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Our main focus in this paper is to investigate the effects of Soret and Dufour known as 
thermodiffusion and diffusion-thermo on moving plate in copper water nanofluid. The 
set of partial differential equations are converted into set of ordinary differential 
equations using the appropriate similarity variables before being solved numerically 
using bvp4c code in Matlab software. The results of heat and mass transfer, 
temperature and concentration profiles on Soret as well as Dufour effects are 
presented graphically. Soret effect increases the heat transfer rate at the surface while 
Dufour effect decreases the mass transfer rate at the surface. Since the solutions exist 
in dual, we carry out the stability solutions to determine which solution is stable and 
hence the physical meaning is realized physically. 
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1. Introduction 
 

The consideration of Soret effect (thermodiffusion) and Dufour effect (diffusion-thermo) in some 
literature has gain an attraction due to their significance of study when density difference existed in 
the flow regime [1]. Soret effect can be described as diffusion of particles from higher temperature 
towards lower temperature (temperature gradient) due to mass flux. Dufour effect is a reverse 
phenomenon of Soret effect where particles are diffused from higher concentration to the lower 
concentration due to energy flux. Both effects have been set up in crystal growth process where the 
behaviour of convective flows has a strong effect on the temperature and solute temporal variations 
which lead to nonuniform crystal growth and undesirable nonhomogeneous crystals [2]. Apart from 
that, many applications of thermodiffusion in industrial processes such in fabrication of 
semiconductor devices in molten metal and semiconductor mixtures, separation of polymers and 
DNA as well as in optimum oil recovery from hydrocarbon reservoirs [3]. Kafoussias and Williams [4] 
are among the first researchers who discovered the existence and development of Soret and Dufour 
effects on mixed convection with temperature dependent viscosity. Some literatures on moving plate 
under consideration of Soret and Dufour effects have been listed in [5-10]. 
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The purpose of this work is to extend the work by Bachok et al., [11] in the presence of 
thermodiffusion (Soret effect) and diffusion-thermo (Dufour effect) in copper water nanofluid on a 
moving plate. The stability analysis is performed due to dual solutions obtained. Therefore, we 
implemented the pioneer research on stability solutions done by Merkin [12], Weidman et al., [13], 
and Harris et al., [14]. The consideration on stability solutions can be discovered in the studies by 
Roşca and Pop [15], Bachok et al., [16], Ismail et al., [17], Najib et al., [18], and Najib et al., [19]. 
 
2. Methodology  
 

Consider a two-dimensional laminar boundary layer flow on a fixed or continuously moving flat 
surface in a water-based nanofluid containing copper (Cu) nanoparticles in the presence of Soret and 
Dufour effects. It is assumed that the plate moves in the same or opposite direction to the free 
stream, both with constant velocities. The nanoparticles are assumed to have a uniform spherical 
shape and size. The boundary layer equations are given by Bachok et al., [11], and Balla and Naikoti 
[2] 
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along with the initial and boundary conditions 
 
𝑡 < 0: 𝑢 = 𝑣 = 0,       𝑇 = 𝑇∞,      𝐶 = 𝐶∞  for any 𝑥, 𝑦 
𝑡 ≥ 0: 𝑢 = 𝑈𝑤 ,      𝑣 = 0,      𝑇 = 𝑇𝑓,      𝐶 = 𝐶𝑓  at 𝑦 = 0        (5) 

𝑢 → 𝑈∞,    𝑇 → 𝑇∞,    𝐶 → 𝐶∞,  as 𝑦 → ∞.  
 

where 𝑈𝑤 and 𝑈∞ are constants and correspond to the plate velocity and the free stream velocity, 
respectively. Further, 𝑢 and 𝑣 are the velocity components along the 𝑥 and 𝑦 directions, respectively. 
𝐷𝑚 is the diffusion coefficient, 𝐾𝑇 is the thermal diffusion ratio, 𝑇𝑚 is mean fluid temperature, 𝑐𝑝 is 

the specific heat at constant pressure and 𝑐𝑠 is concentration susceptibility. 𝑇 is the temperature of 
the nanofluid, 𝜇𝑛𝑓 is the viscosity of the nanofluid, 𝛼𝑛𝑓 is the thermal diffusivity of the nanofluid and 

