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Design and three-dimensional simulation of a solar Dish-Stirling (SDS) engine is 
currently performed. The design starts with the GPU-3 Stirling engine, which is 
originally built to generate power from the fossil fuel exclusively. The design is 
conducted through three subsequent phases. Firstly, several parabolic dishes with 
different rim angles and number of facets are investigated to optimally design the dish 
concentrator. Secondly, different relative positions of the receiver aperture to the dish 
focal plane are tested to reach the optimal position. The optical simulation of the solar 
concentration process is carried out using SolTRACE software. Finally, an optimal design 
for a cavity receiver that involves a new structure of the heater tubes is performed. The 
simulation of the engine with the designed receiver is implemented using the 
commercial CFD code ANSYS FLUENT. Having finished the design, a comprehensive 
energy analysis of the designed SDS engine is carried out. The results show that a nearly 
uniform temperature distribution of the heater tubes throughout the cycle is achieved. 
The overall thermal efficiency of the designed SDS engine is about 31.8 % at a DNI of 
1000 W/m2. 
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1. Introduction 
 

Fossil fuel still dominates the global energy market. According to the U.S. Energy Information 
Administration (EIA), fossil fuel supplies 84% of the world’s primary energy [1]. However, the massive 
shortage of the fossil fuel resources, the fluctuations in fuel prices, and the severe environmental 
problems due to its combustion inevitably lead to reduce our dependence on this type of energy 
source. Additionally, due to the continuous growth in world population and modernization, the global 
energy demands are expected to increase further over the coming years. These considerable issues 
increase the urgency to widen the use of the renewable energy resources. Solar energy, particularly, 
has been regarded as a key source for future. Furthermore, for many solar thermal technologies, it is 
possible to include an effective thermal storage system or a hybrid scheme, with fossil fuels or 
biomass. This helps to avoid interruptions during transient conditions or after sundown [2]. 
Accordingly, solar energy is expected to provide about 26 percent of the world electricity demand by 
2050 [3]. 
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Solar energy technologies for power generation are divided into two main categories: the 
photovoltaic (PV) and the concentrating solar power (CSP) [4]. The concentrated solar power (CSP) 
technology incorporates four essential designs; parabolic trough, power tower, linear Fresnel and 
Dish-Stirling system. The solar Dish-Stirling (SDS) systems are recognized as the most efficient of the 
existing technologies for the solar-to-electricity conversion. The efficiency of this system reaches 
nearly 32% of direct normal incident radiation, compared to around 18% and 25% for parabolic 
trough and power tower designs, respectively [5, 6]. Along with its high potential efficiency, the SDS 
system can provide power even at places where scarcity of water is prevailing [7]. Furthermore, the 
modular nature of this system makes it particularly suitable for small and medium scale solar power 
plants [8]. Also, individual units can operate independently, off-grid, in remote locations [9]. In this 
context, it should be mentioned that the high capital, operating and maintenance costs are the main 
disadvantage of this system. These cost issues are expected to be reduced with mass production and 
further development of the system [10, 11]. The SDS system consists of parabolic dish concentrator, 
solar-tracker, cavity receiver, Stirling engine and electrical generator, as shown in Figure 1. 
 

 
Fig. 1. Schematic diagram of a solar Dish-Stirling system 

 
Currently, the SDS system has becomes the focus of extensive research. Unfortunately, most of 

the research focuses on each component individually. Indeed, limited studies [12-18] have addressed 
the whole system and the interactions between its components. Yaqi et al., [12] developed a general 
analytical model for the maximum output power and its corresponding thermal efficiency. In order 
to make a neat analysis, they neglected several effects and irreversibilities within the system. Ahmadi 
et al., [13] extended the work of Yaqi et al., [12], towards simultaneous maximization of the thermal 
efficiency and the output power by employing multi-objective evolutionary algorithms. Mingzhen 
and Jinzhong [14] developed a non-linear time-domain model to simulate a commercial SDS System. 
They covered the entire range of system operation, from start-up to full power conditions. However, 
they significantly based on simple correlations for estimating the imperfections and the thermal 
losses. A simple modeling for the components of an unconventional controlled system was later 
conducted by Beltran-Chacon et al., [15]. More recently, Kadri and Abdallah [16] numerically 
investigated the feasibility and the performance of a standalone SDS system that hybridized with a 
permanent magnet synchronous generator and a storage battery. Their model was based on a simple 
classical approach of Stirling engine analysis. 

Here, it is worth mentioning that the above studies assumed a uniform temperature distribution 
on the absorber (heater) surface rather than the expected nonuniform one. This nonuniform 
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distribution is resulted from the uneven distribution of the concentrated radiation flux on the 
receiver aperture. The results under this assumption may be dramatically far from the reality. In this 
context, a global thermal model of the energy conversion of a 10 kWe Eurodish SDS system were 
presented by Nepveu et al., [17]. This model is one of the first models that considered the nonuniform 
distribution of the concentrated radiation flux on the receiver aperture. Also, they took into 
consideration all types of thermal losses of the receiver. However, they simplified the Stirling engine 
modeling with several assumptions besides neglecting the different types of losses except the 
pumping loss. Later, Barreto and Canhoto [8] developed a global model of a small-scale SDS system. 
In their model, the ray tracing technique was used to determine the radiation flux distribution on the 
receiver opening. A detailed thermal model for the receiver was also developed. In addition, two sub-
models for the thermal cycle and the mechanical to electrical energy conversion were integrated to 
the concentrator and receiver models. However, they conducted a simple design for all system 
components and applied several simplifications throughout the modelling. In an attempt to 
implement a high-performance commercial unit, Yan et al., [18] designed and experimentally tested 
a 38 kW SDS system. They started with a mature α-type, four cylinders and double-acting Stirling 
engine, namely S260. A cavity receiver with a secondary reflector was designed and integrated to this 
engine. The results showed that this system could achieve a solar-to-electricity conversion efficiency 
of about 26% with a DNI at 750 W/m2. 

