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Poiseuille flows are crucial in various fields, including engineering and the chemical 
industry, explaining phenomena such as increased blood pressure in narrowed capillaries 
and aiding in the design of fluid management systems. Traditionally, studies on Poiseuille 
flows have focused on Newtonian fluids in non-moving pipes, limiting advancements in 
the field. This research addresses the gap by exploring the Poiseuille flow of a viscoelastic 
non-Newtonian second-grade nanofluid. These second-grade fluids, applicable in polymer 
processing and cosmetics manufacturing, exhibit both shear-thinning and shear-
thickening properties under certain conditions. The study analytically solves the flow 
characteristics of blood nanofluids, reducing the governing equations to ordinary 
differential equations using standard Poiseuille flow assumptions. The simulation results 
reveal that among the three nanofluids tested, graphene-blood nanofluid achieves the 
highest velocity, while copper-blood nanofluid exhibits the lowest. Additionally, the 
velocity of graphene-blood nanofluid decreases with an increase in volume percentage. 
This work not only advances the understanding of non-Newtonian fluid dynamics but also 
provides insights into optimizing fluid management systems in biomedical and industrial 
applications. 

Keywords: 
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1. Introduction 
 

Shear strain responds to shear stress nonlinearly in non-Newtonian fluids. The Casson fluid by 
Reddy and Reddy [1], Khan et al., [2], and Oke et al., [3], Williamson fluid by Divya et al., [4], Carreau 
fluid by Murthy and Reddy [5], Eyring –Powell fluid by Oke et al., [6], MEP fluid by Oke [7,8] and 
second-grade fluid by Awan et al., [9] and Krishna et al., [10] are a few examples of these fluids. 
Second-grade fluids have a second-order relationship between shear stress and shear strain and are 
classified as non-Newtonian fluids having viscoelastic features. Depending on the particular selection 
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of second-grade fluid, they demonstrate the capacity to shear-thin or shear-thicken. The behaviour 
of these fluids is governed by both their current condition and their deformation history. Second-
grade fluids, which find use in a variety of industrial industries like polymer processing, medicines, 
and cosmetics, include things like ketchup and blood. A comprehensive study on the Hall slip on 
unstable MHD flow of second-grade fluids was done by Krishna et al., [10] and the results showed 
some interesting new uses in aerospace science. Partial differential equations were reformulated to 
fractional order equations by Yavuz et al., [11], who solved them using the Laplace transform. The 
findings showed that as the Prandtl number increased, the velocity profile decreased. 

Widespread applications involve flows in a range of pipe and channel geometries; these flows are 
generally categorised as Couette or Poiseuille flows based on the relative movement of the channel 
walls. A pressure-driven flow is what defines a Poiseuille flow, but a flow between parallel plates 
moving relative to one another is what defines a Couette flow by Coles [12]. In Poiseuille flow, non-
overlapping layers of viscous fluid, known as laminar flow, are sustained by pressure fluctuation 
according to Gee and Gracie [13]. Poiseuille flow velocity profiles resemble symmetrical parabolas, 
with no flow on the wall and a maximum point near the middle by Wu et al., [14]. Poiseuille flow is 
important in the design and development of microfluidic devices because the velocity gradient in this 
profile improves material transfer. Poiseuille flow has practical uses in a variety of industrial 
processes, including blood flow through capillaries, in addition to microfluidics. With ramifications 
for the petroleum industry and other large-scale businesses, it is a useful tool for simulating processes 
including fluid transport in pipelines, heat exchanger systems, and chemical reactors. It also serves 
as a means of imitating capillary blood flow by Sulaimon et al., [15], Azmi et al., [16], and Rekha et 
al., [17]. Poiseuille flow is elegantly solved, which makes it easily transferable to complex medical 
diagnostics, drug delivery, and microscale chemical analysis. 

In this article, a second-grade fluid that flows through a stationary conduit with suspended 
alumina, copper and graphene nanoparticles is examined. The flow is an extension of the traditional 
Newtonian Poiseuille flow and represents a Poiseuille nanofluid flow. Existing research extensively 
covers the behavior of non-Newtonian fluids, focusing on the nonlinear relationship between shear 
stress and shear strain. Studies have examined various fluids like Casson, Williamson, Carreau, Eyring-
Powell, MEP, and second-grade fluids, with second-grade fluids noted for their viscoelastic properties 
and second-order stress-strain relationship. These fluids are well-studied for applications in polymer 
processing, pharmaceuticals, and cosmetics. However, there is a significant research gap in 
understanding second-grade nanofluids, particularly in Poiseuille flow within conduits. The impact of 
suspended nanoparticles (alumina, copper, graphene) on the flow characteristics of second-grade 
fluids remains underexplored, where our study has focussed to provide feasible solutions. 

