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This paper investigates the magnetic blood flow in an inclined multi-stenosed artery 
under the influence of a uniformly distributed magnetic field and an oscillating 
pressure gradient. The blood is modelled using the non-Newtonian Casson fluid model. 
The governing fractional differential equations are expressed by using the fractional 
Caputo-Fabrizio derivative without singular kernel. Exact analytical solutions are 
obtained by using the Laplace and finite Hankel transforms for both velocities. The 
velocities of blood flow and magnetic particles are graphically presented. It shows that 
the velocity increases with respect to the Reynolds number and the Casson parameter. 
Meanwhile, the velocity decreases as the Hartmann number increases. These results 
are useful for the diagnosis and treatment of certain medical problems. 
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1. Introduction 
 

Hemodynamic is the knowledge of blood circulation, which is useful in the diagnosis of coronary 
illness. The reason behind the malfunction of cardiovascular system is the presence of fats, 
cholesterol and lipoproteins at the sites of atherosclerotic lesion in the artery [1]. In recent years, 
due to its great importance in the human cardiovascular system, the study of blood flow through 
constricted arteries has received a great deal of attention [2–4]. Prasad and Radhakrishnamacharya 
[5] considered the steady blood flow through an inclined non-uniform tube with multiple stenoses. 
Agarwal and Varshney [6] studied the flow of Herschel-Bulkley fluid through an inclined tube of non-
uniform cross-section with multiple stenoses. Biswas and Paul [7] observed the steady blood flow 
through an inclined tapered vessel, where the blood was modelled as Newtonian fluid and the slip 
vessel wall condition was applied. Also, their analysis includes one-dimensional Poiseuille blood flow 
through tapered vessels with inclined geometries. Ismail and Jamali [8] explored the dynamic 
response of heat transfer in the steady laminar blood flow through the stenotic bifurcated artery. 
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Extensive research has been done since the last few decades on the dynamics of biological fluid 
in the presence of magnetic field with implications in bio-engineering and medical technology. Bég 
et al., [9] investigated a mathematical model for blood flow through an inclined artery under the 
influence of an inclined magnetic field. Many researchers considered blood as viscous and non-
viscous fluid in stenotic arteries with magnetic field effects but limited number of research works 
focused on the effect of induced magnetic field on blood flow through stenosis [10–11]. 
Mukhopadhyay and Layek [12] worked on a mathematical model to study blood flow through a 
variable shape stenosed artery under the influence of magnetic field and demonstrated the effect of 
stenosis shape and magnetic field on the flow resistance. Gudekote et al., [13] investigated a 
mathematical model for the impact of slip velocity on the peristaltic flow of blood using the Herschel-
Bulkley model in a flexible tube. 

Plasma is classified as Newtonian fluid, but blood exhibits non-Newtonian behavior [14]. It is well 
known that blood being a suspension of cells behaves as a non-Newtonian fluid at low shear rate and 
while flowing through small blood vessels, especially in diseased states when clotting effects in small 
arteries are present [15]. As blood flows at low shear rate into narrow arteries, it behaves like a 
Casson fluid [16]. Many researchers have been working on the Casson fluid model for modelling 
blood flow through narrow arteries [17–19]. Nagarani and Sarojamma [20] studied the effect of body 
acceleration on pulsatile flow of Casson fluid through a mild stenosed artery. Gudekote and 
Choudhari [21] examined the combined effects of slip and inclination on peristaltic transport of 
Casson fluid in the porous tube. 

Due to the increasing concern in modelling by using fractional derivatives, several fractional 
derivative models have been formulated by inferring the existing fluid models [22]. Ali et al., [23] has 
developed a fractional order model for blood flow (Casson fluid) with the help of Hankel and Laplace 
transform techniques to obtain the exact solutions. The so-called Caputo and Fabrizio fractional 
derivative is employed to solve different real problems [24–25]. Saqib et al., [26] developed a 
mathematical model for MHD blood flow in a magnetite dusty particle tube by replacing the ordinary 
time derivative with a fractional time derivative of Caputo. Some other recent studies can be found 
in Alkahtani and Atangana [27], Shah et al., [28], Shah et al., [29] and the references therein. 