Based on the above literature survey, two important issues are noticed. The first is related to the 
design and the second is about the analysis technique. Regarding the design, most of the previous 
work was conducted on specific designs of the SDS system. These are either commercial units or 
simple designs proposed by researchers. Unfortunately, the existing commercial units are limited and 
most of its design and operating specifications are not easily available. Regarding the analysis 
technique, most of the Stirling engine modeling techniques that are integrated to the whole system 
modeling, are relatively simple. They are usually accompanied by several assumptions and neglecting 
most of the engine losses.  Consequently, these might cause a high degree of inaccuracy in the 
performance predictions of the whole SDS system. According to these issues, the current study is 
intended to design and analyze a high-performance SDS engine using the CFD approach.  Recently, 
the Computational Fluid Dynamics (CFD) models have achieved high accurate predictions of the 
Stirling engine performance [19-21]. In this study, a mature Stirling engine, namely the Ground Power 
Unit (GPU-3), is selected to be the base of the current design of the solar engine. As it is one of the 
most famous, well-documented as well as high-performance β-type Stirling engine with the rhombic 
drive mechanism. Also, the advantageous characteristics of the β-type configuration integrated with 
the rhombic drive mechanism make it more convenient for solar applications [22]. However, the 
conventional shape of the heater tubes arrangement in the case of β-configuration is not basically 
suitable for receipting the solar energy. Therefore, the choice of a β-type engine should be followed 
by a new design for the heater pipes. This engine was originally designed to generate power from the 
fossil fuels exclusively [23]. Hence, an optimal design for a cavity receiver that involves the new 
structure of the heater tubes is conducted to replace the original heater of the GPU-3. The optimal 
design of the receiver is identified according to the best compromise among three fundamental 
aspects. These are the uniform irradiance distribution on the receiver and absorber walls, high optical 
absorption efficiency as well as low pumping loss. Furthermore, a complete design of a suitable dish 
concentrator is performed. Herein, the design of the dish is optimized to achieve a high optical 
concentration ratio along with a high degree of uniformity for irradiance distribution on the receiver 
aperture. The design specifications of the GPU-3 engine have been documented by El-Ghafour et al., 
[19, 20]. In the following subsections, the design phases, the simulation methodology and the CFD 
results of the SDS engine are reported. 
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2. Setting Aperture Diameter of Parabolic Dish Concentrator and Cavity Receiver 
 

The design of the SDS system is usually started with the selection of two main dimensions. These 
are the aperture diameters of the dish concentrator, Dcon, and the cavity receiver, Drec. As the suitable 
identification of these dimensions can achieve the desired concentration ratio. The size of the dish 
concentrator depends mainly on the peak electrical power system (Pelect), the maximum direct 
normal irradiance (DNI) and the efficiency of solar-to-electrical energy conversion as follows [7, 24] 
 
Pelect =  Acon . DNI . ηov                                                                                                                                     (1) 
                                                                                                                      

Dcon =  √
4

π
 . Acon                                                                                                                                                (2) 

                                                                                                                                
where Acon is the aperture area of the concentrator and ηov is the overall efficiency of the SDS system. 
In the current study, a DNI of 1000 W/m2 is selected. The peak electrical power from the GPU-3 
Stirling engine is about 8.5 kWe. The typical SDS system efficiency varies from 17 to 30 %. Hence, the 
initial efficiency can be assumed as 24%. Accordingly, the aperture diameter of the dish can be taken 
as 7.0 m.  

The identification of the receiver aperture diameter is currently governed by a trade-off between 
two aspects. The first one is to increase the diameter to capture most of the concentrated irradiation. 
While, the second one is to restrict this increase in order to achieve the standard shape of the cavity 
receiver and to avoid severe modifications on the original dimensions of the engine. Accordingly, the 
aperture diameter of the receiver is selected to be 14.0 cm. One of the most important parameters 
used in assessing the optical performance of the solar concentration process is the concentration 
ratio. Two different definitions of the concentration ratio are used in general. These are the 
geometric and the optical concentration ratios. The geometric concentration ratio, CRg, is defined as 
the ratio of the concentrator aperture area (Acon) to the receiver aperture area (Arec) [25]. According 
to the proposed dimensions, CRg is about 2500. This ratio ranges from 1000 to 3200 for the current 
commercial units. Here, it should be pointed out that the effect of the shaded area on the 
concentration process is neglected. Generally, the shading error is kept less than 1% if the dish 
aperture size is much larger than that of the receiver. As clarified, the proposed diameters for the 
dish and receivers makes this assumption reasonable. 
 
3. Optical Design and Simulation of Parabolic Dish Concentrator   
 

Practically, the parabolic concentrator can either consist of single large continuous surface or an 
assembly of several smaller surfaces, usually referred to as multi-facet construction [22]. In the multi-
facet construction, the technical difficulties of production, handling and maintenance and the high 
costs, accompanied with the continuous surface dishes, are significantly avoided [7]. Besides, the 
multi-facet construction effectively operates in the windy climate [18]. More importantly, the multi-
facet concentrator has another advantage over the continuous surface one in that the heat flux 
distribution on the receiver opening is more uniform. Consequently, the local overheating damage is 
avoided, and the engine lifespan is significantly increased [26]. Furthermore, the heater is subjected 
to a more uniform temperature distribution approximately approaching the isothermal distribution. 
Hence, the engine may achieve a higher thermal efficiency. 
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In the current study, the multi-facet space frame parabolic dish type is selected as concentrator 
in the design. This is attributed to its simplicity in design and implementation compared with the 
stretched membrane parabolic dish type. More importantly, there are barely gaps between the 
facets of this design, which lead consequently to utilize the whole concentration area. The losses due 
to these gaps may reach approximately 36% for the stretched membrane type [27]. In the following 
subsections, the methodology of the optical simulation and the optimal design phases of the multi-
facet parabolic dish are presented. 
 