In this study, the following queries are addressed 
i. How do the flow velocities of graphene-blood nanofluid, alumina-blood nanofluid and 

copper-blood nanofluid compare? 
ii. How does volume fraction impact flow velocity in a second-grade nanofluid flow via a pipe? 

iii. How does the flow rate of a second-grade nanofluid pass through a conduit when dynamic 
viscosity is present? 

 
2. Flow Description and Model Development 
 

Blood, as a second-grade fluid, in which some nanoparticles are suspended flows through a 
stationary pipe while exhibiting both Newtonian and viscoelastic behaviours. The pipe is considered 
in a 2D frame so that they are represented as two parallel lines, separated by a distance of 2ℎ. In this 
study, the flow entrance region is neglected while the flow is investigated at the region where it is 
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fully developed. Figure 1 depicts the fully-developed region of the Poiseuille flow with the maximum 
flow velocity at the centre of the pipe (same as the axis of symmetry 𝑦 = 0). The flow is steady 
incompressible and laminar. 
 

 
Fig. 1. Flow configuration 

 
The studies by Oke et al., [3], Sitamahalakshmi et al., [18], and Kọríkọ et al., [19], suggested the 

governing equations as 
 
∂𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0.              (1) 

 

𝜌𝑛𝑓 (𝑢
∂𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = (∇ ⋅ 𝝈)𝑥 + 𝜌𝑛𝑓𝑏𝑥.          (2) 

 

𝜌𝑛𝑓 (𝑢
∂𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = (∇ ⋅ 𝝈)𝑦 + 𝜌𝑛𝑓𝑏𝑦.          (3) 

 
where 𝑢 and 𝑣 are the velocities in the horizontal (𝑥) and vertical (𝑦) axes, (∇ ⋅ 𝝈)𝑥 and (∇ ⋅ 𝝈)𝑦 are 

the shear stress along the 𝑥 and 𝑦 directions, 𝑏𝑥 and 𝑏𝑦 are the body forces in the 𝑥 and 𝑦 directions 

and 𝜌𝑏𝑓 is the nanofluid density. However, Ayub and Zaman [20], Anderson [21], and Beard and 

Walters [22] provided the stress tensor associated with the second-grade blood fluid as 
 
𝝈 = −𝑝𝑰 + 𝜇𝑛𝑓𝑨1 + 𝛼1𝑨2 + 𝛼2𝑨1

2.           (4) 

 
where 𝑰 is the identity tensor, 𝑝 is the pressure, 𝜇𝑛𝑓 is the dynamic viscosity of the nanofluid, 𝑨1 and 

𝑨2 are the Rivillin Ericksen tensors given as 
 
𝑨1 = ∇𝑽 + (∇𝑽)𝑇 .             (5) 
 

𝑨2 = (𝑽 ⋅ ∇)𝑨1 + 𝑨1(∇𝑽) + (𝑨1
𝑇(∇𝑽))

𝑇
.          (6) 

 
The flow equations are therefore written as 
 
𝜕𝑢

 𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0.              (7) 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌𝑛𝑓

𝜕𝑝

𝜕𝑥
+

𝜇𝑛𝑓

𝜌𝑛𝑓

𝜕2𝑢

𝜕𝑦2 .           (8) 
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𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

1

𝜌𝑛𝑓

𝜕𝑝

𝜕𝑦
+ 𝜆

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2 .           (9) 

 

0 = −
1

𝜌𝑛𝑓

𝜕𝑝

𝜕𝑧
 .                        (10) 

 
As shown in the Figure 1 above, there is no flow in the 𝑦-direction, indicating that 𝑣 = 0 and as a 

result Eq. (7) reduces to 
 
𝜕𝑢

𝜕𝑥
= 0.                        (11) 