A thorough search of the relevant literature has witnessed the fact that the existing literature did 
not present the exact solution of MHD blood flow model in the context of Caputo-Fabrizio fractional 
derivative for inclined multi-stenosed artery. In the present study, the model of the non-Newtonian 
Casson fluid has been applied subject to previous studies subject to multiple stenosed artery. The 
blood flow is due to the oscillating pressure gradient in the z-direction and the external magnetic 
field. The exact solutions are then calculated by means of significant transformations like Laplace and 
finite Hankel transforms. Bessel functions of the zero-order have been used for numerical 
computations to generate graphical results by using Mathcad for various values of fractional 
parameters and some important physical parameters. 
 
2. Methodology  
 

The physical domain consists of a multi-stenosed artery with the physical dimensions as shown 
in Figure 1. Consider the unsteady blood flow in an inclined multi-stenosed artery aligned in the axial 
direction (z-axis). r-axis is the radial direction. Blood is treated as an incompressible non-Newtonian 
Casson fluid subjected to an oscillating pressure gradient. The corresponding momentum equation is 
therefore a generalization of the preview study conducted by [29] with the adding factors of Casson 
fluid and in the inclined multi-stenosed artery. At t=0, the blood and the magnetic particles are 
treated as stationary. 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 82, Issue 2 (2021) 28-38 

30 
 

 
Fig. 1. Geometry of an inclined arterial segment with multi-stenosis 

 
The unsteady blood flow in an axisymmetric cylindrical tube of radius R0 under the influence of 

uniform transverse magnetic field and pressure gradient of the form Agarwal and Varshney[6] 
 

           (1)  

 
is considered, where the constants A0 and A1 are the amplitudes of the pulsatile magnetic field and 
pressure gradient that give rise to systolic or diastolic pressure. 

The geometry of the multi-stenosis in the arterial lumen may be described mathematically by 
Tashtoush and Magableh [10] as follows 
 

2 3 4 5 6

11 (1.48 0.7398 0.1485 0.013955 0.0006145 0.000010243 )zR x x x x x x= − − + − + −     (2) 

 

where is the radius of the artery in the constricted region,  is the radius of the normal artery,

 is the length of stenosis and α1 is the degree of the stenosis. 
The momentum equation for fluid flow in an inclined stenosed artery can be written as [23], [29], 

[30] 
 

      (3) 

The motion of magnetic particles is governed by the Newton’s second law 
 

.             (4)  

 
Here,𝜌, ,p, N, K,  and 𝜈  is the fluid density, the kinematic viscosity, the pressure, the number of 
magnetic particles per unit volume, the Stokes constant, the fluid velocity, and the particle velocity, 
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respectively.  is the material parameter of Casson fluid where is the plastic dynamic 

viscosity,  is the yield stress of fluid,  is the critical value of this product based on the non-

Newtonian model, and m is the average mass of the magnetic particles.  is the force due 

to the relative motion between fluid and magnetic particles. It is assumed that the Reynolds number 
of the relative velocity is small. As such, the force between the magnetic particles and the blood is 
proportional to the relative velocity. 
 

The initial boundary conditions of the fluid inside the cylindrical domain of radius R0  are 
 

                      (5) 

 
The non-dimensional parameters can be introduced as 

 

                     (6) 

 
where u0 is the characteristics velocity. 

