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A study is carried out for the two-dimensional Casson flow of conducting fluid in the 
presence of a magnetic field. The governing non-linear equations of motion are 
transformed in two dimensional form. A solution is obtained by the homotopy 
perturbation method and it is valid for moderately large Reynolds numbers for 
injection at the wall. Also, an efficient algorithm based finite difference scheme is 
developed to solve the reduced coupled ordinary differential equations with necessary 
boundary conditions. The effects of Reynolds number, the magnetic parameter, 
pradantl number Casson parameter on flow velocity and temperature distribution is 
analysed for increasing the non-Newtonian characteristics of the fluid by both the 
methods and results agree well with previous work for special cases. It is observed that 
the overall effect of magnetic field is same as Hartmann flow. Further the analysis 
predicts that the heat transfer at the surface of the disks increases with increase in 
Reynolds number, magnetic parameter and Prandtl number, shear stress at lower disk 
also calculated. The study of such phenomenon is beneficial in the industry for thermal 
control in polymeric processing.  
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1. Introduction 
 

The flow of non-Newtonian conducting fluid between two porous disks is of practical importance 
in lubrication theory, such type of flow has lot of importance and applications in mechanical and 
manufacturing process, magnetic and storage devices (disk drives), gas engines, crystal growth 
process and bio-mechanics. MHD effects are used for power generators, light-ion-beam 
confinements, and spacecraft. Study about non-Newtonian fluids attracts many researchers because 
of its practical applications in various fields as mentioned above. Basic study about these types of 
fluid models done by Karman in 1921 [1], Batchelor [2] extended Karman work in 1967 for a flow over 
single disk. In 1960 many authors [3-5] done research about the fluid flow between rotating disks. In 
1970 the Wang and his associates [6-8] analysed these type of models with different ideas like 
suction, injection and rotation of disks, this study makes very important and attracts many 
researchers in understanding of many practical and industrial applications. The first MHD analysis 
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about these types of models done by Srivastava and his associates in 1961 [9]. Later, many authors 
contributed the better analysis in MHD in this type models [10–12]. Further the problem was 
analysed by Stewartson [13] who found perturbation solution.  

In reality fluid models involved are non-Newtonian. The complicated rheological properties 
better explained by non-Newtonian fluids. One such model is known to be Casson fluid model [14]. 
McDonald and Mrill [15,16] showed that the blood type of flow can be analysed through Casson 
model. U. Khan and his associates present the unsteady squeezing flow of Casson fluid between 
parallel plates. Recently authors taken Casson model in their study and analysed under different 
conditions using various techniques. 

Most of the problems discussed in the above literature are highly non-linear and associated with 
boundary conditions, many authors used numerical and semi-numerical methods to solve these 
types of models. One of the more efficient technique to solve such problems is the homotopy 
perturbation method (HPM). HPM first proposed by Ji-Huan He in 1998 [17]. HPM is the combination 
of traditional perturbation method and homotopy in topology. Many authors used this method to 
solve different classes of problems [18-22]. A few interesting studies about non-Newtonian can be 
obtained from [23,24]. Some interesting applications of engineering problems is studied by [25-33].  

In view of the above literature, it is observed that the study of porous disks with Casson fluid with 
heat model is not carried so far, further this type of flows have lot of importance and application in 
engineering and technology so, the present study adds its findings on Casson fluid model to the 
existing knowledge base. 

 
2. Problem Formulation  
 

The problem of the Casson fluid between parallel circular non-conducting disks in the presence 
of a uniform strong magnetic field is investigated for small Reynolds number. The flow under 
consideration is entirely due to either uniform suction or injected at the disks as shown in Figure 1. 

 

 
Fig. 1. Geometry of the problem 

 
The governing equations of motion are 
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The induced magnetic field is assumed to be small and it can be calculated, assuming the velocity 𝑈𝑟 
known, from the Maxwell-Ampere's equation 
 
∂2ℎ𝑟

∂η2
+ αμσℎ

∂𝑈𝑟

∂η
= 0              (4) 

 
The boundary condition on ℎ𝑟, if the disks are non-conducting, is 
 
ℎ𝑟 = 0 at the disks              (5) 
 
The boundary conditions on 𝑈𝑟 and 𝑈𝑧 are the no-slip conditions 
 
𝑈𝑟(𝑟, ±ℎ) = 0              (6) 
 
and 
 
𝑈𝑧(𝑟, ±ℎ) = ∓𝑈0 =  constant           (7) 
 
The equation for the temperature field, neglecting the viscous dissipation, can be written as  
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The boundary conditions for the temperature field can be written as 
 

𝑇 =  {
𝑇1 𝜂 = 1

𝑇2 𝜂 =  −1
 .               (9) 

 
Using the transformation  
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Eq. (1) and (2), using Eq. (9) and Eq. (10), becomes 
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Since the right hand side of Eq. (12) is a function of 𝜂 only, it follows that 
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Hence, Eq. (11), using Eq. (13), becomes 
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Eq. (14) is true for all 𝑟, if 
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θ′′(η) + 𝑅𝑃𝑟𝑓(η)θ′(η) = 0  .                      (19) 
 