 
Furthermore, by substituting (11) into (8) – (9), we have 
 

0 = −
1

𝜌𝑛𝑓
𝑝𝑥 +

𝜇𝑛𝑓

𝜌𝑛𝑓
𝑢𝑦𝑦.                      (12) 

 

0 = −
1

𝜌𝑛𝑓

𝜕𝑝

𝜕𝑦
+ 𝜆𝑢𝑦𝑢𝑦𝑦 .                      (13) 

 

0 = −
1

𝜌𝑛𝑓
𝑝𝑧.                        (14) 

 
2.1 Accompanying Conditions 
 

The walls of the pipe are on the line 𝑦 = ±ℎ and the no-slip condition is enforced by allowing the 
flow velocity to equal the velocity of the pipe. Since the pipe is not moving, then the pipe velocity is 
zero and consequently, the velocity of the flow is also zero at the pipe walls. This is mathematically 
represented as 
 
on the upper wall:    𝑦 = +ℎ,    𝑢 = 0.  
on the lower wall:    𝑦 = −ℎ,    𝑢 = 0.  
 

Moreover, the physical experiments have shown that there is a stationary point at the centre of 
the flow, with the stationary point equivalent to the maximum velocity of the flow. It is known from 
calculus that a stationary point occurs at the point where the derivative is zero, hence, this condition 
can be represented mathematically as 
 
𝑢𝑦(𝑥, 0) = 0.  

 
2.2 Nanofluid Properties 
 

The fluid properties have been influenced by the inclusion of nanoparticles in the fluid and as a 
result, the nanofluid properties depend on the properties of the base fluid and that of the 
nanoparticles included by Animasaun et al., [23]. The nanofluid properties are estimated by Oke et 
al., [24], and Oke [25] as 
 
𝜇𝑛𝑓 = 0.904𝜇𝑏𝑓 exp(0.148𝜙).                     (15) 
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𝜌𝑛𝑓 = (1 − 𝜙 + 𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
) 𝜌𝑏𝑓 .                      (16) 

 
The nanofluids are made up of blood base fluid and each of alumina nanoparticles, graphene 

nanoparticles and copper nanoparticles. The physical properties of the materials are provided in the 
Table 1. 
 

Table 1 
Comparitive Thermophysical Properties 
Material Type Density [𝑀𝐿−3] Viscosity [𝑀𝐿−1𝑇−1] Source 

Blood 1063 3.5-5.5 
 

Alumina 3970 – Oke et al., [26] 
Graphene 2250 – Areekara et al., [27] 
Copper 8933 – Ali et al., [28] 

 
2.3 Governing Equations 
 

Making the substitutions (15) and (16) into the Eq. (12) to Eq. (14), the Equations governing the 
flow becomes 
 

0 = −
1

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜌𝑏𝑓

𝑝𝑥 +
0.904𝜇𝑏𝑓 exp(0.148𝜙)

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜌𝑏𝑓

𝑢𝑦𝑦,                   (17) 

 

0 = −
1

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜌𝑏𝑓

𝜕𝑝

𝜕𝑦
+ 𝜆𝑢𝑦𝑢𝑦𝑦,                     (18) 

 

0 = −
1

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜌𝑏𝑓

𝑝𝑧 .                      (19) 

 
Along with the following conditions 
 
𝑢(±ℎ) = 0 and 𝑢𝑦(𝑥, 0) = 0.                     (20) 

 
3. Analytical Solution 
 

The solution to the Eq. (17) to Eq. (19) is obtained in this section for flow velocity and flow rate. 
The first subsection shows the flow velocity and the second subsection shows the solution of flow 
rate. 
 
3.1 Exact Flow Velocity 
 
Consider Eq. (19), then 
 

−
1

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜌𝑏𝑓

𝑝𝑧 = 0 .                      (21) 

 
𝑝𝑧 = 0 .                        (22) 
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𝑝 = 𝑝(𝑥, 𝑦).                        (23) 
 
and for a cylindrical pipe in 2-dimension, the pressure can be represented as 
 
𝑝(𝑥, 𝑦) = 𝑥2 + 𝑦2 = ℎ2.                      (24) 
 
From this point, it is easy to see that 
 
𝜕𝑝

𝜕𝑥
= 2𝑥,   

𝜕𝑝

𝜕𝑦
= 2𝑦,                      (25) 

 
and on substituting the derivatives (25) into the Eq. (17) and Eq. (18), we have 
 

0 = −
2𝑥

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜌𝑏𝑓

+
0.904𝜇𝑏𝑓 exp(0.148𝜙)