The non-dimensional forms of governing equations subject to Eq. (6) after dropping the * 
notation are given as follows 
 

                   (7) 

                         (8) 

 

Here,  where  is the Reynolds number, is the particles 

concentration parameter, is the Hartmann number, and is the 

inclination angle parameter. 
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Applying finite Hankel transform of order zero, then the following equation can be obtained 
 

                  (10) 

 

where represents the finite Hankel transform of the velocity function 

 and  are the positive roots of the equation here  is the 

Bessel function of order zero and it belongs to the first kind. By simplifying the coefficient of 

in Eq. (10), the following equations can be formulated 
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The Laplace transform of the image function  in Eq. (12) is given as follows 
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with the aid of the Robotnov and Hartley’s functions as follows 
 

                   (15) 
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By inverting the finite Hankel transforms, the fluid velocity  is given 
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where ∗represents the convolution product. Note that the convolution product of  and ,  

can be calculated as . 

 

While, the magnetic particle velocity  becomes 
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3. Results and Discussions 
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results have been compared with Shah et al., [29] for having the same blood flow with magnetic 
particles as shown in Figure 2. In the current work, the Casson fluid is considered with magnetic 
particles that flow through an inclined multiple stenosed artery. Meanwhile, Shah et al., [29]studied 
the blood flow with magnetic particles travelling through a cylindrical tube under the influence of a 
magnetic field and an oscillating pressure gradient. In the calculation the following values 𝐴0 =

0.5,  𝐴1 = 0.1, 𝐺 = 0.8, 𝑅 = 0.5, 𝑅𝑒 = 5, 𝜔 =
𝜋

4
, 𝐻𝑎 = 2, 𝑧 = 1 and 𝛽 = 0.25 are used for 

comparison purposes, so that both problems become similar. 
 
 

 
Fig. 2. Comparison of velocity distribution with previous study 

 
 

For both profiles in Figure 3, it is found that the blood flow movement is slower as blood passes 
through the narrow stenotic region as compared to that in the wider part. It can be found that the 
patterns of flow resistance in both regions are similar for different stenotic sizes. Figure 4 is plotted 
to analyze the impacts of the fractional parameter on the blood flow and magnetic particle velocities. 
It indicates that the blood modeled using the ordinary model flows faster than that using the Casson 
fluid model with fractional derivatives. 
 

  
(a) (b) 

Fig. 3. Axial velocity profiles; (a) u(r,t) and (b) v(r,t) at different values of z 
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(a) (b) 

Fig. 4. Axial velocity profiles; (a) u(r,t) and (b) v(r,t) for different fractional parameters 

 
Figure 5 represents the influence of fractional parameter has been shown for different time levels 

and it is observed that the blood velocity increases with respect to time. The fractional parameter is 
found to play a key role in regulating the blood distributions. Figure 6 shows the velocity profiles for 
different Reynolds numbers Re. It is clear that the Reynolds number is proportionally related to the 
velocity of the fluid. In general, increase in Reynolds number will increase the velocity of the fluid 
gradually. 
 

  
(a) (b) 

Fig. 5. Axial velocity profiles; (a) u(r,t) and (b) v(r,t) for different time levels t 

 

  
(a) (b) 

Fig. 6. Axial velocity profiles; (a) u(r,t) and (b) v(r,t) for different Reynolds numbers 
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The effects of Casson fluid parameter on the blood and magnetic particle motions are depicted 
in Figure 7. With an increase in the Casson fluid parameter, the fluid velocity increases. This 
statement is in perfect agreement with Ali et al., [23] for a horizontal cylinder. It is hypothesized that 
the yield stress declines as β increases and the thickness of the boundary layer decreases. The effects 
of magnetic parameter on both fluid and magnetic particle velocities are shown in Figure 8. By 
increasing the Hartmann number Ha, the blood velocity decreases. It is noticeable that the magnetic 
field will reduce the axial velocities of blood and magnetic particles substantially. The usefulness of 
the magnetic field in the fluid flow model would increase the Lorentz force, thus restricting the blood 
flow in the system. 
 