3.1 Methodology of Optical Simulation 
 

The optical simulation of the solar concentration process is carried out using the open source 
software SolTRACE based on Monte-Carlo ray-tracing technique. The simulation is limited to the dish 
and the receiver aperture. This receiver aperture is represented as a circular surface with specific 
diameter for receiving the concentrated irradiance.  
 
3.1.1 CAD geometry 
 

The simulation firstly requires a creation of the geometrical model of the dish concentrator. 
Firstly, a drawing of the parabola which represents the base of the dish design is created. A public-
domain software, Parabola Calculator 2.0, is currently used for calculating the x and y coordinates of 
the defining points of the parabola.  

Then, the ideal parabolic dish by a 3D computer-aided design (CAD) software SolidWorks is 
formed. Here, each facet is designed as a square flat mirror. The facets are arranged to approximately 
form the parabolic shape. However, the assembly of the facets in the parabolic shape with 
appropriate position and orientation for each facet, so-called facets alignment, has not been an easy 
task. It is basically related with the number and size of the facets. In the present study, the 
identification of the facets number and area is based on an optimization algorithm proposed by 
Pavlovi et al., [28]. Finally, these facets, of specified number and area, are charted using SolidWorks 
to accurately identify the facets orientation and the coordinates of each vertex. Figure 2 illustrates a 
3D CAD model of the multi-flat facet parabolic dish concentrator. 
 

 
Fig. 2. Three-dimensional CAD model of 
multi-flat facet parabolic dish 
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3.1.2 Solution scheme 
 

The first step of the simulation in SolTRACE software is to define the sun as the light source by 
two characteristics. These are the sun shape and position. A pillbox approximation is considered for 
the sun shape, with a half-angle of 4.65 mrad (16´). The direction of the sun is defined relative to the 
global coordinate system. Also, the position of dish concentrator is defined according to the global 
coordinate system. Whereas, each facet of the multi-facet dish is introduced separately according to 
its orientation and position within the coordinate system of the dish. The interaction of the rays with 
the elements is set to be reflective. The optical error in the current simulation ranges from 5 – 20 
mrad. Here, it should be mentioned that the optical error in the SolTRACE software is only 
determined by both the slope and specularity errors [29]. Besides, the tracking error ranges from 0 – 
2° throughout the simulations.  

As the Monte-Carlo ray-tracing technique is a stochastic method, its accuracy is dependent on 
the number of the rays traced. Therefore, the number of rays independency study is performed to 
ensure that the essential physics is independent of the ray number. Accordingly, three different rays 
number of 1.5 million, 2.7 million and 3.6 million are tested. With respect to the variation of 
irradiance flux distribution, the maximum deviation between the medium and small numbers of rays 
does not exceed 2.5 %. Therefore, the number of rays of 2.7 million is adopted for the current study. 
 
3.2 Validation of Optical Simulation  
 
The irradiance distribution calculated by SolTRACE software is validated against the experimental 
results performed by Dunn et al., [30]. The comparison between the results is illustrated in Figure 3. 
The default operational condition is listed on the figure. As seen from this figure, the results 
calculated are in good agreement with the experimental results. 
 

 
Fig. 3. Comparison of irradiance flux distribution between Monte-Carlo ray-
tracing results and experimental results 

 
 
 
 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 82, Issue 1 (2021) 51-76 

 

57 
 

3.3 Optimal Design of Multi-Facet Parabolic Dish Concentrator   
 

Generally, the complete design of the multi-facet dish requires, besides the diameter, to identify 
two other characteristic geometric parameters. These are the rim angle and the number of the facets. 
Also, the relative position of the receiver aperture with respect to the focal plane is another 
significant design parameter in the irradiance concentration process. The design phases of the dish 
start with a specific design, so-called the baseline design. According to this design, the modifications 
of the three design parameters are executed. For each design phase, the optimal design condition 
obtained is taken as a reference for the subsequent phases. 
 
3.3.1 Characterization of the baseline design 
 

A parabolic dish of single continuous surface with an aperture diameter and rim angle of 7 m and 
38°, respectively, is simulated. The reflectivity of the dish material is set as 94%. The receiver aperture 
is represented as a circular surface of 14.0 cm in diameter placed at the focal plane of the dish. The 
optical simulation with the SolTRACE software for this case is illustrated in Figure 4. 
 

 
Fig. 4. Ray-tracing simulation of the baseline case using SolTRACE software 

 
Figure 5 maps the contours of the solar irradiance on the receiver aperture of the baseline design. 

Also, the spatial distribution of the irradiance into the x-direction is displayed in this figure. Figures 4 
and 5 clearly indicate that the irradiance contours are highly axisymmetric. The region of a peak 
irradiance, which is usually named the “hot-spot” region, where the flux exceeds 10500 kW/m2, is 
limited to a circular area of radius 0.5 cm. Outside of this region, the flux decreases rapidly at a rate 
of about 2000 kW/m2 per 1 cm before it gradually faded out. The whole area contoured on the graph 
is considered as the solar image that is focused by the parabolic dish on the receiver aperture. 
Moreover, the spatial distribution of the irradiance in any direction is represented as a typical 
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Gaussian profile. This type of distribution is classified as a highly non-uniform. For this case the peak 
irradiance is about 10600 kW/m2, while the mean irradiance is around 6730 kW/m2. Here, it should 
be pointed out that the large difference between the peak and mean values of irradiance indicates 
the weakness of this design.  

