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A three-dimensional computational fluid dynamics (CFD) model has been developed to 
study the effect of tool pin profile on the material flow and temperature development 
in friction stir welding (FSW) of high specific strength AA 7068 alloy. Numerical 
simulations were carried out using a RNG k-ε turbulence model. Three tool pin profiles, 
viz. cylindrical, conical and straight cylindrical threaded were considered for the 
simulation. The temperature distribution and material flow pattern obtained from the 
simulation were compared for different pin profiles. Simulation predicted better 
material mixing and highest peak temperature in weld joints produced with straight 
cylindrical tapered thread pin. Taking this as the optimised condition weld joints were 
fabricated using the straight cylindrical threaded pin with the same parametric 
combinations as in the simulation. Peak temperature measured in the experiment was 
less than that obtained by simulation. Hardness measurements taken at different weld 
regions has showed that about 71% of that of the base metal hardness is obtained with 
the threaded tool pin. The microstructure study revealed a defect free weld joint. 
Precipitates distributed in the microstructure indicate sufficient heat input to join the 
material without dissolving precipitates. The developed numerical model is helpful in 
optimising FSW process parameters.  
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1. Introduction 
 

Friction stir welding (FSW) is a solid-state welding method that has been developed for the joining 
of aluminum alloys. Aluminium and its alloys face problems related to melting and solidification like 
defect formation and solidification cracking during traditional welding processes. The absence of 
melting and solidification in FSW reduces the chances of defect formation. The acceptability of FSW 
for joining the precipitation hared enable alloys which are commonly referred to as non-weldable 
alloys is gaining momentum these days [1,2]. 

The aluminium alloy AA 7068 was introduced in the year 2000. It has the highest specific strength 
and corrosion resistance among all aluminium alloys known till date [3]. Currently its applications are 
limited to connecting rods, auto sport gearbox actuators, wheel components and prosthetic limbs. 
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These components are processed either by casting or by forming routes. Aerospace industries use 
7xxx alloys for making structures [4]. AA 7068 can be used as a substitute for many aerospace 
materials in the 7xxx group that has lower strength and lower corrosion resistance [5]. Widening the 
application spectrum of AA 7068 requires a good joining technique. Since the fusion welding of AA 
7068 is difficult, FSW may be considered for joining this alloy. 

Developing joining process for a new alloy necessitate knowledge of all process parameters 
involved and their optimal combination to produce defect free, strong welds. To gather the 
information regarding these parameters, a large number of experimental trials are required and this 
process is resource intensive. Numerical simulation based on finite volume and finite element 
method (FEM) is a convenient approach for the optimization of FSW [6]. 

In FSW, welding takes place when a non - consumable rotating tool with a protruded part known 
as ‘pin’ moves over the workpiece. Here, the heat is generated in two steps. First the rotating pin 
penetrates the workpieces to be joined. The friction between the pin and the work piece and the 
plastic deformation of the workpiece generate heat. In the second phase the rotating shoulder 
touches the workpiece surface and churns the material below generating heat. 80% of the total heat 
is contributed by the interaction between shoulder and workpiece. The heat developed determines 
the ease with which the tool moves in the workpiece in FSW. Besides tool pin and shoulder, the 
rotational speed, tool traverse speed, axial load on the tool, and tool tilt angle are the factors that 
control the heat input in FSW [7]. 

The heat input and material flow decide the final microstructure of the FSW joint. In FSW, peak 
temperature may reach as high as 90% of the melting temperature. Higher temperatures developed 
in the FSW of precipitation hardened alloys may cause dissolution of precipitates and will eventually 
reduce its strength. Thus, temperature should not be too high. On the other hand, temperature 
should be high enough to soften the workpiece material so as the tool can move and rotate through 
the material smoothly avoiding tool breakage. Thus, the input temperature should not be too high 
or too low. The temperature and the material flow depend mostly on the tool design [8]. 

The tool design in FSW ensures that 1) the tool provide necessary temperature and strain rate 
during FSW 2) the design is simple to provide ease of manufacture 3) the design is simple to provide 
ease of retraction after welding. Since the pin control the initial heat generation and material stirring, 
pin profile is critical in FSW tool design. Tool pin shape has undergone several changes since the 
development of FSW in the year 1991. The very basic design i.e., cylindrical tool was found to create 
tunneling defects [9]. To avoid this defect formation, hexagonal and fluted tools were developed. 
These shapes produce a pulsating action that will improve stirring. Tamadon et al., [9] used Bobbin 
tool to improve material flow. Thus, material mixing is a key factor to get defect free welds. From the 
literature it is understandable that a sound joint is produced when a properly designed tool combined 
with correct welding speed, tool rotational speed and axial force is used for the FSW. Depending on 
the characteristics of the workpiece the numerical values of these parameters are different [11]. 

The present study is aimed at developing a 3D CFD model for investigating the effect of tool pin 
profile on the thermo mechanical behaviour of FSW of 6mm thick AA 7068-T6 alloy. Three tool pin 
profiles, viz. cylindrical, conical and threaded are considered here. A finite volume based CFD code of 
commercial software ANSYS is used for this simulation to optimize the pin profile. The developed CFD 
model can be further utilized to determine the effect of the other parameters involved and optimize 
them accordingly. 
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2. Computational Methodology 
2.1 Governing Equations 
 

The AA 7068-T6 material is considered as steady, incompressible, non-Newtonian and visco-
plastic fluid. The equations of mass conservation, energy conservation and momentum conservation 
are used to solve the thermal and flow field. The equation for conservation of mass is given by 
 