  
(a) (b) 

Fig. 7. Axial velocity profiles; (a) u(r,t) and (b) v(r,t) for different Casson fluids 

 

 
 

(a) (b) 

Fig. 8. Axial velocity profiles; (a) u(r,t) and (b) v(r,t) for different Hartmann numbers 

 
4. Conclusions 
 

A mathematical analysis on the fractional order blood flow model under the influence of external 
magnetic field acting on the non-Newtonian Casson fluid that flows through a multi-stenosed artery 
has been performed. Generally, an extra-solution is required to extract the ordinary model; however, 
the velocity equation can be directly obtained using the current method since the equation is 
compatible. It should be noted that the particle has the same tendency as the blood; however, it 
moves slower. The blood velocity increases with respect to Reynolds number. In the meantime, the 
increase in Casson fluid parameters increases the velocities of blood and particles. On the other hand, 
the blood velocity decreases with respect to Hartmann number. These findings are technically 
important and interesting for drug distribution applications. 
 

 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 82, Issue 2 (2021) 28-38 

37 
 

Acknowledgement 
This research was funded by grants from Research Management Centre University Tun Hussein Onn 
Malaysia under grant TIER 1/H072. 
 
References 
[1] Majee, Sreeparna, and G. C. Shit. "Numerical investigation of MHD flow of blood and heat transfer in a stenosed 

arterial segment." Journal of Magnetism and Magnetic Materials 424 (2017): 137-147. 
https://doi.org/10.1016/j.jmmm.2016.10.028 

[2] Singh, Sapna, and Rajeev Ratan Shah. "A numerical model for the effect of stenosis shape on blood flow through 
an artery using power-law fluid." Advances in Applied Science Research 1, no. 1 (2010): 66-73. 

[3] Mathur, Pankaj, and Surekha Jain. "Pulsatile flow of blood through a stenosed tube: effect of periodic body 
acceleration and a magnetic field." Journal of Biorheology 25, no. 1 (2011): 71-77. https://doi.org/10.1007/s12573-
011-0040-5 

[4] Ponalagusamy, R., and S. Priyadharshini. "Pulsatile MHD flow of a Casson fluid through a porous bifurcated arterial 
stenosis under periodic body acceleration." Applied Mathematics and Computation 333 (2018): 325-343. 
https://doi.org/10.1016/j.amc.2018.03.103 

[5] Prasad, K. Maruthi, and G. Radhakrishnamacharya. "Flow of Herschel-Bulkley fluid through an inclined tube of non-
uniform cross-section with multiple stenoses." Archives of Mechanics 60, no. 2 (2008): 161-172. 

[6] Agarwal, Raja, and N. K. Varshney. "Pulsatile Flow of Herschel-Bulkley Fluid through an Inclined Multiple Stenoses 
Artery with Periodic Body Acceleration." Pelagia Research Library, Advances in Applied Science Research 7, no. 3 
(2016): 102-113. 

[7] Biswas, Devajyoti, and Moumita Paul. "Study of blood flow inside an inclined non-uniform stenosed artery." 
International Journal of Mathematical Archive 4, no. 5 (2013): 33-42. 

[8] Ismail, Zuhaila, and Muhammad Sabaruddin Ahmad Jamali. "Simulation of Heat Transfer on Blood Flow through a 
Stenosed Bifurcated Artery." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 60, no. 2 
(2019): 310-323. 

[9] Bég, O. Anwar, Tasveer A. Bég, R. Bhargava, S. Rawat, and D. Tripathi. "Finite element study of transient pulsatile 
magneto-hemodynamic non-Newtonian flow and drug diffusion in a porous medium channel." Journal of 
Mechanics in Medicine and Biology 12, no. 04 (2012): 1250081. https://doi.org/10.1142/S0219519412500819 

[10] Tashtoush, Bourhan, and Ahmad Magableh. "Magnetic field effect on heat transfer and fluid flow characteristics of 
blood flow in multi-stenosis arteries." Heat and Mass Transfer 44, no. 3 (2008): 297-304. 
https://doi.org/10.1007/s00231-007-0251-x 

[11] Kumar, S., M. K. Sharma, K. Singh, and N. R. Garg. "MHD two-phase blood flow through an artery with axially non-
symmetric stenosis." International Journal of Mathematical Sciences & Engineering Applications (IJMSEA) 5 (2011): 
63-74. 