 
Fig. 5. Map of irradiance contours with spatial distribution 
of irradiance in the x-direction on the receiver aperture 

 
3.3.2 Optimization of rim angle of parabolic dish concentrator  
 

Rim angle is the first characteristic parameter to be studied for optimizing the design of the 
parabolic dish. The rim angle (ψrim) is defined as the angle between the dish axis and the line between 
the focal point and the dish rim [22]. This is attributed to its significant impact on the irradiance 
distribution on the receiver aperture [31, 32]. The optimal value of the rim angle is currently 
identified as the best compromise between two aspects. These aspects are the uniformity of the 
irradiance distribution and the optical concentration ratio. The optical concentration ratio, CRo, is 
defined as the averaged irradiance (Irec) integrated over the receiver aperture area (Arec) divided by 
the incident irradiance on the concentrator aperture (Icon) [25].   
 

CRo =  

1
Arec

∫ Irec .  dArec

Icon
                                                                                                                                 (3) 

 
Here, the diameter ratio of the hot spot to the total solar image is taken as an indication for the 

degree of irradiance distribution uniformity. The bigger the diameter ratio, the lower the degree of 
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the distribution uniformity. The hot spot can be defined as the region in which the normalized 
irradiance, ratio of the local irradiance to the peak one, is higher than 90%. Figure 6 shows the 
variation of the hot spot to the solar image diameter ratio and the optical concentration ratio as 
functions of the rim angle. As illustrated from this figure, a decrease in the diameter ratio of the hot 
spot to the solar image with increasing rim angle up to a minimum value is firstly observed. This is 
followed by a slightly increase in the diameter ratio as the rim angle increases. Whereas, a thoroughly 
different behaviour is observed for the CRo. A rapid increase in the CRo value is initially occurred with 
increasing the rim angle till reaching to 45°. With any further increase of the rim angle, the CRo 
decreases markedly. This is attributed to that the optical concentration ratio is theoretically 
proportional to the square of sin (2 ψrim). This also explains the reason of achieving the maximum CRo 
at the rim angle of 45° [27]. Regarding these results, the optimal rim angle of the proposed parabolic 
dish can be identified as 45°. 
 

 
Fig. 6. Variation of hot spot to solar image diameter ratio and optical concentration ratio, 
as functions of rim angle 

 
3.3.3 Optimization of number of facets 
 

Basically, the multi-facet type of the dish concentrators behaves in a different manner than the 
continuous surface concentrators [33]. This can be proven by mapping the irradiance contours from 
the multi-facet parabolic dish of 68 facets, as displayed in Figure 7.  

When the solar rays normally impinge the aperture of the multi-facet dish concentrator, each 
facet reflected the rays according to its aim-point. This leads to generate an individual solar image by 
each facet. The shape of the whole solar image is an integration of the individual solar images. This 
explains the noticeable difference in the irradiance contour maps between the multi-facet and 
continuous surface dish concentrators. These differences are the location of the peak irradiance, the 
degree of the irradiance distribution uniformity as well as the symmetry of the distribution in the 
spatial directions. With respect to the location of the peak irradiance zone, it is not typically at the 
center of the receiver aperture like the continuous surface dish. It becomes a relatively annulus zone 
(relatively displaced from the center toward the borders of the solar image). This is considered the 
main effect of the multi facets. Furthermore, a more uniform irradiance distribution is observed by 
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comparing it with the continuous surface parabolic dish shown in Figure 5. It is quite obvious that the 
spatial distribution far from the typical Gaussian profile. This also confirmed by the results of Li et al., 
[26]. Finally, the irradiance contours are notably asymmetric. This is imputed to the alignment 
process that usually produces small gaps between the facets along with the non-similarity of the 
facets arrangement in the x- and y-directions. In fact, this drawback occurs during the design and 
implementation steps as well. Here, the spatial irradiance distribution in the x-direction is used for 
the purpose of comparison only. Figure 8 presents the effect of changing the number of facets on the 
spatial irradiance distribution in x-direction.  
 

 
Fig. 7. Map of irradiance contours with spatial distribution 
of irradiance in the x-direction of multi-facet parabolic dish 
of 68 facets 

 
As indicated in Figure 8, the increased number of facets leads to a close approximation to the 

ideal parabolic shape and, consequently, to the Gaussian distribution for the irradiance. As the 
number of facets is reduced, two contradicting effects are encountered. Firstly, the decrease of the 
facets number, significantly improves the distribution uniformity, decreases the peak irradiance value 
and moves the local peak irradiance away from the receiver center. Therefore, the number of facets 
with a proper alignment can be utilized as a control method for the degree of uniformity and to 
achieve the local peak irradiance at the desired location. Secondly, the reduction of the facets 
number causes a remarkable decrease in CRo, as shown in Figure 9. From all these considerations, 
the number of facets of 68 represents the best compromise between the uniformity of the irradiance 
distribution and the optical concentration ratio. 
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Fig. 8. Spatial irradiance distribution in x-direction for multi-facet parabolic dishes 
with different numbers of facet and continuous surface dish 

 

 
Fig. 9. Variation of optical concentration ratio, as functions of number of facets 

 
3.3.4 Optimization of relative position of receiver aperture to focal plane of the parabolic dish 
 

Generally, a conventional method of obtaining a more uniform irradiance distribution is by 
defocusing the rays by moving the receiver aperture out of the focal plane [26, 34]. This causes a 
spread of the solar image on the receiver aperture. Here, there is an allowance for the image 
spreading, since, the diameter of the image following the preceding modifications is still about 13.25 
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cm. It is notably smaller than the diameter of the receiver aperture. Besides, a large part of the 
receiver aperture is covered by a low irradiance zone, as observed in Figure 7. Meanwhile, the 
distance of the movement from the focal plane should be limited to avoid a large spillage loss. Figure 
10 shows the influence of the relative position of the receiver aperture to the focal plane on the 
spatial irradiance distribution in the x-direction. 

