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This research investigates the effects of internal diameter and working fluids on the 
thermal performance of a vertical closed-loop oscillating heat pipe with double heat 
sources (VCLOHP w/DHS). The closed-loop oscillating heat pipe (CLOHP) tested was 
made of a copper capillary tube with various inner diameters and working fluids. Two 
evaporator sections in the outer end of CLOHP were heated by a Ni-Cr alloy resistance 
wire heater. The heat was removed from the condenser section in the middle of CLOHP 
by forced convection heat transfer of ambient air blowing the section. The results 
showed that, for the inner diameters of 1.5 and 2.0 mm, the thermal resistance 
decreased when the inner diameter and the latent heat of evaporation increased.  
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1. Introduction 
 

A heat pipe is a heat transfer device that relocates thermal energy through cycles of vaporization 
and condensation. The heat pipe is widely used in laptops, mobile phones, and tablets. Oscillating 
heat pipes (OHPs) were first introduced by Akachi et al., [1] in 1996. The OHP differ from conventional 
heat pipes in design and working principle. The OHP is made of a long capillary tube bent into an 
undulating bundle. The inner diameter of the OHP must be smaller than the critical inner diameter 
to allow the working fluid to arrange in slug-train units, forming vapor plugs and liquid slugs along 
the entire length of the tube due to the effect of surface tension [2,3]. Generally, OHPs can be divided 
into three groups: closed-end oscillating heat pipe (CEOHP), closed-loop oscillating heat pipe 
(CLOHP), and closed-loop oscillating heat pipe with check valve (CLOHP/CV). CLOHP has higher 
thermal performance than CEOHP and is constructed easier than CLOHP/CV. Therefore, this study 
focuses on CLOHP. The structure of the ordinary CLOHP is shown in Figure 1(a). 

Nowadays, designs and applications of CLOHP for transferring heat from various sources are 
simple. Previous studies showed that CLOHP thermal performance depended on various parameters 
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including inner diameter, evaporator section lengths, filling ratio, working fluid properties, number 
of turns, and orientation of operation [4-16]. 

Ordinary CLOHP is used with one heat source and releases heat to the heat sink. To utilize more 
than one heat source of electronic equipment, the ordinary CLOHP has been redesigned. The new 
design of CLOHP can simultaneously receive heat from two heat sources at the outer ends and release 
that heat to the middle section. The new design has been named as “closed-loop oscillating heat pipe 
with double heat sources” (CLOHP w/DHS) as shown in Figure 1.  
 

 
(a) (b) 

Fig. 1. (a) Ordinary CLOHP; (b) CLOHP w/DHS 

 
The research about CLOHP w/DHS has not been reported yet. Therefore, this work is the first 

study to investigates the thermal performance of the vertical closed-loop oscillating heat pipe with 
double heat sources (VCLOHP w/DHS). The effects of inner diameters and properties of working fluids 
on the thermal performance were examined. 
 
2. Methodology  
 

The experimental setup, as shown in Figure 2, consisted of VCLOHP w/DHS made of long copper 
capillary tubes with inner diameters of 1.0, 1.5, and 2.0 mm, bent into 16 turns along a meandering 
length. Both ends were connected to form a loop. Two evaporator sections were located at the outer 
end of the bundle, while one condenser section was placed on the middle of the VCLOHP w/DHS with 
no adiabatic section. The lengths of evaporator and condenser sections were the same at 50 mm. 
R123, ethanol, and water were used as working fluids with a filling ratio of 50% by volume. Two heat 
sources were installed along the longitudinal axis of the evaporator section. Each heat source 
generated heat using two Ni-Cr alloy resistance wire heaters with a diameter of 0.5 mm. Evaporator 
temperature was controlled at 90 ±5 ℃. Heat was removed from the condenser sections by forced 
convective heat transfer of blown ambient air. Air flow velocity was controlled by an AC motor 
(Mitsumi, F1209) and maintained at 0.3 m/s, while air temperature was kept at 25 ℃. Twenty 
chromel-alumel thermocouples (Omega, Type K with ±0.5 ℃ accuracy) were used to measure the 
temperatures of the evaporator and condenser sections of the VCLOHP w/DHS and the ambient air 
temperature at the inlet and outlet of the condenser section. All temperature data were monitored 
by a temperature recorder (Graphtec, GL820 with ±0.1 ℃ accuracy). Air velocity and relative humidity 
were measured by a Testo 435 (±0.01 m/s and ±0.1 %RH accuracy). 
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Fig. 2. Detail of experimental setup 

 
The experiment started from turning the power controllers on. Then, heat inputs of each heat 

source were supplied by Ni-Cr alloy resistance wire heaters. The temperature of evaporator section 
was controlled at 90 ±5 ℃. The ambient air of 25 ℃ was blown through the condenser section at 
velocity 0.3 m/s. After a quasi-steady-state was reached, all temperatures and relative humidity were 
recorded. The experiment was conducted in triplicate. 