𝜌𝑛𝑓 is the density of the nanofluid, which are given by Oztop and Abu-Nada [20] 

 

𝜌𝑛𝑓 = (1 − 𝜑)𝜌𝑓 + 𝜑𝜌𝑠,         𝛼𝑛𝑓 =
𝑘𝑛𝑓

(𝜌𝐶𝑝)
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,

(𝜌𝐶𝑝)
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= (1 − 𝜑)(𝜌𝐶𝑝)
𝑓

+ 𝜑(𝜌𝐶𝑝)
𝑠

,     
𝑘𝑛𝑓

𝑘𝑓
=

(𝑘𝑠+2𝑘𝑓)−2𝜑(𝑘𝑓−𝑘𝑠)

(𝑘𝑠+2𝑘𝑓)+𝜑(𝑘𝑓−𝑘𝑠)

      (6) 

 

where 𝜑 is the nanoparticle volume fraction, (𝜌𝐶𝑝)
𝑛𝑓

 is the heat capacity of the nanofluid, 𝑘𝑛𝑓 is the 

effective thermal conductivity of the nanofluid and 𝐶𝑝 is the specific heat at constant pressure, 𝑘𝑓 
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and 𝑘𝑠 are the thermal conductivities of the fluid and of the solid fractions, respectively, 𝜌𝑓 and 𝜌𝑠 

are the densities of the fluid and of the solid fractions, respectively. 
 

2.1 Steady-State Equation (
𝜕

𝜕𝑡
= 0)  

 
Introducing the following similarity transformation 
 

𝜂 = (
𝑈

𝜈𝑓𝑥
)

1/2

𝑦,      𝜓 = (𝜈𝑓𝑥𝑈)
1/2

𝑓(𝜂),      𝜃(𝜂) =
𝑇−𝑇∞

𝑇𝑓−𝑇∞
,        𝜙(𝜂) =

𝐶−𝐶∞

𝐶𝑓−𝐶∞
,     (7) 

 
where 𝜂 is the similarity variable, where 𝑈 is the composite velocity defined as 𝑈 = 𝑈𝑤 + 𝑈∞. This 
definition of 𝑈 was first introduced by Afzal et al., [21] and 𝜓 is the stream function defined as 𝑢 =
𝜕𝜓/𝜕𝑦 and 𝑣 = −𝜕𝜓/𝜕𝑥, which automatically satisfied Eq. (1). Substituting the similarity variables 
(7) into Eq. (2) to Eq. (4) we obtain the following ordinary (similarity) differential equations 
 

1

(1−𝜑)2.5(1−𝜑+𝜑𝜌𝑠/𝜌𝑓)
𝑓′′′ +

1

2
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𝑠
/(𝜌𝑐𝑝)

𝑓
) (

1

2
𝑓𝜃′ + 𝐷𝑢𝜙′′) = 0       (9) 

 

𝜙′′ + 𝑆𝑐 (
1

2
𝑓𝜙′ + 𝑆𝑟𝜃′′) = 0                      (10) 

 
subject to the boundary conditions (5) which become 
 
𝑓(0) = 0,      𝑓′(0) = 𝜆,      𝜃(0) = 1,      𝜙(0) = 1

𝑓′(𝜂) → 1 − 𝜆,      𝜃(𝜂) → 0,       𝜙(𝜂) → 0  as  𝜂 → ∞     
                  (11) 

 
In the above equations, primes denote the differentiation with respect to 𝜂. Here 𝑃𝑟 is the Prandt 

number, 𝑆𝑐 is the Schmidt number, 𝑆𝑟 is the Soret number, 𝐷𝑢 is the Dufour number and 𝜆 is the 
velocity ratio parameter which are defined as  
 

𝑃𝑟 =
𝜈𝑓

𝛼𝑓
,      𝑆𝑐 =

𝜈𝑓

𝐷𝑚
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,        𝜆 =

𝑈𝑤

𝑈
               (12) 

 
where 𝜆 > 0 corresponds to assisting flow and 𝜆 < 0 corresponds to reverse flow. 

