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In this study, incompressible viscoelastic fluid through the axisymmetric circular 
channel is simulated with Oldroyd-B model. The simulation is performed based on a 
hybrid finite volume/element method, which consists of Taylor-Galerkin finite element 
discretisation, and a cell vertex fluctuation-distribution finite volume method. In this 
context, the momentum and continuity equations are treated with a finite element 
method, while a finite volume approach is applied to solve the Oldroyd-B constitutive 
model. Analytical expressions are presented for the velocity and stress components in 
fully developed channel flow of Oldroyd-B fluid. For this complex fluid, we see an 
excellent agreement between the analytic and the numerical solutions. The study of 
axisymmetric circular channel problem based on a hybrid numerical method 
represents a great challenge. The novelty here is to study the temporal convergence-
rate of the system solution that is taken to be steady state, incompressible, 
axisymmetric, and laminar, which did not address by researchers previously. Here, the 
rate of convergence for all solution components is presented, where a large level of 
convergence is appeared for stress compared to the other solution components. 
Moreover, the pressure drops and stress response across the flow are provided with 
respect to difference in solvent-fraction (𝛽) and Weissenberg number (𝑊𝑒). A 
significant effect from the viscoelastic parameters upon the level of the stress has been 
detected, while for the pressure response the change is semi-modest. For the stress 
response the findings reveal that, with decreasing solvent-fraction (𝛽), the maxima 
level of stress components are strongly amplifies. 
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1. Introduction 
 

In this study of the complex axisymmetric flow through a channel using the constitutive equation 
representation of the Oldroyd-B model is investigated. Numerically, the hybrid finite element/finite 
volume (𝑓𝑒/𝑓𝑣) method represents one of the best algorithms to treat such problems [1]. The main 
idea of such method is to combine the finite element method with a cell-vertex finite volume 
approach to solve the viscoelastic governing equations. Consequently, the Galerkin finite element 
method has been implemented to treat the mass conservation and momentum transport equations 
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due to that this implementation is best for self-related problems, and therefore are perfect for 
discretization of elliptic operators. Furthermore, finite volume technique has progressed a lot over 
the past decade in its treatment of the first-order hyperbolic equations, and therefore it has been 
selected to solve stress constitutive model [2]. 

There is extensive literature on methods of finite elements for viscoelastic flows. Recently, a few 
powerful methods have shown that it is possible to treat some complicated problems such as highly 
elastic and non-smooth flows [3,4]. Due to that, the finite element approach does not carry with a 
strong computational of complex flow problems that require developed numerical techniques in 
dealing with velocity gradients accuracy, supper stability, coupling of the system, and up winding. 
Thus, this point represents an important problem that must be addressed, especially for three 
dimensional, and multi-mode viscoelastic [5-8]. For this reason several attempts have been made to 
propose alternative strategies to overcome the difficulties that were encountered. One alternative 
in this respect is applying the 𝑓𝑣 approach, which derives from the finite difference scheme and 
needs less memory and 𝐶𝑃𝑈 time compared to 𝑓𝑒 scheme [9]. This method is perfect for hyperbolic 
systems, where the source terms are given as associated area integrals, with incorporating the fluxes 
of the system as integrals on boundaries of control volumes. The study of viscoelastic problems by 
using 𝑓𝑣 methods fall into two classes; a pure 𝑓𝑣 form and a hybrid (𝑓𝑒/𝑓𝑣) implementation. Hybrid 
methods were proposed by Sato and Richardson [10] and Yoo and Na [11]. There, the hybrid (𝑓𝑒/𝑓𝑣) 
method is achieved 𝑓𝑣 for pressure and stress and a 𝑓𝑒 approach for momentum. Wapperom and 
Webster [1] also proposed the hybrid (𝑓𝑒/𝑓𝑣) scheme as alternative strategy for the one used by 
Sato and Richardson [10]. In this implementation the finite element discretisation is used for 
momentum and continuity equations and finite volume method for stress constitutive equation. In 
addition, Wapperom and Webster [12] studied the stability of this method on the basis of flows as 
the Weissenberg number increased. Moreover, Aboubacar and Webster [13] and Aboubacar et al., 
[14] have shown that a specific of a cell-vertex hybrid finite volume/element method is suitable for 
calculating highly elastic solutions of Oldroyd-B and Phan-Thien/ Tanner (𝑃𝑇𝑇) in plane 4: 1 
contraction flows for Cartesian coordinates. 

A hybrid (𝑓𝑒/𝑓𝑣) method has been widely implemented to examine viscoelastic problems, where 
it is shown to have high advantage [15-18]. Furthermore, (𝑓𝑒/𝑓𝑣) is utilized for free surface 
viscoelastic problems. In this context, Al-Muslimawi et al., [19,20] and Al-Muslimawi [21] 
implemented the (𝑓𝑒/𝑓𝑣) for annular axisymmetric tube-tooling cable-coating. 