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜌𝑏𝑓

𝑢𝑦𝑦.                   (26) 

 

0 = −
2𝑦

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜌𝑏𝑓

+ 𝜆𝑢𝑦𝑢𝑦𝑦.                     (27) 

 
By rearranging Eq. (26), we have 
 
0.904𝜇𝑏𝑓 exp(0.148𝜙)

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜌𝑏𝑓

𝑢𝑦𝑦 =
2𝑥

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜌𝑏𝑓

 ,

 𝑢𝑦𝑦 =
2𝑥

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜌𝑏𝑓

÷
0.904𝜇𝑏𝑓 exp(0.148𝜙)

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜌𝑏𝑓

 ,

 𝑢𝑦𝑦 =
2𝑥

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜌𝑏𝑓

×
(1−𝜙+𝜙

𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜌𝑏𝑓

0.904𝜇𝑏𝑓 exp(0.148𝜙)
 ,

𝑢𝑦𝑦 =
2𝑥

0.904𝜇𝑏𝑓 exp(0.148𝜙)
 .

                    (28) 

 
Put (28) into (27), we have 
 

−
2𝑦

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜌𝑏𝑓

+ 𝜆𝑢𝑦
2𝑥

0.904𝜇𝑏𝑓 exp(0.148𝜙)
= 0,

𝜆𝑢𝑦
2𝑥

0.904𝜇𝑏𝑓 exp(0.148𝜙)
=

2𝑦

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜌𝑏𝑓

,

𝜆𝑢𝑦 =
0.904𝜇𝑏𝑓𝑦 exp(0.148𝜙)

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝑥𝜌𝑏𝑓

,

𝑢𝑦 =
0.904𝜇𝑏𝑓𝑦 exp(0.148𝜙)

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝑥𝜆𝜌𝑏𝑓

 .

                   (29) 
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Making 𝑥 the subject from (24), we have 
 

𝑥 = √𝑦2 − ℎ2 .                       (30) 
 
and therefore, 
 

𝑢𝑦 =
0.904𝜇𝑏𝑓 exp(0.148𝜙)

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜆𝜌𝑏𝑓

𝑦

√𝑦2−ℎ2
 .                     (31) 

 
On integrating both sides with respect to 𝑦, we have 
 

𝑢 =
0.904𝜇𝑏𝑓 exp(0.148𝜙)

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜆𝜌𝑏𝑓

∫
𝑦

√𝑦2−ℎ2
𝑑𝑦 + 𝐴.                    (32) 

 
Let 𝑦 = ℎ sin 𝜃 so that 
 

𝑦2 − ℎ2 = ℎ2 cos2 𝜃     ⇒    √𝑦2 − ℎ2 = ℎ cos 𝜃     𝑎𝑛𝑑    𝑑𝑦 = ℎ cos 𝜃 𝑑𝜃  
 

𝑢 =
0.904𝜇𝑏𝑓 exp(0.148𝜙)

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜆𝜌𝑏𝑓

∫
ℎ sin 𝜃

ℎ cos 𝜃
ℎ cos 𝜃 𝑑𝜃 + 𝐴,  

 

𝑢 =
0.904𝜇𝑏𝑓 exp(0.148𝜙)

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜆𝜌𝑏𝑓

∫ ℎ sin 𝜃 𝑑𝜃 + 𝐴,  

     = −
0.904𝜇𝑏𝑓 exp(0.148𝜙)

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜆𝜌𝑏𝑓

ℎ cos 𝜃 + 𝐴,  

 

     = −
0.904𝜇𝑏𝑓 exp(0.148𝜙)

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜆𝜌𝑏𝑓

√ℎ2 − 𝑦2 + 𝐴.  