The physical quantities of practical interest are the local skin friction coefficients 𝐶𝑓, local Nusselt 

number 𝑁𝑢𝑥  and local Sherwood number 𝑆ℎ𝑥 which are defined as 
 

𝐶𝑓 =
𝜏𝑤

𝜌𝑓𝑈𝑒
2 ,       𝑁𝑢𝑥 =

𝑥𝑞𝑤

𝑘𝑓(𝑇𝑓−𝑇∞)
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𝑥𝑞𝑚

𝐷𝑚(𝐶𝑓−𝐶∞)
                  (13) 

 
where 𝜏𝑤 is the skin friction or the shear stresses on the stretching/shrinking sheet, 𝑞𝑤 is the heat 
flux from the surface of the plate and 𝑞𝑚 is the mass flux from the surface of the plate, which are 
given by 

𝜏𝑤 = 𝜇𝑛𝑓 (
𝜕𝑢

𝜕𝑦
)

𝑦=0
,       𝑞𝑤 = −𝑘𝑛𝑓 (

𝜕𝑇

𝜕𝑦
)

𝑦=0
,         𝑞𝑚 = −𝐷𝑚 (

𝜕𝐶

𝜕𝑦
)

𝑦=0
,                (14) 
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Using Eq. (7) in Eq. (13) and Eq. (14), we obtain 
 

(𝑅𝑒𝑥)1/2𝐶𝑓 =
1

(1−𝜑)2.5 𝑓′′(0),       (𝑅𝑒𝑥)−1/2𝑁𝑢𝑥 =  −
𝑘𝑛𝑓

𝑘𝑓
𝜃′(0),      (𝑅𝑒𝑥)−1/2𝑆ℎ𝑥 =  −𝜙′(0)           (15) 

 
where 𝑅𝑒𝑥 = 𝑈𝑥/𝜈𝑓 is the local Reynolds number.  

 
2.2 Stability Analysis 
 

Weidman et al., [13] and Roşca and Pop [15] have shown that the lower branch solutions are 
unstable (not realizable physically), while the upper branch solutions are stable (physically 
realizable). We test these features by considering the unsteady Eq. (2)-(4). Thus, we introduce the 
new dimensionless time variable 𝜏. The use of 𝜏 is associated with an initial value problem and is 
consistent with the question of which solution will be obtained in practice (physically realizable). 
Using the variables 𝜏 and (7), we have  

  

𝜂 = (
𝑈

𝜈𝑓𝑥
)

1/2

𝑦,   𝜓 = (𝜈𝑓𝑥𝑈)
1/2

𝑓(𝜂, 𝜏 ),   𝜃(𝜂, 𝜏) =
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𝐶−𝐶∞

𝐶𝑓−𝐶∞
,   𝜏 =

𝑈𝑡

𝑥
              (16)  

 
so that Eq. (2)-(4) can be written as 
 

1
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= 0                 (17) 
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𝑠
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𝑓
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1

2
𝑓
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𝜕2𝜙

𝜕𝜂2 − (1 − 𝜏
𝜕𝑓

𝜕𝜂
)

𝜕𝜃

𝜕𝜏
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1

𝑆𝑐

𝜕2𝜙

𝜕𝜂2 +
1

2
𝑓

𝜕𝜙

𝜕𝜂
+ 𝑆𝑟

𝜕2𝜃

𝜕𝜂2 − (1 − 𝜏
𝜕𝑓

𝜕𝜂
)

𝜕𝜙

𝜕𝜏
= 0                    (19) 

 
subject to the boundary conditions 
 

𝑓(0, 𝜏) = 0,      
𝜕𝑓

𝜕𝜂
(0, 𝜏) = 𝜆,      𝜃(0, 𝜏) = 1,      𝜙(0, 𝜏) = 1

𝜕𝑓

𝜕𝜂
(𝜂, 𝜏) → 1 − 𝜆,      𝜃(𝜂, 𝜏) → 0,       𝜙(𝜂, 𝜏) → 0    

                 (20) 

 
To determine the stability of the solution 𝑓 = 𝑓0(𝜂), 𝜃 = 𝜃0(𝜂) and 𝜙 = 𝜙0(𝜂) satisfying the 

boundary-value problem (17)-(19), we write [13,15] 
 