Furthermore, the study of viscoelastic complex axisymmetric flow through a channel represents 
one of the important issues in the rheology field. For that, many real applications to such problem 
with the considered effects have been presented in the various studies. For example, in the industrial 
field, recently there are numerical and theoretical interest in investigating the role of Newtonian and 
non-Newtonian characteristics on the structure of the flow field in conduits [22,23]. Moreover, the 
literature on nanofluids is broad. In that field many studies of recent years have conducted [24-26]. 

In the present study, the a hybrid finite element/finite volume discretisation (𝑓𝑒/𝑓𝑣) has been 
used for the treatment of complex axisymmetric flow through a channel. The Oldroyd-B model is 
used to discuss such specific problem. A numerical technique is used for triangular 𝑓𝑒 meshes with 
𝑓𝑣 sub-cells. In this context, the first velocity and stress components are expected to a half time-step, 
then updated over the full time-step. To ensure the incompressibility restrictions, the pressure in the 
forward time step is derived from the Poisson equation, with velocity correction in the final stage to 
satisfy continuity. The novelty here is to study the temporal convergence-rate of the system solution 
that is taken to be steady state, incompressible, axisymmetric, and laminar, which did not address by 
researchers previously. In this context, Oldroyd-B viscoelastic fluid along a two-dimensional 
axisymmetric straight channel, under isothermal condition is studied. The main results of current 
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study focused on the convergence rate of velocity, pressure and stress solutions under the variation 
solvent-fraction (𝛽). Furthermore, The effect of the Weissenberg number and solvent-fraction on 
the behaviours of solution has also been investigated.  
 
2. Governing Equations  
 

The system of dimensionless governing equations that consists of the continuity equation and 
momentum equation can be expressed as follows 
 
∇ ⋅ 𝑢 = 0,              (1) 
 

𝑅𝑒
𝜕𝑢

𝜕𝑡
= 𝛻 ⋅ 𝑇 − 𝑅𝑒(𝑢 ⋅ 𝛻𝑢) − 𝛻𝑝,           (2) 

 
where, 𝑢, 𝑝 and 𝑅𝑒 are the velocity, pressure of fluid and Reynolds number, respectively, and 𝛻 
denotes the gradient operator, and 𝑇 represents the extra stress tensor, which is given by 
 
𝑇 = 2𝜇𝑠𝑑 + 𝜏. 
 

Correspondingly, the rate of deformation 𝑑 for general flows is expressed as 
 

𝑑 =
1

2
(∇𝑢 + ∇𝑢†), 

 
and 
 

𝜏 + 𝜆1𝜏
∇

= 2𝜇𝑝𝑑.             (3) 

 
Where 𝜇𝑠 , 𝜇𝑝 and 𝜆1 are polymeric viscosity, solvent viscosity contributions and relaxation time of 

fluid, respectively, and † is tensor transpose. In addition, (𝜏
∇
) represents the upper convected stress 

derivative, which is defined as 
 

𝜏
∇

=
𝜕𝜏

𝜕𝑡
+ 𝑢 ⋅ ∇𝜏 − ∇𝑢† ⋅ 𝜏 − 𝜏 ⋅ ∇𝑢.           (4) 

 
From Eq. (3) and Eq. (4), the Oldroyd-B constitutive model can be gathered as 

 

𝜆1
𝜕𝜏

𝜕𝑡
= (2𝜇𝑝𝑑 − 𝜏) − 𝜆1(𝑢 ⋅ ∇𝜏 − ∇𝑢† ⋅ 𝜏 − 𝜏 ⋅ ∇𝑢).        (5) 

 
The non-dimensional structure of the Oldroyd-B constitutive model in Eq. (5) can be formed via 

velocity scale 𝑈, length scale 𝐿 (unit length), time scale 𝐿/𝑈, and pressure and extra-stress scale of 
𝜇𝑈/𝐿. The parameter 𝜇 = 𝜇𝑠 + 𝜇𝑝 is the total viscosity, consisting of consistent viscosity fractions 

for solvent and solute. Here, the dimensional parameters are presented in the form of Weissenberg 
number 𝑊𝑒 and solvent 𝛽, which are presented by 
 

𝑊𝑒 = 𝜆1
𝑈

𝐿
, 𝛽 =

𝜇𝑠

𝜇𝑠+𝜇𝑝
=

𝜇𝑠

𝜇
.            (6) 
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Therefore, the dimensionless form of the Oldroyd-B constitutive model with an important 
parameter 𝑊𝑒 is given by 
 

𝑊𝑒
𝜕𝜏

𝜕𝑡
= 2(1 − 𝛽)𝑑 − 𝜏 − 𝑊𝑒(𝑢 ⋅ 𝛻𝜏) + 𝑊𝑒(𝛻𝑢† ⋅ 𝜏 + 𝜏 ⋅ 𝛻𝑢).       (7) 