The boundary conditions on f(η) and θ(η) are 
 
𝑓(±1) = ±1,  𝑓′(±1) = 0                       (20) 
 
θ(−1) = 0,  θ(1) = 1.                      (21) 
 
3. Results and Discussion 
 

In this article we made an attempt to study the non-Newtonian Casson fluid flow between porous 
disks in the presence of heat transfer and magnetic field through HPM. In this section of the article 
we explain the solution of the consider problem and illustrate the results in graphical and tabular 
forms. To understand the characteristics of non-Newtonian Casson fluid with the presence of heat 
and magnet, we choose to present the shear stress, velocity and temperature across the disks for a 
range of Reynolds number 𝑅, the magnetic parameter 𝑀 and the Prandtl number 𝑃𝑟. The results 
presented using the homotopy perturbation series' method by considering 20 terms in the series and 
compared the results obtained by HPM with the classical FDM, by dividing the interval into 10000 
sub-intervals. The algebra becomes cumbersome after certain steps we implement these two 
methods in mathematica software, by writing elegant code. We solved the consider problem using 
HPM and compared the results obtained from HPM using the classical FDM method. More about 
HPM for this class of problems one can refer the articles [34,35]. The zeroth and first order homotopy 
solution of Eq. (18) and Eq. (19), associated boundary conditions Eq. (20) and Eq. (21) as follows.  
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Figure 2 to 9 represent the dimensionless axial and redial velocity for various of parameters. 
Figure 2, 4, 6, 8 represents the dimensionless axial velocity, from these figures it is clear that the axial 
velocity takes its dimensionless value 1, at the upper disk and -1, at the lower disk and velocity of the 
fluid is decrease with increase in R in the domain −1 ≤ 𝜂 ≤ 0 and opposite behavior is observed in 
0 ≤ 𝜂 ≤ 1. Figure 3, 5, 7 and 9 represent the behaviour of the radial velocity for various values of 
parameters. The radial velocity profiles are in the parabolic nature of all the values of the parameters. 
The radial velocity increases in the central plane and near the boundary, it falls with an increase in 
the values of R.  

Figure 10 to 13 represent the variation of the temperature for different values of the parameters. 
From these figures we observed that the temperature profiles decrease in the region −1 ≤ 𝜂 ≤ 0 
with an increase in 𝑅 and opposite behavior we observed in 0 ≤ 𝜂 ≤ 1. Also, one can observe as 
increasing in the 𝑃𝑟 and 𝛾 the temperature profile various this because of the non -Newtonian 
characteristic of the fluid. Table 1 and Table 2 show the heat transfer rate 𝜃′(−1). In this section we 
compared the results obtained by the HPM with the classical FDM technique and tabulated the values 
and the results are in good agreement. From Table 1 it is clear that the heat transfer rate decreases 
with increase in 𝑅. As we increase the magnetic parameter, heat transfer rate also increases, 
however, as we increase the Prandtl and Casson parameter 𝛾 number heat transfer rate decreases. 
Table 3 shows the shear stress at lower disk results are calculated using HPM and compared with 
classical FDM. From Table 3 it is clear that shear stress decreases as 𝑅 & 𝛾 increases, but it increases 
as 𝑀 increases.  
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Fig. 2. fluid flow function 𝑓(𝜂) for 𝛾 = 0.1, 𝑀 = 0.2 

 

 
Fig. 3. Velocity function 𝑓′(𝜂) for 𝛾 = 0.1, 𝑀 = 0.2 
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Fig. 4. Velocity function 𝑓(𝜂) for 𝛾 = 0.3, 𝑀 = 0.2 

 

 
Fig. 5. Velocity function 𝑓′(𝜂) for 𝛾 = 0.1, 𝑀 = 0.2 
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Fig. 6. Velocity function 𝑓(𝜂) for 𝛾 = 0.1, 𝑀 = 0.4 

 

 
Fig. 7. Velocity function 𝑓′(𝜂) for 𝛾 = 0.1, 𝑀 = 0.4 
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Fig. 8. Velocity function 𝑓(𝜂) for 𝛾 = 0.3, 𝑀 = 0.4 

 

 
Fig. 9. Velocity function 𝑓′(𝜂) for 𝛾 = 0.3, 𝑀 = 0.4 
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Fig. 10. Variation of 𝜃(𝜂) for 𝛾 = 0.1, 𝑀 = 0.1, 𝑃𝑟 = 0.2 

 

 
Fig. 11. Variation of 𝜃(𝜂) for 𝛾 = 0.1, 𝑀 = 0.1, 𝑃𝑟 = 0.4 
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Fig. 12. Variation of 𝜃(𝜂) for 𝛾 = 0.3, 𝑀 = 0.1, 𝑃𝑟 = 0.2 

 

 
Fig. 13. Variation of 𝜃(𝜂) for 𝛾 = 0.3 , 𝑀 = 0.1, 𝑃𝑟 = 0.4 
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Table 1 
Heat transfer rate 𝜃′(−1) for 𝛾 = 0.1 