𝑓(𝜂, 𝜏) = 𝑓0(𝜂) + 𝑒−𝛾𝑡𝐹(𝜂),  𝜃(𝜂, 𝜏) = 𝜃0(𝜂) + 𝑒−𝛾𝑡𝐺(𝜂),   𝜙(𝜂, 𝜏) = 𝜙0(𝜂) + 𝑒−𝛾𝑡𝐻(𝜂),             (21) 
 
where 𝛾 is an unknown eigenvalue parameter, and 𝐹(𝜂), G(𝜂) and 𝐻(𝜂) are small relative to 𝑓 =
𝑓0(𝜂), 𝜃 = 𝜃0(𝜂) and 𝜙 = 𝜙0(𝜂). Solutions of the eigenvalue problem (17)-(20) give an infinite set 
of eigenvalues 𝛾1 < 𝛾2 < 𝛾3 … ; if 𝛾1 is negative, there is an initial growth of disturbances and the 
flow is unstable but when 𝛾1 is positive, there is an initial decay and the flow is stable. Introducing 
Eq. (21) into Eq. (17)-(20), we get the following linearized problem  
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1

(1−𝜑)2.5(1−𝜑+𝜑𝜌𝑠/𝜌𝑓)
𝐹0

′′′ +
1

2
𝑓0𝐹0

′′ +
1

2
𝑓0′′𝐹0 + 𝛾𝐹0′ = 0                  (22) 

 
𝑘𝑛𝑓

𝑘𝑓
𝐺0

′′ + 𝑃𝑟 (1 − 𝜑 + 𝜑(𝜌𝑐𝑝)
𝑠
/(𝜌𝑐𝑝)

𝑓
) (

1

2
𝑓0𝐺0

′ +
1

2
𝐹0𝜃0

′ + 𝐷𝑢𝐻0
  ′′ + 𝛾𝐺0) = 0              (23) 

  

𝐻0
  ′′ + 𝑆𝑐 (

1

2
𝑓0𝐻0

′ +
1

2
𝐹0𝜙0

′ + 𝑆𝑟𝐺0
′′ + 𝛾𝐻0) = 0                   (24) 

 
subject to the boundary conditions 
 
𝐹0(0) = 0,     𝐹0′(0) = 0,      𝐺0(0) = 0,     𝐻0(0) = 0,     

𝐹0′(𝜂) → 0,     𝐺0(𝜂) → 0,      𝐻0(𝜂) → 0   as  𝜂 → ∞.
                  (25) 

 
It should be mentioned that for particular values of 𝜆, 𝑃𝑟, 𝑆𝑟, 𝐷𝑢, 𝑆𝑐 and 𝜑 the stability of the 

corresponding steady flow solution𝑓0(𝜂), 𝜃0(𝜂)and 𝜙0(𝜂), is determined by the smallest eigenvalue 
𝛾. According to Harris et al., [14], the range of possible eigenvalues can be determined by relaxing a 
boundary condition either on 𝐹0(𝜂), 𝐺0(𝜂) or 𝐻0(𝜂). For the present problem, we relax the condition 
that 𝐹0′(𝜂) → 0 as 𝜂 → ∞ and for a fixed value of 𝛾 we solve the system (22)-(24) subject to Eq. (25) 
along with the new boundary condition𝐹0′′(0) = 1.  

 
3. Results  
 

The system of nonlinear ordinary differential Eq. (8)-(10) along with subjected boundary 
condition (11) have been solved numerically using bvp4c code in Matlab software. Table 1 depicts 
the comparison of numerical results for 𝑓′′(0) values which clearly in a good agreement with Bachok 
et al., [11]. Thus, give us confidence that our numerical results and also plotted figures are correct.  
 

Table 1  
Values of 𝑓′′(0) for some values of λ when 𝜑 = 0.1 
  Bachok et al., [11] Present results 

First Solution Second Solution First Solution Second Solution 

-0.5 0.4674 0.2009 0.46737 0.20091 
-0.4 0.5117 0.0979 0.51171 0.09792 
-0.3 0.5097 0.0431 0.50968 0.04314 
-0.2 0.4844 0.0134 0.48442 0.01343 
-0.1 0.4433 0.0012 0.44333  
0 0.3901  0.39008  
0.5 0  0  
1 -0.5218  -0.52133  