 
3. Numerical Method  
3.1 Taylor Galerkin-pressure Correction Discretisation 
 

In this study the basis of the numerical procedure to treat the system of current differential 
equations is a 𝑇𝑆 − 𝑇𝐺 − 𝑃𝐶 − 𝐹𝐸𝑀, which is proposed by Townsend and Webster [27]. The general 
framework of this method involves two essential aspects: a Taylor-Galerkin scheme and a pressure-
correction scheme. The Taylor-Galerkin scheme is a two-step Lax-Wendroff time stepping procedure, 
extracted via a Taylor series expansion in time [28,29]. The pressure-correction method 
accommodates the incompressibility constraint to ensure second-order accuracy in time by adopting 
a semi-implicit Crank-Nicolson time-split with time increment factor 𝜃𝑐𝑟 [14]. Three fractional-staged 
formulations with non-dimensional parameters within each time-step may be given by 
 

𝑆𝑡𝑎𝑔𝑒 1𝑎:
2𝑅𝑒

Δ𝑡
[𝑢𝑛+

1

2 − 𝑢𝑛] = [∇ ⋅ (𝜏 + 2β𝑑) − 𝑅𝑒𝑢 ⋅ ∇𝑢 − ∇𝑝]𝑛,       (8) 

 

                  
2𝑊𝑒

Δ𝑡
[𝜏𝑛+

1

2 − 𝜏𝑛] = [2(1 − 𝛽)𝑑 − 𝜏 + 𝑊𝑒(∇𝑢 ⋅ 𝜏 + 𝜏 ⋅ (∇𝑢)†)]𝑛,     (9) 

 

𝑆𝑡𝑎𝑔𝑒 1𝑏: 
𝑅𝑒

Δ𝑡
[𝑢∗ − 𝑢𝑛] = [∇ ⋅ (𝜏 + 2β𝑑) − 𝑅𝑒𝑢 ⋅ ∇𝑢]𝑛+

1

2 − ∇𝑝𝑛,                 (10) 

 

                    
𝑊𝑒

Δ𝑡
[𝜏𝑛+1 − 𝜏𝑛] = [2(1 − 𝛽)𝑑 − 𝜏 + 𝑊𝑒(∇𝑢 ⋅ 𝜏 + 𝜏 ⋅ (∇𝑢)†)]𝑛+

1

2,               (11) 

 

𝑆𝑡𝑎𝑔𝑒 2: ∇2(𝑝𝑛+1 − 𝑝𝑛) =
𝑅𝑒

𝜃𝑐𝑟Δ𝑡
∇ ⋅ 𝑢∗,                    (12) 

 

𝑆𝑡𝑎𝑔𝑒 3: 𝑢𝑛+1 = 𝑢∗ −
𝜃𝑐𝑟Δ𝑡

𝑅𝑒
[∇(𝑝𝑛+1 − 𝑝𝑛)].                   (13) 

 
In these fractional stages the velocity and stress fields are calculated at the half time-step 

(𝑢, 𝜏)𝑛+
1

2 and corrected for the full time-step (𝑢∗, 𝜏)𝑛+1 (𝑆𝑡𝑎𝑔𝑒 1). To improve the convergence and 
stability of the solution, the momentum diffusion term is treated in a semi-implicit way. The velocity 
field (𝑢∗), which is derived through the full time-step of the momentum, may not satisfy continuity 
and require a correction. Thus, a Poisson-like equation is generated to increase the time step of 
pressure (𝑆𝑡𝑎𝑔𝑒 2), accompanied with a correction (𝑆𝑡𝑎𝑔𝑒 3). 

 
3.2 Sub-vertex Finite Volume Discretisation 
 

To outline the application of the 𝑓𝑣-theory, we rewrite the Oldroyd-B stress constitutive (Eq. (7)) 
into conservative form, and identify the flux (𝑅) and source (𝑄) terms, viz [30]. 
 
𝜕𝜏

𝜕𝑡
= −𝑅 + 𝑄,                        (14) 
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𝑅 = 𝑢𝜏,                        (15) 
 

𝑄 =
1

𝑊𝑒
(2(1 − 𝛽)𝑑 − 𝜏) + 𝛻𝑢† ⋅ 𝜏 + 𝜏 ⋅ 𝛻𝑢.                   (16) 

 
Then, cell-vertex 𝑓𝑣-approaches are implemented to this constitutive equation using fluctuation 

distribution as the upwinding strategy, to distribute control volume residuals and furnish nodal 
solution updates [1]. Consider each scalar stress component, 𝜏, acting on an arbitrary volume Ω =
∑𝑙 Ω𝑙, whose variation is controlled through corresponding fluctuation components of flux (𝑅) and 
source (𝑄), 
 
𝜕

𝜕𝑡
∫

Ω𝑙
𝜏𝑑Ω = − ∫

Ω𝑙
𝑅𝑑Ω + ∫

Ω𝑙
𝑄𝑑Ω.                     (17) 