This figure confirms on the more uniformity of the irradiance distribution with the movement of 
the receiver forward or backward relative to the focal plane. The enlargement of the solar image is 
also observed. By comparing the three positions, the distribution at the position C is considered the 
most uniform; where the plane of the receiver aperture is positioned behind the focal plane. These 
results are in a well agreement with the results of Li et al., [26]. Certainly, the distribution becomes 
more uniform when the receiver moves more behind the focal plane. However, this is at the expense 
of the concentration ratio, as illustrated in Figure 11.  
 

 
Fig. 10. Influence of relative position of receiver aperture to focal plane on spatial 
irradiance distribution in x-direction 

 
An expected reduction in the CRo is noticed with the movement of the receiver aperture axially 

behind the focal plane. This reduction starts gradually up to the axial position of 5.4 cm behind the 
focal plane. Then this is followed by a sharp reduction for the CRo with any increase in the axial 
distance from the focal plane. Accordingly, the axial position of 5.4 cm is selected as the optimal 
position of the receiver aperture plane. This position achieves both a high degree of uniformity for 
the irradiance distribution and an efficient value for the CRo. 
 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 82, Issue 1 (2021) 51-76 

 

63 
 

 
Fig. 11. Variation of optical concentration ratio, as functions of axial distance 
measured from the focal plane 

 
4. Design of Cavity Receiver 
 

The efficient design of the cavity receiver is crucial to a high-performance SDS system. As it 
couples the dish with the heater (absorber) tubes of the Stirling engine [22]. Generally, the well-
designed receiver homogenizes the heat flux distribution on the heater tubes after multiple 
reflections and re-absorptions processes that occurs within it [27]. This has been achieved by taking 
into account some design considerations for the cavity as well as the heater tubes. 

Regarding to the cavity receiver, three design characteristics are investigated. These are the 
cavity shape that achieves a high optical performance, the suitable coating for the inner surface of 
the receiver cavity and the installation of an effective glass window over the receiver aperture. The 
identification of the shape is considered as the first step for the cavity receiver design. Among the 
different shapes of the cavity receivers, the spherical configuration was proved to have the optimal 
radiance performance [35]. As this configuration achieves the most uniform heat flux distribution on 
the walls. Therefore, the spherical configuration is selected for the design of the current cavity 
receiver. Also, it is well known that the heat flux can be more uniformly distributed across the heater 
tubes by increasing the reflectivity of the inner receiver walls [36]. Therefore, the inner walls of the 
cavity are coated with a layer of silver of 94% reflectivity. Furthermore, a fused silica glass is currently 
used as the aperture cover of the cavity receiver. In fact, this type of glass has a high transmissivity 
for the solar spectrum [22]. Consequently, it allows for most of the concentrated irradiance entering 
the receiver. In the same time, it has a low transmissivity for the long wavelength radiation. This, 
consequently, reduces the radiation loss from the receiver aperture. Besides, the covering of the 
aperture significantly reduces the natural convection loss from the receiver. With respect to the 
heater tubes, the effective arrangement of the tubes within the cavity is the first main requirement 
of the heater design. Whereas, the precise selection of a material of good thermal properties for 
manufacturing these tubes is the second one. Here, the heater tubes of the base engine design have 
been rendered to resemble the spherical cavity shape maintaining the same length of the base design 
tubes. These are aligned with no gaps between the tubes and the inner walls of the cavity. This makes 
the tubes in a suitable reception mode of the solar irradiance. Moreover, it interacts with the 
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radiation exchange that occurs within the cavity. The austenitic stainless steel 253 MA alloy is chosen 
as a heater tubes material. This is mainly due to its high thermal conductivity and suitability for 
different manufacturing processes. A thin layer of a high-temperature solar selective coating, silicon 
nitride (Si3N4), is used for the heater tubes. It decreases the overall reflectivity of the heater tubes 
[37]. 

Consequently, the final design of the receiver almost achieves the standard shape of the 
blackbody cavity. In general, a receiver that resembles the cavity shape and involves heater tubes of 
high absorptivity along with being covered by a glass window is almost considered as a blackbody 
cavity. To minimize the conduction and forced convection losses from the receiver, the cavity walls 
are insulated using a silica-based ceramic material. Also, the cavity is filled with air at atmospheric 
pressure. Shantia et al., [38] confirmed on the uselessness of utilizing a vacuum pressure within the 
cavity. As the cost of maintaining this pressure outweighs the benefits of losses reduction. 

To complete the design of the receiver, the dimensions of the cavity should be identified. Here, 
the inner diameter of the cavity is selected to be 17.5 cm. According to this value, the ratio of the 
aperture diameter to the inner cavity diameter is about 80%. This is a reasonable value to achieve 
the standard shape of the cavity receiver. As the cavity depth essentially affects the total rate of heat 
absorbed by the heater tubes [39]. Therefore, three receiver shapes with an inner cavity diameter of 
17.5 cm and different depth are examined by a CFD simulation of the solar Stirling engine. The first 
one is a hemisphere receiver with a depth of 17.5 cm. The second is a deep-hemisphere receiver with 
a depth of 19.8 cm. The third is a shallow one with a depth of 14.3 cm. The choice among the 
proposed shapes of the cavity receiver is based on the optical absorption performance and the 
pumping loss through the heater tubes. The optical absorption efficiency can be defined as the total 
heat rate absorbed by the heater tubes divided by the total irradiant power that reached the aperture 
plane of the cavity receiver.  Therefore, a trade-off between the optical performance and the 
pumping loss should be made to identify the optimal depth. Figure 12 displays the influence of the 
depth of the hemisphere cavity receiver on the optical absorption efficiency of receiver and the 
pumping loss through the heater tubes. 
 