 
The effects of Soret and Dufour are presented in Figure 1 and Figure 2. In Figure 1, we have set 

the value of Dufour effect 𝐷𝑢 is equal to 0.15 (𝐷𝑢 = 0.15) where we only focusing on different 
values of Soret effects 𝑆𝑟. The heat transfer is increasing when we increased the values of 𝑆𝑟 but the 
different observation has been seen where mass transfer is decreasing as 𝑆𝑟 increased. Soret effect 
also known as thermal diffusion (thermodiffusion) where the nanoparticles are diffused from higher 
temperature to the lower temperature due to the mass flux. The different effects on Dufour 𝐷𝑢 can 
be seen in Figure 2 where Soret effect is taken to be 0.15 (𝑆𝑟 = 0.15). However, increasing Dufour 
effect 𝐷𝑢 cause to decrease heat and mass transfer. This is because Dufour effect is the reverse 
phenomenon of Soret effect called as diffusion-thermo. The nanoparticles diffused from higher 
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concentration to the lower concentration due to energy (heat) flux. The dual temperature as well as 
concentration profiles have been illustrated graphically in Figure 3 and Figure 4 to support our 
numerical results and the Figure 1 and Figure 2. All profiles satisfy the far field boundary conditions 
(11) by fulfill the behavior of the flow asymptotically. The boundary layer thickness for the second 
solution is always thicker than the first solution. 

 

  
 

 
Fig. 1. (a) Skin friction coefficient 𝑓′′(0), (b) temperature gradient −𝜃′(0) and (c) concentration gradient 
−𝜙′(0) vs. 𝜆 for several values of 𝑆𝑟 

 

  
Fig. 2. (a) Temperature gradient −𝜃′(0) and (b) concentration gradient −𝜙′(0) vs. 𝜆 for some values of 𝐷𝑢 

 
The system of linearized problem (22)-(24) along with the new boundary condition (25) have been 

applied into code 3 of bvp4c to perform the stability solutions. The smallest eigenvalues 𝛾 for some 
values of 𝜆 are presented in Table 2. As shown, the eigenvalue 𝛾 will approaching zero (𝛾 → 0) when 
the selected value 𝜆 is nearer to the critical point 𝜆𝑐. Moreover, comparison of numerical result with 
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previous research indicated that our smallest eigenvalues 𝛾 are in excellent agreement as stated by 
Bachok et al., [16]. From our observation, 𝛾 is positive (stable solution) for the first solution and 
negative (unstable solution) for the second solution. The solution is said as a stable solution when 
there only slight disturbance on the flow system that does not affect the flow characteristics while 
the unstable solution is stated when there existed initial growth of disturbance that affect the flow 
system. Thus, the first solution is stable and hence they can be realized physically whereas the second 
solution is not. 
 

  
Fig. 3. (a) Dual temperature profile 𝜃(𝜂) and (b) concentration profile 𝜙(𝜂) for some values of 𝑆𝑟 

 

  
Fig. 4. (a) Dual temperature profile 𝜃(𝜂) and (b) concentration profile 𝜙(𝜂) for some values of 𝐷𝑢 

 
Table 2 
Smallest eigenvalues 𝛾 for selected values of 𝜆 when 𝜑 =  0.1 
𝜆 Bachok et al., [16] Present results 

First Solution Second Solution First Solution Second Solution 

-0.5482   0.0029 -0.0028 
-0.548   0.0066 -0.0065 
-0.54 0.0406 -0.0350 0.0406 -0.0350 
-0.52 0.0788 -0.0597 0.0788 -0.0597 
-0.5 0.1059 -0.0733 0.1059 -0.0733 
-0.4 0.1992 -0.0982 0.1992 -0.0982 
-0.3 0.2662 -0.0949 0.2662 -0.0955 
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4. Conclusions 
 

The effects of Soret and Dufour on boundary layer flow, heat and mass transfer over a moving 
surface in nanofluid is investigated numerically. The results revealed that  

• dual solutions exist only for opposing flow (when the plate and free stream move in opposite 
direction to each other), 𝜆 < 0. 

• the first solution is stable and physically realizable while the second solution is not. 

• largest 𝑆𝑟 is required to increase the heat transfer coefficient. 

• smallest 𝐷𝑢 is sufficient to increase heat transfer coefficient. 
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