 
The integral source variations and flux have been calculated over each finite volume triangle (Ω𝑙), 

and are appropriated proportionally by the chosen cell-vertex distribution method to its three 
vertices. The update of nodal is gained, by summing all contributions from its control volume Ω𝑙, 
composed of all 𝑓𝑣-triangles surrounding node (𝑙) (see Figure 1(b)). Moreover, the flux and source 
residuals probably determined through two separate control volumes associated with a given node 
(𝑙) within the 𝑓𝑣-cell 𝑇, generating two contributions, one upwinded and governed over the 𝑓𝑣-
triangle 𝑇, (𝑅𝑇 , 𝑄𝑇), and a second area-averaged and subtended over the median-dual-cell zone, 
(𝑅𝑀𝐷𝐶 , 𝑄𝑀𝐷𝐶). For reasons of temporal accuracy, this procedure demands appropriate area-
weighting to maintain consistency, with extension to time-terms likewise. In this context, a 
generalized 𝑓𝑣-nodal update equation is derived per stress component, by separate treatment of 
individual time derivative, flux and source terms, and integrating over associated control volumes, 
given, 
 

[∑∀𝑇𝑙
𝛿𝑇𝛼𝑙

𝑇Ω𝑇 + ∑∀𝑀𝐷𝐶𝑙
(1 − 𝛿𝑇)Ω̂𝑙

𝑇]
Δ𝜏𝑙

𝑛+1

Δ𝑡
= ∑∀𝑇𝑙

𝛿𝑇𝛼𝑙
𝑇𝑏𝑇 + ∑∀𝑀𝐷𝐶𝑙

(1 − 𝛿𝑇)𝑏𝑙
𝑀𝐷𝐶 ,              (18) 

 

where 𝑏𝑇 = (−𝑅𝑇 + 𝑄𝑇), 𝑏𝑙
𝑀𝐷𝐶 = (−𝑅𝑀𝐷𝐶 + 𝑄𝑀𝐷𝐶)𝑙, Ω𝑇 is the area of the 𝑓𝑣-triangle 𝑇, and 

(10 × 20) elements is the area of its median-dual-cell (𝑀𝐷𝐶). The weighting parameter, 0 ≤ 𝛿𝑇 ≤
1, proportions the balance taken between the contributions from the median-dual-cell and the 𝑓𝑣-
triangle 𝑇. The discrete stencil (18) identifies fluctuation distribution and median dual cell 

contributions, area weighting and upwinding factors (𝛼𝑙
𝑇-scheme dependent) [1]. 

 
3.3 The Low Difiusion 𝐵 (𝐿𝐷𝐵) Scheme 
 

Al-Muslimawi et al., [19] and Aboubacar et al., [31] have shown that the Low Diffusion 𝐵 (𝐿𝐷𝐵) 
approach is a suitable choice to determine the fluctuation distribution parameter 𝛼. This is a linear 
method with the properties of linearly preservation and accuracy of the second order [31]. The 𝐿𝐷𝐵 
distribution coefficients 𝛼𝑖 are determined on each triangle via angles 𝛾1, 𝛾2 see Figure 2, subtended 
at an inflow vertex (𝑖) by the advection velocity 𝑎, where 𝑎 is average of velocity field per 𝑓𝑣-cell, viz 
 

𝛼𝑖 =
sin𝛾1cos𝛾2

sin(𝛾1+𝛾2)
, 𝛼𝑗 =

sin𝛾2cos𝛾1

sin(𝛾1+𝛾2)
, 𝛼𝑘 = 0.                    (19) 

 
Note that, if 𝛾1 > 𝛾2, then 𝛼𝑖 > 𝛼𝑗, and thus, by design, node (𝑖) has a greater contribution than 

flow from node (𝑗). 
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Fig. 1. Schematic diagram, 𝑓𝑒/𝑓𝑣 discretisation 

 

 
Fig. 2. 𝐿𝐷𝐵-scheme, defining 𝛾1 and 𝛾2 in 𝑓𝑣 cell 

 
4. Problem Specification and Boundary Conditions 
 

Poiseuille flow through a two dimensional axisymmetric straight channel is introduced in this 
study under isothermal condition. The symmetry is taken around the central flow line, which allows 
searching for solutions on the upper, where the radial velocity at the centerline has vanished. 
Consequently, we handle motion in a plane layer, say {(𝑥, 𝑦) ∈ 𝑅2} × {𝑧 ∈ (0, ℎ)}. For this purpose, 
a triangular finite element is implemented. 
 
4.1 Boundary Conditions (𝐵𝐶𝑠) 
 

The setting of 𝐵𝐶𝑠 of the present channel problem is laid as follows 
i. The inflow conditions are chosen to be those corresponding to the analytical expressions for 

fully-developed axial velocity, such that 𝑢𝑧 = 𝑢𝑚𝑎𝑥(1 − 𝑟2).  
ii. No-slip 𝐵𝐶𝑠 is applied on the top and bottom walls of the channels. 

iii. Zero radial velocity applies and zero pressure are applied on the outlet of the channels. 
 