𝑅 𝑃𝑟  𝑀 HPM FDM M HPM FDM 

1 0.1 0.2 0.48029 0.48025 0.8 0.48030 0.48025 
2   0.46118 0.46114  0.46119 0.46115 
3   0.44264 0.44261  0.44265 0.44263 
4   0.42467 0.42465  0.42469 0.42467 
5   0.40727 0.40725  0.40730 0.40728 
6   0.39043 0.39041  0.39046 0.39044 
7   0.37414 0.37412  0.37417 0.37415 
8   0.35838 0.35838  0.35814 0.35841 
9   0.34316 0.34316  0.34319 0.34319 
10   0.32845 0.32845  0.32849 0.32849 
1 0.4 0.2 0.42479 0.42477 0.8 0.42481 0.42479 
2   0.35880 0.35879  0.35883 0.35882 
3   0.30136 0.30136  0.30140 0.30141 
4   0.25177 0.25178  0.25182 0.25184 
5   0.20929 020930.  0.20934 0.20936 
6   0.17315 0.17317  0.17321 0.17323 
7   0.14262 0.14264  0.14267 0.14269 
8   0.11698 0.11701  0.11704 0.11706 
9   0.09559 0.09561  0.09564 0.09567 
10   0.07783 0.77850  0.07788 0.07790 

 
Table 2 
Heat transfer rate 𝜃′(−1) for 𝛾 = 0.3 
𝑅 𝑃𝑟  𝑀 HPM  FDM M HPM FDM 

1 0.1 0.2 0.48028  0.48024 0.8 0.48029 0.48025 
2   0.46111  0.46108  0.46114 0.46115 
3   0.44250  0.44247  0.44254 0.44263 
4   0.42444  0.42442  0.42449 0.42467 
5   0.40693  0.40691  0.40699 0.40728 
6   0.38996  0.38995  0.39003 0.39044 
7   0.37353  0.37352  0.37361 0.37415 
8   0.35764  0.35764  0.35772 0.35841 
9   0.34227  0.34227  0.34235 0.34319 
10   0.32742  0.32741  0.32751 0.32849 
1 0.4 0.2 0.42473  0.42471 0.8 0.42478 0.42476 
2   0.35858  0.35858  0.35867 0.35866 
3   0.30094  0.30095  0.30105 0.30105 
4   0.25114  0.25116  0.25127 0.25128 
5   0.20845  0.20847  0.20859 0.20861 
6   0.17214  0.17216  0.17228 0.17230 
7   0.14148  0.14149  0.14162 0.14163 
8   0.11576  0.11579  0.11590 0.11590 
9   0.09432  0.09434  0.09444 0.09446 
10   0.07655  0.07656  0.07667 0.07668 
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Table 3 
Shear stress at the lower disk f''(-1) 
𝑅 𝛾 𝑀 HPM  FDM M HPM FDM 

1 0.1 0.2 2.97762  2.97710 0.8 2.98842 2.98786 
2   2.95505  2.95455  2.96577 2.96534 
3   2.93301  2.93235  2.94364 2.94354 
4   2.91149  2.91067  2.92204 2.92156 
5   2.89049  2.88964  2.90095 2.90038 
6   2.86999  2.86945  2.88036 2.87997 
7   2.84998  2.84945  2.86027 2.85962 
8   2.83047  2.83043  2.84066  2.84045 
9   2.81143  2.81114  2.82153 2.82129 
10   2.79286  2.79232  2.80287 2.80238 
1 0.3 0.2 2.94421  2.94357 0.8 2.97123 2.97081 
2   2.88997  2.88954  2.91643 2.91588 
3   2.83897  2.83872  2.86487  2.86423 
4   2.79107  2.79091  2.81640 2.81604 
5   2.74612  2.74566  2.77088 2.77027 
6   2.70398  2.70324  2.72816 2.72761 
7   2.66449  2.66387  2.68811 2.68741 
8   2.62753  2.62759  2.65058 2.64988 
9   2.59295  2.59294  2.61544 2.61472 
10   2.56060  2.55978  2.58254 2.58207 

 
4. Conclusions 
 

A careful observation on existing information / literature and the current study and results for 
parameters reveal the following. 

i. This study indicates that shear stress decreases with increase in Reynolds numbers for fixed 
M & 𝛾. This characteristic enhances the importance of Casson fluid models. 

ii. The results for axial velocity reveal that it increases in the range -1 to 0 and decreases 
thereafter, but functional values increase with an increase in the value of the independent 
variable in the domain. This feature shows, even in increase of Hartmann number and Prandtl 
number, the flow is smooth and normal. This feature increases the efficiency of the models 
over Newtonian models. 

iii. For small value of R, 𝛳 value variation is like a straight line, but as R increases with 
independent variable the variation becomes curved like the exterior of a circle. The results 

related to axial velocity behavior pattern also encourages the study of Casson fluid model. 
iv. The heat transfer rate decreases with increase in 𝑅 for fixed values of 𝑀, 𝛾 & 𝑃𝑟. 
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