 
Given that 𝑢(±ℎ) = 0 (from Eq. (20), then 
 
𝐴 = 0,  
 
And hence, 
 

𝑢 = −
0.904𝜇𝑏𝑓 exp(0.148𝜙)

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜆𝜌𝑏𝑓

√ℎ2 − 𝑦2.                     (33) 

 
3.2 Exact Flow Rate 
 

The amount of nanofluid that passes through a certain point at any point in time is called the flow 
rate. The nanofluid flow rate through the pipe (−ℎ ≤ 𝑦 ≤ +ℎ) is defined as 
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𝑞 = ∫ 𝑢
𝑦=+ℎ

𝑦=−ℎ
𝑑𝑦.                       (34) 

 
Putting Eq.  (33) in Eq.  (34), we have 
 

𝑞 = ∫ −
0.904𝜇𝑏𝑓 exp(0.148𝜙)

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜆𝜌𝑏𝑓

√ℎ2 − 𝑦2𝑦=+ℎ

𝑦=−ℎ
𝑑𝑦,  

    = −
0.904𝜇𝑏𝑓 exp(0.148𝜙)

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜆𝜌𝑏𝑓

∫ √ℎ2 − 𝑦2𝑦=+ℎ

𝑦=−ℎ
𝑑𝑦 .                   (35) 

 

Let 𝑦 = ℎ sin 𝜃, then √ℎ2 − 𝑦2 = √ℎ2 − ℎ2 sin2 𝜃 = ℎ cos 𝜃 and 𝑑𝑦 = ℎ cos 𝜃 𝑑𝜃, thus 
 

𝑞 = −
0.904𝜇𝑏𝑓 exp(0.148𝜙)

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜆𝜌𝑏𝑓

∫ √ℎ2 − 𝑦2𝑦=+ℎ

𝑦=−ℎ
𝑑𝑦  

 

           = −
0.904𝜇𝑏𝑓 exp(0.148𝜙)

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜆𝜌𝑏𝑓

∫ ℎ2 cos2 𝜃
𝜃=+

𝜋

4

𝜃=−
𝜋

4

𝑑𝜃,  

 

           = −
0.904𝜇𝑏𝑓 exp(0.148𝜙)

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜆𝜌𝑏𝑓

∫
ℎ2

2
(1 + cos 2𝜃)

𝜃=+
𝜋

4

𝜃=−
𝜋

4

𝑑𝜃,  

 

           = −
0.904𝜇𝑏𝑓ℎ2 exp(0.148𝜙)

2(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜆𝜌𝑏𝑓

∫ (1 + cos 2𝜃)
𝜃=+

𝜋

4

𝜃=−
𝜋

4

𝑑𝜃,  

 

           = −
0.904𝜇𝑏𝑓ℎ2 exp(0.148𝜙)

2(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜆𝜌𝑏𝑓

(𝜃 +
sin 2𝜃

2
)

𝜃=−
𝜋

4

𝜃=
𝜋

4
 ,  

 

           = −
0.904𝜇𝑏𝑓ℎ2 exp(0.148𝜙)

2(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜆𝜌𝑏𝑓

((
𝜋

4
+

sin(
𝜋

2
)

2
) − (−

𝜋

4
+

sin(−
𝜋

2
)

2
)),  

 

           = −
0.904𝜇𝑏𝑓ℎ2𝜋 exp(0.148𝜙)

4(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜆𝜌𝑏𝑓

.                     (36) 

 
4. Simulations and Discussion of Results 
 

In this study, the flow velocity and flow rate are simulated for the second-grade fluid parameter 
𝜆, volume fraction 𝜙 and the pipe radius ℎ. The velocity and flow rate of the nanofluids are compared 
in section 4.1 to identify the nanoparticle that produces the highest velocity and flow rate. The 
nanofluid with the highest velocity is further studied in section 4.2. The default values for the 
parameters are 
 
𝜆 = 0.2,   𝜙 = 0.1,   ℎ = 1.  
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4.1 Comparison of the Nanofluids 
 

Figure 2 shows the comparison between the velocity profiles of the three different nanofluids; 
alumina-blood, graphene-blood and copper-blood nanofluids. The velocity profile for graphene-
blood nanofluid is the highest, followed by the alumina-blood nanofluid and lastly, the copper-blood 
nanofluid. It should be noted that graphene nanoparticle has the lowest density among the three 
choice nanoparticles. The density, which is the measure of mass of the nanoparticles that occupy 1 
unit of volume. Hence, the less the mass, the higher the velocity and consequently, graphene-blood 
nanofluid has the highest velocity while copper-blood nanofluid has the least velocity (see Figure 2). 
 