5. Numerical Results 
 

The numerical results are computed for Viscoelastic flow through axisymmetric straight channel 
by taking a circular cross section of pipe. The results are shown for ℎ = 1, Crank-Nicolson parameter 
𝜃 = 0.5, tolerance criteria taken here as 10−6 and typical Δ𝑡 is 𝑂(10−4). 
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5.1 Analytic Solution 
 

For fully developed shear axisymmetric fluids through a circular channel, the solution in axial 
velocity can be computed analytically under specific conditions. In the case of the axisymmetric flow 

with vanish tangential and radial velocities (𝑢𝑟 = 𝑢𝜃 = 0), 
𝜕𝑝

𝜕𝑟
= 0,

𝜕𝑝

𝜕𝜃
= 0 and 

𝜕𝑝

𝜕𝑧
 is constant. Thus, 

under these assumptions the dimensional velocity solution [32] 
 

𝑢𝑧 = (𝑢𝑧)𝑚𝑎𝑥 (1 −
𝑟2

𝑅2),                      (20) 

 
where, 𝑅 is the radial of the channel and (𝑢𝑧)𝑚𝑎𝑥 is the maximum velocity in the fully developed flow 
region. 
 

(𝑢𝑧)𝑚𝑎𝑥 =
𝑅2Δ𝑝

4β𝑙
,                       (21) 

 
such that, Δ𝑝 = 𝑝2 − 𝑝1, where 𝑝1 and 𝑝2 are the pressures at the outlet and inlet of the pipe, 
respectively, and 𝑙 is its length. 

In addition, for Oldroyd-B model the analytic solution for the shear stress 𝜏𝑟𝑧 and normal stress 
𝜏𝑧𝑧 can be computed as 
 
The Eq. (7) can be written as 
 

𝜏𝑟𝑟 + 𝑊𝑒 [𝑢𝑟
𝜕𝜏𝑟𝑟

𝜕𝑟
+ 𝑢𝑧

𝜕𝜏𝑟𝑟

𝜕𝑧
− 2 (𝜏𝑟𝑟

𝜕𝑢𝑟

𝜕𝑟
+ 𝜏𝑟𝑧

𝜕𝑢𝑟

𝜕𝑧
)] = 2(1 − 𝛽)

𝜕𝑢𝑟

𝜕𝑟
                (22) 

 

𝜏𝑟𝑧 + 𝑊𝑒 [𝑢𝑟
𝜕𝜏𝑟𝑧

𝜕𝑟
+ 𝑢𝑧

𝜕𝜏𝑟𝑧

𝜕𝑧
− (𝜏𝑟𝑟

𝜕𝑢𝑧

𝜕𝑟
+ 𝜏𝑟𝑧 (

𝜕𝑢𝑧

𝜕𝑧
+

𝜕𝑢𝑟

𝜕𝑟
) + 𝜏𝑧𝑧

𝜕𝑢𝑟

𝜕𝑧
)] = (1 − 𝛽) (

𝜕𝑢𝑟

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑟
)            (23) 

 

𝜏𝑧𝑧 + 𝑊𝑒 [𝑢𝑟
𝜕𝜏𝑧𝑧

𝜕𝑟
+ 𝑢𝑧

𝜕𝜏𝑧𝑧

𝜕𝑧
− 2 (𝜏𝑟𝑧

𝜕𝑢𝑧

𝜕𝑟
+ 𝜏𝑧𝑧

𝜕𝑢𝑧

𝜕𝑧
)] = 2(1 − 𝛽)

𝜕𝑢𝑧

𝜕𝑧
                (24) 

 
Under the assumptions 
 

𝑢𝑟 = 0,
𝜕𝜏𝑟𝑧

𝜕𝑧
= 0, 𝜏𝑟𝑟 = 0,

𝜕𝑢𝑧

𝜕𝑧
=

𝜕𝑢𝑟

𝜕𝑟
=

𝜕𝑢𝑟

𝜕𝑧
= 0 

 
These equations are reduced to 
 

𝜏𝑟𝑧 = (1 − 𝛽)
𝜕𝑢𝑧

𝜕𝑟
, 𝑏𝑢𝑡 𝑢𝑧 = (𝑢𝑧)𝑚𝑎𝑥 (1 −

𝑟2

𝑅2
)

𝜏𝑟𝑧 = (1 − 𝛽) (
−2r

𝑅2 (𝑢𝑧)𝑚𝑎𝑥) = −
2r(1−𝛽)

𝑅2 (𝑢𝑧)𝑚𝑎𝑥

                   (25) 

 
From Eq. (24) we have 
 

𝜏𝑧𝑧 + 𝑊𝑒 [0 + 0 − 2 (𝜏𝑟𝑧
𝜕𝑢𝑧

𝜕𝑟
+ 0)] = 0 → 𝜏𝑧𝑧 = 2𝑊𝑒 𝜏𝑟𝑧

𝜕𝑢𝑧

𝜕𝑟
  

 

From Eq. (25) and 𝑢𝑧 = (𝑢𝑧)𝑚𝑎𝑥 (1 −
𝑟2

𝑅2) we have 
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𝜏𝑧𝑧 = 2𝑊𝑒 (−
2r(1−𝛽)