[12] Mukhopadhyay, S., and G. Layek. "Numerical modeling of a stenosed artery using mathematical model of variable 
shape." Applications and Applied Mathematics: An International Journal 3, no. 2 (2008): 308-328. 

[13] Gudekote, Manjunatha, Rajashekhar Choudhari, Hanumesh Vaidya, and Kerehalli Vinayaka Prasad. "Peristaltic flow 
of Herschel-Bulkley fluid in an elastic tube with slip at porous walls." Journal of Advanced Research in Fluid 
Mechanics and Thermal Sciences 52, no. 1 (2018): 63-75. 

[14] Johnston, Barbara M., Peter R. Johnston, Stuart Corney, and David Kilpatrick. "Non-Newtonian blood flow in human 
right coronary arteries: steady state simulations." Journal of Biomechanics 37, no. 5 (2004): 709-720. 
https://doi.org/10.1016/j.jbiomech.2003.09.016 

[15] Nagarani, P., and G. Sarojamma. "Flow of a Casson fluid through a stenosed artery subject to periodic body 
acceleration." In Proceedings of the 9th WSEAS Intern. Conf. Mathematical and Computational Methods in Science 
and Engineering, pp. 237-244. 2007. 

[16] Nagarani, P., G. Sarojamma, and G. Jayaraman. "Exact analysis of unsteady convective diffusion in Casson fluid flow 
in an annulus-Application to catheterized artery." Acta Mechanica 187, no. 1 (2006): 189-202. 
https://doi.org/10.1007/s00707-006-0316-9 

[17] Maiti, S., S. Shaw, and G. C. Shit. "Caputo-Fabrizio fractional order model on MHD blood flow with heat and mass 
transfer through a porous vessel in the presence of thermal radiation." Physica A: Statistical Mechanics and its 
Applications 540 (2020): 123149. https://doi.org/10.1016/j.physa.2019.123149 

[18] Misra, Jagadis Chandra, Sudi D. Adhikary, and Gopal Chandra Shit. "Mathematical analysis of blood flow through 
an arterial segment with time‐dependent stenosis." Mathematical Modelling and Analysis 13, no. 3 (2008): 401-
412. https://doi.org/10.3846/1392-6292.2008.13.401-412 

[19] Sankar, D. S., and Usik Lee. "Nonlinear mathematical analysis for blood flow in a constricted artery under periodic 

https://doi.org/10.1016/j.jmmm.2016.10.028
https://doi.org/10.1007/s12573-011-0040-5
https://doi.org/10.1007/s12573-011-0040-5
https://doi.org/10.1016/j.amc.2018.03.103
https://doi.org/10.1142/S0219519412500819
https://doi.org/10.1007/s00231-007-0251-x
https://doi.org/10.1016/j.jbiomech.2003.09.016
https://doi.org/10.1007/s00707-006-0316-9
https://doi.org/10.1016/j.physa.2019.123149
https://doi.org/10.3846/1392-6292.2008.13.401-412


Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 82, Issue 2 (2021) 28-38 

38 
 

body acceleration." Communications in Nonlinear Science and Numerical Simulation 16, no. 11 (2011): 4390-4402. 
https://doi.org/10.1016/j.cnsns.2011.03.020 

[20] Nagarani, P., and G. Sarojamma. "Effect of body acceleration on pulsatile flow of Casson fluid through a mild 
stenosed artery." Korea-Australia Rheology Journal 20, no. 4 (2008): 189-196. 