Thermal performance of the VCLOHP w/DHS was evaluated by calculating the rate of heat 
transfer to ambient air at the condenser part and applying the conservation of energy equation for a 
heating process at constant specific humidity as shown in Eq. (1). 
 

air out in

c

m (h -h )
q=

A
              (1) 

 
where q  ̇ is the heat transfer rate of a VCLOHP w/DHS (W/m2), ṁair is the mass flow rate of dry air 
(kg/s), AC is the inner surface area of the tube in the condenser section (m2), and hin and hout are the 
enthalpies per unit mass of dry air at the inlet and outlet of the condenser section (kJ/kg), 
respectively. 

In order to analyze the results easier, the thermal resistance per unit area was defined as “thermal 
resistance per unit area between the whole evaporator and condenser section” as shown in Eq. (2) 
 

R=
𝑇e,ave-T𝑐,𝑎𝑣𝑒

𝑞̇
              (2) 

 
where R is the thermal resistance per unit area (m2-K/W), Te,ave is the average evaporator section 
temperature in every heat source (K) and Tc,ave is the condenser section temperature (K). 
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3. Results  
3.1 Effects of Inner Diameters on Thermal Performance 
 

In this study, for all working fluids used, the inner diameters of the tube were varied from 1.0 to 
2.0 mm, which were smaller than the maximum inner diameter proposed in previous researches 
[1,2]. Figure 3(a), Figure 3(b), and Figure 3(c) show the effects of inner diameters on the heat flux and 
thermal resistance of the VCLOHP w/DHS using water, ethanol, and R123 as the working fluids, 
respectively. The inner diameter of the tube and types of working fluids used affected the thermal 
performance of VCLOHP w/DHS. Increase in inner diameter enhanced heat flux but decreased 
thermal resistance. The highest thermal performance of all VCLOHP w/DHS filled with water, ethanol, 
and R123 was attained at the maximum inner diameter of 2.0 mm. With a larger inner diameter or a 
wider cross-sectional area of flow passage, the vapor plugs evaporate in the evaporator section and, 
consequently, flow towards the condenser section more continual with a higher quantity of working 
fluid. Thus, the CLOHP can transfer more heat; heat flux subsequently increases and thermal 
resistance decreases [17]. These results concurred with the studies of Charoensawan and Terdtoon 
[6] and Kammuang-lue et al., [17], which indicated that the thermal performance increased with 
larger inner tube diameter. 
 

  
(a) (b) 

 

 
(c) 

Fig. 3. Effects of inner diameters; (a) Water as working fluid, (b) Ethanol as working fluid, (c) R123 as 
working fluid 
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3.2 Effects of Working Fluids on Thermal Performance 
 

Thermodynamic properties of working fluids include latent heat of evaporation, specific heat, 
surface tension, viscosity, and thermal conductivity. The latent heat of evaporation is an important 
parameter for identifying the differences between the working fluids because the CLOHP transfers 
heat by evaporation and condensation mechanisms. Figure 4(a) and Figure 4(b) show that, for inner 
diameters of 2.0 and 1.5 mm, when the working fluid was changed from R123 to ethanol and water, 
or when the latent heat of evaporation increased, heat flux increased and thermal resistance 
decreased. 

Previous studies indicated that internal flow pattern in VCLOHP consisted of slug flow mixing with 
churn flow inside the evaporator section, the working fluid circulated in one direction [3,18-20]. 
Churn flow has a vapor portion greater than the liquid, and the CLOHP transfers heat mainly by the 
latent heat rather than sensible heat. Heat transfer is higher compared to only single-phase forced 
convection [3]. This is the reason why heat flux increases as the latent heat of evaporation increases, 
as observed when using inner diameters of 2.0 and 1.5 mm. 

By contrast, for 1.0 mm inner diameter, ethanol and R123 showed higher heat flux than water, 
as shown in Figure 4(c). This outcome can be explained that water has high surface tension and a 
smaller inner diameter leads to higher frictional pressure flow resistance. Thus, the VCLOHP with 
water as working fluid requires heat more than R123 and ethanol to move the fluid from the hot 
region to the cold region of the heat pipe. 
 

  
(a) (b) 

 
(c) 

Fig. 4. Effect of latent heat of evaporation; (a) Inner diameter of 2.0 mm, (b) Inner diameter of 1.5 mm, 
(c) Inner diameter of 1.0 mm 
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4. Conclusions 
 

This paper presents the effects of inner diameter and working fluids on a VCLOHP w/DHS thermal 
performance. The notable results are concluded as follows 

i. The thermal performance increased with the inner diameter. This outcome is because, with a 
larger inner diameter, vapor plugs evaporate in the evaporator section and, consequently, 
flow towards the condenser section more continual with a higher quantity of working fluid. 
Thus, the VCLOHP w/DHS can transfer more heat; thermal performance increases.  

ii. When the latent heat of evaporation increased, the thermal performance also increased since 
a working fluid with higher latent heat can transfer more heat from the hot region to the cold 
region of the heat pipe. 
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