𝑅2
(𝑢𝑧)𝑚𝑎𝑥) (

−2r

𝑅2
(𝑢𝑧)𝑚𝑎𝑥)

𝜏𝑧𝑧 = 8𝑊𝑒 (1 − 𝛽)
𝑟2

𝑅4
((𝑢𝑧)𝑚𝑎𝑥)2

                   (26) 

 
Comparison between the numerical results and analytic solution for fully developed velocity, 

stress components is considered. The profile of analytical and numerical axial velocities in the fully 
developed flow is shown in Figure 3(a). Here, the numerical results are provided under the imposition 
of the axial velocity corresponding to the analytical expressions of the full evolution (19), with 

(𝑢𝑧)𝑚𝑎𝑥 set to unity, We=3 and =0.9. The findings demonstrate that the numerical results give full 
agreement with the available analytical solutions. Again, for same setting of parameters, Figure 3(b) 
and Figure 3(c) show the numerical solutions for the shear stress (𝜏𝑟𝑧), normal stress (𝜏𝑧𝑧) versus the 
analytical solution. It can be seen that the agreement between numerical and analytical solutions is 
good, which adequately reflects the power of our numerical technique. 
 

 
(a) 

  
(b) (c) 

Fig. 3. Comparison between the analytic and numerical (We=3 and =0.9) solutions (a) axial velocity, (b) 
shear stress, (c) normal stress 
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History plots of the relative error increment norms in velocity, pressure and stress are illustrated 
in Figure 4 for 𝑊𝑒 = 1 and 𝛽 = 0.9. The findings reflect a lower rate of convergence for the velocity 
compared to that extracted for pressure and stress under the same rate of time-stepping 
convergence. 
 

 
Fig. 4. Rate of convergence; 𝑊𝑒 = 1, 𝛽 = 0.9  

 
In addition, the error of solution for velocity, pressure and stress components is provided in Table 

1 for the different values of 𝑊𝑒 and 𝛽 = 0.9. Generally, the level of stress error is slightly higher than 
that relevant to velocity and pressure components, which reflects the difficulties of stress calculation 
for the viscoelastic Oldroyd-B fluid. 
 

Table 1 
Comparison of error and time ; 𝑊𝑒-various, 𝛽 = 0.9 
 Time 

𝑊𝑒-various Error 0.2 0.8 2 5 6 
1 ‖𝑢𝑧‖𝐿2

 7.1 × 10−3 1.9 × 10−6 6.2 × 10−6 1.7 × 10−6 1.4 × 10−7 

‖𝑝‖𝐿2
 1.3 × 10−4 2.1 × 10−5 1.1 × 10−5 7.1 × 10−6 5.1 × 10−7 

‖𝜏‖𝐿2
 1.8 × 10−4 1.6 × 10−4 1.5 × 10−4 1.2 × 10−4 1.1 × 10−5 

2 ‖𝑢𝑧‖𝐿2
 1.3 × 10−4 3.3 × 10−6 2.3 × 10−6 2.1 × 10−6 1.8 × 10−7 

‖𝑝‖𝐿2
 1.1 × 10−4 2.1 × 10−5 1.5 × 10−5 6.5 × 10−6 4.7 × 10−7 

‖𝜏‖𝐿2
 2.2 × 10−4 1.8 × 10−4 1.5 × 10−4 1.1 × 10−4 1.3 × 10−5 

3 ‖𝑢𝑧‖𝐿2
 1.3 × 10−4 3.4 × 10−6 3.2 × 10−6 2.6 × 10−6 2 × 10−7 

‖𝑝‖𝐿2
 1.1 × 10−4 2.8 × 10−5 1.8 × 10−5 6.7 × 10−6 4.9 × 10−7 

‖𝜏‖𝐿2
 2.4 × 10−4 1.9 × 10−4 1.6 × 10−4 1.7 × 10−4 1.4 × 10−5 

 
In Figure 5(a), the pressure drop of the fluid for 𝛽 = 0.9 and three different 𝑊𝑒-values (𝑊𝑒 =

{1,2,3}) is presented. The results reveal that, there is a variation in the level of pressure at the channel 
inlet, where for Newtonian solutions an overall maximum of 8 units is observed, while for viscoelastic 
Oldroyd-B model this level is slightly reduced to be around 7.5 units where is attributed to shear-
thinning effects. Also, one can observe that the level of pressure decreases as 𝑊𝑒 increases (see the 
section zoomed). In addition, a sharp linear decline in pressure through the rest of the channel 
occurs, reaching zero at the outer-conduit. For more detail, pressure drop is plotted as a function of 
𝑊𝑒 in Figure 5(b). These results are consistent with the findings of others [18,21]. 
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(a) (b) 

Fig. 5. (a) Pressure drop profiles on axis of symmetry (b) Pressure as a function of 𝑊𝑒, 𝛽 = 0.9 