 
Fig. 2. Velocity comparison for copper, graphene 
and alumina  

 
Figure 3 illustrates the flow rates of the three nanofluids; graphene-blood nanofluid, alumina-

blood nanofluid and copper-blood nanofluid. It can be observed that the graphene-blood nanofluid 
has the lowest flow rate. This can also be traced to the values of the density of the nanoparticles. 
 

 
Fig. 3. Flow rate comparison for copper, graphene 
and alumina 
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4.2 Behaviour of Graphene-blood Nanofluid 
 

The graphene-blood nanofluid has the highest velocity and lowest flow rate among the three 
nanofluids, and hence it can enhance heat transfer rate better than the other two nanofluids. The 
graphene-blood nanofluid is therefore considered in the following analysis and discussions. Figure 4 
and Figure 5 describe the velocity of flow and rate of flow as the flow becomes more non-Newtonian. 
As the material parameter 𝜆 grows higher, the fluid migrates farther from Newtonian behaviour and 
the viscoelasticity of the fluid becomes more pronounced closer to the free stream. Hence, increasing 
𝜆 increases the drag at the wall, and consequently attempts to drag more fluid layers to a halt. The 
dragging effect of 𝜆 consequently reduces the flow velocity, hence Figure 4 shows the reduction in 
velocity as 𝜆 becomes larger. The flow rate, as shown in Figure 5, increases with increasing 𝜆 but 
decreases as the pipe radius becomes larger. The drag experienced at the wall, with a ripple effect at 
the free stream, leads to the transfer of more fluid through any cross-sectional area. Meanwhile, the 
flow rate reduces as the pipe radius increases. Smaller pipe radii result in higher velocity gradients 
across the cross-section of the pipe. The fluid velocity at the centre of the pipe is higher than that 
near the walls. This velocity gradient contributes to increased viscous losses and reduced overall flow 
rate. The flow velocity is studied as the volume fraction increases and the outcomes are shown in 
Figure 6 and Figure 7. Figure 6 shows that velocity decreases with increasing volume fraction. The 
volume fraction represents the fraction of the nanofluid occupied by the nanoparticles. The 
implication of this is that the more the volume fraction, the more the nanoparticles in the nanofluid 
and the less the base fluid. Clearly, the excess nanoparticles will stick more to the wall and oppose 
fluid flow. Moreover, checking shows that there is a significant drop in velocity as the volume fraction 
varies from 0.1 to 0.4 (as can be observed from region A of Figure 6) while the drop in the velocity as 
the volume fraction varies from 0.8 to 0.9 is very little (region B of Figure 6). Figure 7 shows the 
variation in the flow rate as the volume fraction increases. The flow rate has an upward trend as the 
volume fraction increases. 
 

 
Fig. 4. Velocity variation with increasing 𝛌 
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Fig. 5. Flow rate with increasing pipe radius and 𝛌 

 

 
Fig. 6. Velocity variation with increasing 𝛟 
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Fig. 7. Flow rate variation with increasing ϕ and pipe radius 

 
5. Conclusions 
 

The Poiseuille flow of nanofluid with blood second-grade base-fluid in a stationary pipe is 
explored in this study. The pipe is considered to be of diameter 2ℎ so that the axis of symmetry is 
taken as the 𝑦 = 0. A 2-dimensional system of equations is developed for the flow. The exact close 
form for the velocity profile and the flow rate is obtained as 
 

𝑢 = −
0.904𝜇𝑏𝑓 exp(0.148𝜙)

(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜆𝜌𝑏𝑓

√ℎ2 − 𝑦2 .  

 

𝑞 = −
0.904𝜇𝑏𝑓ℎ2𝜋 exp(0.148𝜙)

4(1−𝜙+𝜙
𝜌𝑛𝑝

𝜌𝑏𝑓
)𝜆𝜌𝑏𝑓

 .  

 
These solutions are simulated to identify the behaviours of the flows of three nanofluids; 

graphene-blood, copper-blood and alumina-blood nanofluids. 
The following are the salient results of the present study.  

i. Graphene-blood nanofluid has the highest velocity among the three nanofluids while copper-
blood nanofluid has the least velocity. 

ii. Graphene-blood nanofluid has the lowest flow rate while copper-blood nanofluid has the 
highest velocity. 

iii. Velocity decreases with increasing volume fraction. 
iv. There is a decrease in velocity as the material parameter increases. 
v. As the volume fraction increased, the flow rate shown an upward trend. 
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