[21] Gudekote, Manjunatha, and Rajashekhar Choudhari. "Slip effects on peristaltic transport of Casson fluid in an 
inclined elastic tube with porous walls." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 43, 
no. 1 (2018): 67-80. 

[22] Al-Salti, Nasser, Erkinjon Karimov, and Kishin Sadarangani. "On a differential equation with Caputo-Fabrizio 
fractional derivative of order 1<β<2 and application to mass-spring-damper system." Progress in Fractional 
Differentiation and Applications 2, no. 4 (2016): 257-263. https://doi.org/10.18576/pfda/020403 

[23] Ali, Farhad, Nadeem Ahmad Sheikh, Ilyas Khan, and Muhammad Saqib. "Magnetic field effect on blood flow of 
Casson fluid in axisymmetric cylindrical tube: A fractional model." Journal of Magnetism and Magnetic Materials 
423 (2017): 327-336. https://doi.org/10.1016/j.jmmm.2016.09.125 

[24] Abro, Kashif Ali, and J. F. Gomez-Aguilar. "A comparison of heat and mass transfer on a Walter'sB fluid via Caputo-
Fabrizio versus Atangana-Baleanu fractional derivatives using the Fox-H function." The European Physical Journal 
Plus 134, no. 3 (2019): 101. https://doi.org/10.1140/epjp/i2019-12507-4 

[25] Shah, Nehad Ali, and Ilyas Khan. "Heat transfer analysis in a second grade fluid over and oscillating vertical plate 
using fractional Caputo-Fabrizio derivatives." The European Physical Journal C 76, no. 7 (2016): 1-11. 
https://doi.org/10.1140/epjc/s10052-016-4209-3 

[26] Saqib, Muhammad, Ilyas Khan, and Sharidan Shafie. "Application of fractional differential equations to heat transfer 
in hybrid nanofluid: modeling and solution via integral transforms." Advances in Difference Equations 2019, no. 1 
(2019): 1-18. https://doi.org/10.1186/s13662-019-1988-5 

[27] Alkahtani, B. S. T., and A. Atangana. "Controlling the wave movement on the surface of shallow water with the 
Caputo-Fabrizio derivative with fractional order." Chaos, Solitons & Fractals 89 (2016): 539-546. 
https://doi.org/10.1016/j.chaos.2016.03.012 

[28] Shah, Nehad Ali, Najma Ahmed, Thanaa Elnaqeeb, and Mohammad Mehdi Rashidi. "Magnetohydrodynamic Free 
Convection Flows with Thermal Memory over a Moving Vertical Plate in Porous Medium." Journal of Applied and 
Computational Mechanics 5, no. 1 (2019): 150-161. 

[29] Shah, Nehad Ali, Dumitru Vieru, and Constantin Fetecau. "Effects of the fractional order and magnetic field on the 
blood flow in cylindrical domains." Journal of Magnetism and Magnetic Materials 409 (2016): 10-19. 
https://doi.org/10.1016/j.jmmm.2016.02.013 

[30] Sharma, Mukesh Kumar, Kuldip Singh, and Seema Bansal. "Pulsatile MHD Flow in an Inclined Catheterized Stenosed 
Artery with Slip on the Wall." Journal of Biomedical Science and Engineering 7, no. 4 (2014): 194-207. 
https://doi.org/10.4236/jbise.2014.74023 

https://doi.org/10.1016/j.cnsns.2011.03.020
https://doi.org/10.18576/pfda/020403
https://doi.org/10.1016/j.jmmm.2016.09.125
https://doi.org/10.1140/epjp/i2019-12507-4
https://doi.org/10.1140/epjc/s10052-016-4209-3
https://doi.org/10.1186/s13662-019-1988-5
https://doi.org/10.1016/j.chaos.2016.03.012
https://doi.org/10.1016/j.jmmm.2016.02.013
https://doi.org/10.4236/jbise.2014.74023