 
For 𝑊𝑒 = {1,2,3} setting and 𝛽 = 0.9, the shear stress 𝜏𝑟𝑧 and normal stress 𝜏𝑧𝑧 along top 

surface are provided in Figure 6. The results show that, for 𝜏𝑟𝑧 one can observed that the change in 
the level of 𝜏𝑟𝑧 is occurred at the outlet of the channel, such that this level is raised as 𝑊𝑒 increases 
(see Figure 6(a)). Once more, the influence of shear-thinning would dominate the levels of 𝜏𝑧𝑧, where 
the high level is appeared at outlet of the channel. From the profiles we can see that the maximum 
level of 𝜏𝑟𝑧 is observed at the inlet of the channel for all 𝑊𝑒-values, reaching around −0.002 unit, 
while the maximum 𝜏𝑧𝑧 is occurred at the largest 𝑊𝑒: at 𝑊𝑒 = 3 normal stress reaches levels of 
around 0.9 unit (see Figure 6(b)). 
 

  
(a) (b) 

Fig. 6. Stress profiles along top surface; 𝑊𝑒-variation, 𝛽 = 0.9, (a) shear stress 𝜏𝑟𝑧 (b) normal stress 𝜏𝑧𝑧 

 
Extensional data of the maximum and minimum values of all solutions components are presented 

in Table 2. Here, the radial velocities show little change for each 𝑊𝑒, while an increasing in pressure 
maxima is displayed with rising 𝑊𝑒. In all cases of stress components and increasing 𝑊𝑒-value, there 
is slight raise. 
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  Table 2 
  Velocity, pressure and Stresses; We-variation, 𝛽 = 0.9 

𝑊𝑒 𝑢𝑧 𝑝 𝜏𝑟𝑧 𝜏𝑧𝑧 𝜏𝑟𝑟 
1 𝑀𝑎𝑥 = 1.014 

𝑀𝑖𝑛 = 0 
𝑀𝑎𝑥 = 7.799 
𝑀𝑖𝑛 = 0 

𝑀𝑎𝑥 = 0 
𝑀𝑖𝑛 = −0.164 

𝑀𝑎𝑥 = 0.391 
𝑀𝑖𝑛 = 0 

𝑀𝑎𝑥 = 0.0001 
𝑀𝑖𝑛 = 0 

2 𝑀𝑎𝑥 = 1.087 
𝑀𝑖𝑛 = 0 

𝑀𝑎𝑥 = 7.678 
𝑀𝑖𝑛 = 0 

𝑀𝑎𝑥 = 0 
𝑀𝑖𝑛
= −0.619 

𝑀𝑎𝑥 = 0.704 
𝑀𝑖𝑛 = 0 

𝑀𝑎𝑥 = 0.0002 
𝑀𝑖𝑛 = 0 

3 𝑀𝑎𝑥 = 1.0217 
𝑀𝑖𝑛 = 0 

𝑀𝑎𝑥 = 7.584 
𝑀𝑖𝑛 = 0 

𝑀𝑎𝑥 = 0 
𝑀𝑖𝑛 = 0.596 

𝑀𝑎𝑥 = 0.972 
𝑀𝑖𝑛 = 0 

𝑀𝑎𝑥 = 0.0003 
𝑀𝑖𝑛 = 0 

 
Moreover, Figure 7 displays the rate of convergence for pressure (𝐻𝑆𝑇𝑃), velocity (𝐻𝑆𝑇𝑉) and 

stress (𝐻𝐼𝑆𝑇𝑆) under two different 𝛽-values (𝛽 = {1/9,0.9}) and 𝑊𝑒 = 1. Generally, for both 𝛽-
values the same temporal convergence trends occur in pressure (also in velocity). Under the highest 
solvent fraction (𝛽 = 0.9), the prediction error was less than with another solvent fraction (𝛽 = 1/9) 
to reach the tolerance level. For the stress, one can observe that for the larger time-steps the 
discretisation error is minimal under 𝛽 = 1/9 to attain the convergence criteria (see Figure 7(c)). 

  

  
(a) (b) 

 
(c) 

Fig. 7. Rate of convergence, (a) Pressure, (b) Velocity, (c) Stress; 𝑊𝑒 = 1, 𝛽 = 0.9,1/9 

 
In contrast to the foregoing, we next consider the influence of solvent fraction (𝛽) through the 

variation in 𝑊𝑒. Table 3 provides the maximum level of all solution for two different 𝛽-values (𝛽 =
{0.9,1/9, 0.05}) and 𝑊𝑒 = {1,2,3}. The findings reveal that there is a modest increase in the velocity 
maxima, where recorded the slightly high level with 𝛽 = 1/9. On the other hand, one can observe a 
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significant alteration in the normal stress maxima in the case of 𝛽 = 1/9 compared to that with 𝛽 =
0.9. In this situation, it is notable that the normal and radial stresses strongly raise with 𝛽 = 1/9. For 
example, at 𝑊𝑒 = 3 the peak level of 𝜏𝑧𝑧 is 0.961 units with 𝛽 = 0.9, but it is around 11.855 units 
and 12.628 units for 𝛽 = 1/9 and 𝛽 = 0.05, respectively. For the pressure the trend oppose those 
observed for stress, in that a decrease is occurred in the 𝑝 maxima for 𝛽 = 1/9. 
 