 
Fig. 12. Influence of depth of hemisphere cavity receiver on optical absorption efficiency of 
receiver and pumping loss through heater tubes 
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 As can be illustrated from the figure, the deep-hemisphere cavity receiver achieves the highest 
optical absorption efficiency. This can be explained by the increase in the multiple reflections and re-
absorptions within it compared with the other shapes. Whereas, this shape produces the largest 
pumping loss among the whole proposed shapes. This is attributed to the additional part in the length 
of the heater tubes. This makes the shape with the high depth is not usually the best. This contradicts 
the results of Mao et al., [39] and Li et al., [26]. They affirmed on the superiority of the large depth 
shapes on the receiver performance. However, they did not unfortunately take into account the 
effect on the engine power losses. Therefore, an optical absorption rate-to-pumping loss ratio is 
calculated and used for the trade-off purpose. According to the values of this ratio, the hemisphere 
cavity shape represents the best compromise between the optical efficiency and the pumping loss.  
  
5. Final Design Specification and Operating Conditions of SDS Engine  
 

The final specifications of the multi-facet space frame parabolic dish concentrator and cavity 
receiver are summarized in Table 1. Figure 13 presents an isometric view of the solar Stirling engine. 
Table 2 presents the operating conditions applied in the current study. 
 

Table 1  
Design specifications of multi-facet parabolic dish concentrator and cavity receiver 

Parameter Description 

Number of facets 68 
Area of facets (m2) 40.02 
Aperture area of dish (m2) 38.48  
Rim angle of dish (deg.) 45 
Material of dish reflective surface (reflectivity) Silver-coated mirror (94%) 
Geometrical concentration ratio (-) 2500 
Optical concentration ratio (-) 3915 
Cavity Receiver shape Hemisphere 
Aperture diameter of cavity receiver (cm) 14.0 
Inner diameter of hemisphere cavity (cm) 17.5  
Relative position of receiver aperture to focal 
plane (cm) 

5.4 

Material of the heater (absorber) tubes 
 

Austenitic stainless steel 253 MA alloy 
conductivity at ~ 1000K:  23 W/m.K 

Selective coating of heater tubes Si3N4 
Absorptivity at ~ 900K (%): 92.6 
Emissivity at ~900K: 0.109  

Glass cover 
 

Fused Silica glass of 0.5 cm thickness 
transmissivity for solar spectrum (%): 93 

Fluid within cavity Air 
Pressure within hemisphere (Pa) Atmospheric (1.013 x 105) 
Coating of cavity inner wall  Silver Reflectivity (%): 94 
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Fig. 13. Isometric view of solar Stirling engine 

 
Table 2  
Operating conditions of the current SDS engine 
DNI  1000 W/m2 
Working fluid Hydrogen 
Engine speed 3500 rpm 
Mean pressure of compression space 6.92 MPa 
Metal-wall temperature of cooler tubes  293K 

 
6. Governing Equations 
 

In the present study, the flow is oscillatory, compressible and Newtonian. Hence, Unsteady 
Reynolds-Averaged Navier-Stokes (URANS) equations, besides the equation of state, are used to 
predict the thermal and the fluid flow fields in this model. Also, the radiative transfer equation (RTE) 
is used to account for the radiative mode of energy transfer between the receiver components. Here, 
the realizable k-ε model with enhanced wall treatment for the near wall region is employed to 
estimate the turbulent viscosity. Among the different turbulent and transition models, it was proved 
to produce the most accurate predictions for the engine performance with a robust convergence for 
the solution [19]. Additionally, the regenerator is currently modelled using the local thermal non-
equilibrium porous media approach. Among the several radiation models that are available in the 
ANYSY Fluent software, the Discrete Ordinates (DO) model is used in the current study. This is 
attributed to its capability of dealing with the complex geometries for different radiative participating 
media [40]. Furthermore, all types of surfaces, such as specular and diffusive reflectors, gray and non-
gray as well as semi-transparent ones, can be applied by the DO model [26]. More importantly, it is 
less expensive in terms of computational cost when applied with the dynamic meshes compared with 
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other radiation models [40]. In short, this model, in particular, works across full range of conditions 
with high accuracy. The details of the all applied equations can be found in [19, 22]. 
  
7. Methodology of CFD Simulation of Solar Stirling Engine 
 

The current simulation of the designed solar engine is conducted using the commercial CFD 
software ANSYS FLUENT, v14.5. The computational methodology and validation of the three-
dimensional CFD simulation is explained in the following subsections. 
 
7.1 Computational Domain and Grid 
 

The computational grid at the instance of zero crank angle (θ = 0) is presented in Figure 14. It 
represents just one-eighth of the geometry is used as the computational domain in this simulation, 
to reduce the computational cost. In this solar engine, the domain generally consists of two main 
parts. The first one is the Stirling engine with its well-known components: compression and expansion 
spaces, displacer, appendix gap, regenerator, cooler and cooler-end connection in addition to the 
new heater. Hydrogen is the working fluid for these components. Whereas, the second part is the 
cavity receiver with its surfaces and fluid. Air is the working fluid in the cavity. The wall thickness for 
each component, except for displacer, is not taken into consideration. ANSYS DesignModeller is used 
for constructing the geometry while ANSYS Meshing is utilized to generate the computational grid. 
For the current simulation, some aspects should be followed to develop the grid that achieves an 
accurate and converged solution [19]. While, the different engine components are meshed using 
hexahedral elements, the tetrahedral ones are used to develop the grid in cavity receiver. This is 
conducted to avoid the complexity of creating a reasonable quality grid for the complicated 
geometries like the hemisphere. Additionally, a careful refinement is created around the heater tubes 
and near the different surfaces of the receiver, as illustrated from Figure 14. 
 

