 200 °C and pressure between 20 to 30 bar), also called as 
aqueous-phase reforming. Among the products detected were acetic acid, carbon monoxide, 
propylene oxide and acetaldehyde, in which a possible mechanism was proposed. The formation of 
acetic acid, due to the dehydration of acetaldehyde, decreased with increasing pressure, but was 
proportional to temperature. It was also found that the acetic acid formation is susceptible to initial 
glycerol concentration. From a bigger perspective, this work has shown that glycerol utilization under 
mild conditions and using catalysts developed from agro waste and non-noble catalysts is possible. 
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