Table 3 
Maximum value: velocity, pressure and stresses; 𝑊𝑒-variation, 𝛽-variation 
Maximum 
value  

 𝛽 = 0.9 𝛽 = 1/9 𝛽 = 0.05 
𝑊𝑒
= 1 

 𝑊𝑒 =
2  

𝑊𝑒
= 3 

𝑊𝑒 = 1   𝑊𝑒 =
2  

𝑊𝑒 = 3  𝑊𝑒 = 1  𝑊𝑒 =
2  

𝑊𝑒 = 3 

𝑢𝑧 1.0149 1.0187 1.0216 1.39 1.686 1.787 1.78 2.76 3 
𝑝 7.798 7.679 7.584 6.667 6.497 6.207 6.415 6.358 6.132 
𝜏𝑟𝑟 0.0005 0.0009 0.0006 0.318 0.111 0.086 0.504 0.66 0.096 
𝜏𝑧𝑧 0.39 0.697 0.961 13.191 12.232 11.855 14.428 14.13 12.628 
𝜏𝜃𝜃 0.0037 0.0053 0.0057 2.471 2.106 1.985 2.5 2.983 3.104 

 
The shear stress (𝜏𝑟𝑧), normal stress (𝜏𝑧𝑧), radial stress and azimuthal stress profiles are illustrated 

in Figure 8 through increasing 𝑊𝑒 and fixed 𝛽 = 1/9 along the top wall. Generally, the findings 
display a reducing trend in peak values as 𝑊𝑒 increases in stress components, which is consistent 
with results reported by other researchers [16,33].  
 

  
(a) (b) 

  
(c) (d) 

Fig. 8. Stress profiles along top surface; 𝑊𝑒-variation, 𝛽 = 1/9 (a) 𝜏𝑟𝑧(b) 𝜏𝑧𝑧 (c) 𝜏𝑟𝑟  (d) 𝜏𝜃𝜃 
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5.1 Pressure Coefficient (𝐶𝑝) 

 
Other finding of our investigation is the pressure coefficient (𝐶𝑝), which is defined as 

 

𝐶𝑝 =
𝑝1−𝑝0
1

2
𝜌𝑈

2 .                        (27) 

 
where, 𝑝1 is the pressure at the channel inlet, 𝑝0 is the pressure at the channel outlet, 𝜌 is the density, 

and 𝑈 is the average velocity. Here, the pressure coefficient is studied for different setting of 𝑊𝑒 and 
solvent-fraction with Reynolds number of unity. Consequently, Figure 9 illustrates the 𝐶𝑝 as a 

function of 𝑊𝑒 with  = {0.9, 1/9, 0.05}. Overall, the plot exhibits a major difference in 𝐶𝑝 with 

variation in solvent-fraction. The highest value for 𝐶𝑝is observed with high solvent fraction (𝛽 =

0.9), due to dominant shear-thinning influence. In contrast, the data reveal that, the 𝐶𝑝 level 

decreases as 𝑊𝑒 increases. For instance, with 𝑊𝑒 = 1 the maximum level of 𝐶𝑝  for  = 0.9 is around 

60 units, compared to 27 units for  = 1/9 and 16 unit for  = 0.05; almost 𝑂(55%) and 𝑂(73%) 
reduction, respectively. 
 

 
Fig. 9. Pressure drop coefficient for 𝑅𝑒 = 1, 𝑊𝑒-variation 
and -variation 

 
6. Conclusions 
 

In this paper, the numerical solutions for Oldroyd-B viscoelastic fluid in axisymmetric straight 
channel by using a hybrid finite element/volume method 𝑓𝑒/𝑓𝑣(𝑠𝑐) in cylindrical coordinates system 
are presented. High accuracy has been shown by comparing the numerical results with analytic 
solutions for the velocity and stress under specific conditions. The rate of convergence of the solution 
components under 𝑓𝑒/𝑓𝑣(𝑠𝑐) method is provided in this study. With the selected set of parameters, 
we have commenced with a Weissenberg number (𝑊𝑒 ) and solvent fraction (𝛽). The respective 
influences of velocity, pressure and stresses with 𝑊𝑒-variation and use three different values of 
solvent fraction 𝛽 = {0.9, 1/9, 0.05} have been systematically investigated. The results show that, 
less time is required in velocity development compared to pressure and stress development. The 
pressure drop with 𝑊𝑒-variation is introduced, such that there is no significant change observed 
except in the inlet of the channel. On the maxima level of solution components for 𝛽 =

We
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{0.9, 1/9, 0.05} and 𝑊𝑒-variation it is notable that radial and normal stresses strongly amplify, while 
no significant change is observed for remaining components. 
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