 
Fig. 14. Computational grid (number of cells is scaled down by 75%) 
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7.2 Boundary and Initial Conditions 
 

Periodic boundary conditions are applied to the faces in the azimuthal direction since only one-
eighth of the physical domain is modelled. No-slip boundary conditions are applied to all walls. As 
clarified from the operating conditions presented in Table 2, the temperatures of the different engine 
walls, except that of the cooler tubes, have not been given. Setting up these temperatures as 
boundary conditions is a crucial step in the CFD simulation of the engine. Accordingly, the walls 
temperatures should be assumed, but, under specific constraints. The technique of the assumptions 
was summarized by El-Ghafour et al., [20]. Accordingly, the representation and temperature values 
of the different walls that are applied in the current simulation are illustrated in Figure 15 and Table 
3. The interior walls of the displacer are treated as adiabatic, while the piston walls are assumed 
isothermal at 305 K. A linear temperature distribution is applied for the walls of the other parts. 
 

Table 3  
Temperature values of different walls of 
solar Stirling engine 
Wall Name Temperature (K) 

EW1 905 

EW2 860 
CW 325 
H3 1035 
H4 995 
C1 318 
C2 293 
C3 311 

 
 

 
Fig. 15. Representation of 
different wall names of solar 
Stirling engine 
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Here, the temperature of the heater walls is unknown. It is calculated during the simulation from 
the heat interaction between the cavity receiver components under the effect of the concentrated 
solar irradiance entering from the aperture (input heat flux). The receiver surface is set as an 
adiabatic wall with an internal reflectance of 0.94. Whereas, the glass cover is considered as a semi-
transparent wall that allows the concentrated solar irradiance to enter the receiver domain. A 
refractive index of 1 is applied for this wall. A natural convection and radiation boundary conditions 
is applied to the external side of the glass cover with a free stream temperature of 30 °C, a convective 
heat transfer coefficient of 15 W/(m2 K) and an emissivity of 1.0. These proposed conditions enable 
estimating the natural convection and radiation losses from the receiver cover in a simple manner. 
For the current calculation, the cycle starts at θ = 0 and a pressure of 5.7 MPa. 
 
7.3 Solution Scheme 
 

The governing equations are discretized and solved sequentially using FLUENT, a finite volume-
based solver. Transient, pressure-based, segregated SIMPLEC solver with absolute velocity 
formulation are the settings for the solution of current simulation. An uncoupled, gray radiation DO 
model is employed. The least squares method has been employed for computing the gradients of the 
transport quantities on the faces of the cell boundaries. The other spatial discretization methods in 
the simulations are standard for pressure term, and second-order upwind for continuity, momentum, 
energy, turbulence and RTE transport equations. The under-relaxation factors of pressure, 
momentum and RTE are set as 0.3, 0.7 and 1.0, respectively. Whereas an under-relaxation factor of 
0.9 is applied for density, energy and turbulence quantities. First-order implicit formulation is applied 
for discretizing the temporal derivatives. The realizable k-ε model with enhanced wall treatment is 
used with all default settings given in FLUENT 14.5. The concentrated irradiance and the directions 
of the corresponding rays at the receiver aperture are obtained from the optical simulation using the 
SolTRACE software, as mentioned earlier. Afterwards, these data are input into the CFD simulation 
via a 2D discrete Profile. The thermophysical properties (viscosity, specific heat and thermal 
conductivity) of hydrogen are taken to be temperature dependent. Whereas, the air, the cavity fluid, 
is considered incompressible ideal gas with constant thermophysical properties. The default values 
of the viscosity, thermal conductivity and specific heat of 1.7894 x 10-5 kg/(m.s), 0.0242 W/(m.K) and 
1,006.43 J/(kg.K) are used. Furthermore, it is considered a radiation participating media with zero 
absorption and scattering coefficients. 

Several techniques can be followed for speeding up the convergence of the calculation, as 
documented in the previous work [19]. The details of implementing the reciprocating motion of the 
piston and the displacer and, consequently, the moving and deforming volumes were also presented 
in Ref. [19]. In the DO model, the RTE solution is independent of angular discretization parameters. 
Generally, the angular space is divided into NθxNφ control angles. The theta divisions (Nθ) and phi 
divisions (Nφ) are further subdivided by pixels. Therefore, these parameters, number of divisions and 
pixels, control the accuracy of the RTE solution. A pixelation of 3x3 is applied in the current study as 
it is recommended for problems that involves periodic and semi-transparent boundaries [41]. On the 
other hand, the specification of the number of divisions needs an independency study. Hence, the 
angular discretization and the spatial discretization (grid) independency studies are conducted to 
achieve a convergent and accurate solution in reasonable computational time. Moghimi et al., [40] 
specified the optimal method of conducting the spatial and angular discretization studies in this case. 
Firstly, a grid independence study of the coarsest control angles should be performed. After 
determining the suitable grid, an angular discretization study is then conducted. Here, the absorbed 
heat rate by the working fluid of the solar engine is tested for reaching the independence conditions. 
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Accordingly, three different grid densities of 3.7 million, 4.0 million and 4.6 million cells are 
investigated at a constant number of divisions of 2x2. From this independency study, it is found that 
the deviation in the absorbed heat rate between the medium and fine grids does not exceed 1.5%. 
Hence, the grid density of 4.0 million cells is adopted. In the same manner, three number of divisions 
of 2x2, 4x4 and 5x5 are tested at the grid density of 4.0. This independency study leads to select the 
medium number of divisions (4x4). Finally, a time step size independency test is conducted by 
investigating three-time step sizes of 6.1x10-5 s, 4.285x10-5 s and 3.06x10-5 s. According to this test, 
the time step size of 4.285x10-5 s is adopted. 

Due to the transient nature of this case, the convergence of the simulation is based on two 
criteria. The first one is the residuals of the transport equations. For each cycle, it is set at 1x10-6 for 
energy and DO equations, and 1x10-3 for the rest of the equations. While, monitoring some selected 
quantities for verifying the attaining of the cyclic steady state solution is the second convergence 
criterion. The average gas temperature variation of the subdomains is monitored for this purpose. 
The deviation in these values should be less than 1% in two subsequent cycles to reach the cyclic 
steady state. For each simulation, about 7 cycles are needed for the solution to become cyclic, and 
each cycle takes about 37 h on a Core i7-6700 acer CPU, 3.4 GHz processor with 16 GB dynamic 
memory.  
 
7.4 Model Validation 
            

In order to validate the current CFD model, a comparison of the predicted and the experimental 
results [23] of the GPU-3 Stirling engine is conducted. The comparison is based on the indicated 
power only [19]. Figure 16 displays the validation of the power results at the maximum and minimum 
operating pressures of 6.92 and 2.76 MPa, respectively. The comparison indicates that the current 
CFD results has shown a close agreement with the experimental results over the operating range. 
 

 
Fig. 16. Comparison of indicated power of GPU-3 Stirling engine between CFD and experimental 
results 
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8. Results and Discussion  
  

The optical simulation of the solar dish and receiver aperture is conducted under the standard 
design DNI value of 1000 W/m2. The boundary irradiance distribution applied on the receiver 
aperture located at 5.4 cm from the focal plane of the 68 facets parabolic dish concentrator is 
illustrated in Figure 17.  
 

 
Fig. 17. Map of irradiance contours with spatial 
distribution in x-direction on receiver aperture of 
designed SDS engine 

 
During the cycle, by applying boundary irradiance distribution on the solar Stirlig engine, a nearly 

uniform temperature distribution of the heater tubes is achieved. This noticeably approaches 
isothermal heater tubes surfaces, as can be observed in Figure 18. Interestingly, the maximum 
temperature difference over the heater tubes surfaces during the whole cycle does not exceed 46 K. 
Whereas, the corresponding value of this difference reaches about 130 K for the Eurodish SDS 
commercial unit [17]. This indicates the high degree of temperature distribution uniformity and, 
consequently, the effectivity of the current design. 
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Fig. 18. Temperature distribution of the heater tubes of the designed 
solar Stirling engine at θ = 135 

 
Figure 19 illustrates the instantaneous variations of the absorbed heat rate by the working fluid 

within the heater. From this figure, the cyclic rate of heat absorption in the heater can be calculated 
by integrating the instantaneous heat rate over the cycle [20].  
 

 
Fig. 19. Instantaneous absorbed heat rate by working fluid within heater as a function of 
crank angle 

 
The p-V diagram of the compression and expansion spaces is shown in Figure 20. From this figure, 

the indicated power of the solar Stirling engine can be predicted by multiplying the integration of the 
enclosed area of p-V diagrams for the working spaces by operating speed [20]. 

According to the data presented in this section, the losses and the efficiency of each component 
can be calculated. The optical efficiency of the solar concentration process, ηcon, is defined as the 
ratio of the energy intercepted by the receiver aperture to the energy incident on the dish 
concentrator. Whereas the ratio of the net power output to the added heat rate in the heater can be 
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referred as the thermal efficiency of Stirling engine. For the current design, the optical efficiency is 
90.83%, while, the absorption efficiency of the receiver is 89.74%. The thermal efficiency of the 
Stirling engine is estimated as 38.92%. Accordingly, the overall thermal efficiency of the designed SDS 
engine is about 31.8 %. An energy balance representation for the SDS engine is illustrated in Figure 
21. 
 

 
Fig. 20. p-V diagrams of the compression and expansion spaces of the designed solar Stirling 
engine 

 

 
Fig. 21. Energy balance of the designed SDS engine 
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9. Conclusion 
  

Design and simulation of a SDS engine is currently performed. The design starts with the GPU-3 
Stirling engine. The design is conducted through three subsequent phases. Firstly, several parabolic 
dishes with different rim angles and number of facets are investigated to optimally design the dish 
concentrator. Secondly, different relative positions of the receiver aperture to the dish focal plane 
are tested to reach the optimal position. The best compromise between the uniformity of the 
irradiance distribution at the aperture and the optical concentration ratio identifies the optimal 
design value. The optical simulation of the solar concentration process is carried out using SolTRACE 
software. Finally, an optimal design for a cavity receiver that involves a new structure of the heater 
tubes is performed. Three shapes of the cavity receiver are examined through a CFD simulation. The 
chosen shape is a trade-off between the optical absorbing rate and the pumping loss. Throughout 
the design phases, the following remarks are concluded 

 
i. The use of the multi-facet parabolic dish leads to displacing the peak irradiance zone 

from the center towards the borders of the receiver aperture compared with the single 
continuous surface dish. Furthermore, it enhances the degree of irradiance distribution 
uniformity at the receiver aperture. Also, it results in an asymmetric distribution in the 
spatial directions. 

ii. The number of facets with a proper alignment can be utilized as a control method for 
the degree of uniformity and to achieve the local peak irradiance at the desired location. 

iii. A more uniform irradiance distribution is observed with the movement of the receiver 
backward relative to the focal plane. Meanwhile, the distance of the movement should 
be limited to avoid a large spillage loss and, consequently, a significant reduction in 
optical concentration ratio. 

iv. The efficient design of the cavity receiver along with the heater tubes homogenizes the 
heat flux distribution on the heater tubes and, consequently, approaches the isothermal 
heater walls. This has been achieved by the utilization of a hemisphere cavity receiver 
with the following characteristics: a highly reflective inner surface, a fused silica glass 
cover and a suitable arrangement of the heater tubes that covered by a high-
temperature selective coating.     

v. Having finished the design, a comprehensive energy analysis of the designed SDS engine 
is carried out. The designed solar Stirling engine is operated at a pressure of 6.92 MPa 
and speed of 3500 rpm with hydrogen as the working fluid. The overall thermal 
efficiency of the designed solar Dish-Stirling engine is about 31.8 % at a DNI of 1000 
W/m2. 
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