∂u

∂x
+

∂v

∂y
+

∂w

∂z
=0             (1) 

 
u, v, and w are components of welding velocity in x, y and z directions. The conservation of 
momentum or Navier-Stokes equation is given by 
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P is the pressure of the flow field, ρ is the density of the fluid and μ is the viscosity of the fluid. Energy 
equation is 
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where Cp is the specific heat capacity, k is the thermal conductivity; T is the temperature, Si and Sb 
heat generated due to friction and plastic deformation respectively. Heat generation equation for 
the cylindrical tool is given by Gadakh and Adepu [12] as 
 

𝑆𝐼 =
2

3
 𝜋𝜔𝜏𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑅𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟

3 − 𝑅𝑝𝑖𝑛
3 )          (6) 

 
where ω is the tool rotational speed R shoulder is the shoulder radius and R pin pin radius 
 

𝜏𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 𝑓 ×
𝐹

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑎𝑟𝑒𝑎
            (7) 

 
where F is the axial load applied to the tool and f is the coefficient of friction. 

The three profiles considered in this study have same shoulder radius, pin bottom radius and 
height. Hence, Eq. (6) is used for all three models. 
 
𝑆𝑏 = 𝛾 𝜀 ̅𝜎𝑒               (8) 
 
where γ is the conversion factor for mechanical energy into heat energy (in this model γ is taken as 
0.7, 𝜀  ̅effective strain and σe effective stress. 
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2.2 Turbulence Modeling 
 
The flow of material under the tool shoulder is highly swirling in nature. RNG k-Ԑ turbulence flow 

model is chosen for solving the turbulence quantities since it is capable of solving swirling flows [13]. 
For flow analysis involving complex geometries RNG k-Ԑ model is better than standard k-Ԑ models 
[14]. 

The governing equations for turbulent kinetic energy (k) and turbulent energy dissipation rate (Ԑ) 
are given in Eq. (9) and Eq. (10) [15]. 
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The effective viscosity (𝜇𝑡) by considering the effect of swirl is 
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The closure coefficients are, 𝛼𝑘=1.393, 𝛼𝜀=1 .393, 𝐶𝜇=0.0845, 𝛼𝑠=0.07, 𝜂0=4.38 and 𝛽=0.012 

 
𝜂 = 𝑆𝑘/𝜀                        (13) 
 
where, 𝑆 is the modulus of the mean rate-of-strain tensor and given by 
 

𝑆 = (2𝑆𝑖𝑗𝑆𝑖𝑗)
1

2                        (14) 

 

𝑆𝑖𝑗 =
1

2
(

∂𝑢𝑖

∂𝑥𝑗
+

∂𝑢𝑗

∂𝑥𝑖
)                       (15) 

 
𝛺 is the characteristic swirl number, and 𝐶1𝜀=1.42 and 𝐶2𝜀=1.68 are the model constants. 
 
2.3 Constitutive Equations 
 

The friction stir welding process is very much similar to a hot deformation process where the 
viscosity varies with temperature and strain rate. Hence the determination of viscosity is a difficult 
task. In the present analysis viscosity is expressed as a function of effective stress and strain rate and 
expressed as [16] 
 

𝜇 =
𝜎𝑒 

3𝜀̅
                         (16) 
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where 
 

𝜎𝑒 =  1/𝛼 sinh−1(𝑍/𝐴)
1

𝑛                      (17) 
 
where  Z is the Zener- Holloman parameter which is a function of material strain and temperature 
 

𝑍 = 𝜀 ̅exp (
𝑄

𝑅𝑇
)                       (18) 

 
Q is the activation energy for deformation, R is the gas constant and T is the temperature. A, α, 

and n are material constants A = 1.63 x 1013 s-1, α = (1/60.7) /MPa, n = 5.33, Q = 191 kJ/mol. 
 
2.4 Material Properties 
 

The chemical composition of AA 7068-T6 are given in Table 1. 
 

Table 1 
Chemical Composition (wt. %) 
Si Fe Cu Mn Mg Cr Ni Zn Ti Al 

0.14 0.19 2.4 0.03 3.03 0.05 0.007 8.3 0.05 85.51 

 
The properties of alloy used in the study vary with temperature. Temperature dependent 

property values are not available for AA 7068 -T6. These values are obtained by comparing the room 
temperature property values of AA 7075 and AA 7068, and then use that ratio to calculate 
temperature dependent properties of AA 7068-T6. Properties of AA 7075-T6 is taken from Mills [17]. 
The calculated values of AA 7068-T6 are given in Table 2. 
 

Table 2 
Material properties 
Temperature (K) Density (kg/m3) Thermal Conductivity (W/mK) Specific Heat (J/kg K) 

473 2814 137.68 1107.65 
573 2794 135.59 1130.72 
673 2768.6 137 1120 
773 2743.2 137 1269 

 
The exact variation of friction coefficient (f) with temperature is not evaluated for AA 7068 alloy. 

Chen et al., [18] defined f as temperature dependent parameter and in this simulation, the same 
approach is followed. 
 
2.5 Computational Domain and Boundary Conditions 
 

The calculations were performed over a rectangular shaped domain formed by joining two 
workpieces of dimensions 100 mm × 50 mm × 6 mm in the butt configuration (Figure 1). As the entire 
domain is considered fluid, the solid tool is not included in this model. The tool pin impression is 
made in the computational domain and its plunging depth of 5.75 mm is given. 

Three different pin profiles are considered here - cylindrical pin, cylindrical taper (conical) and 
straight cylindrical threaded. The pin length and pin diameter are 5.75 mm and 6 mm respectively. 
The diameter of the shoulder is 20 mm. The pin – shoulder part for the different configuration is given 
in Figure 2. For the purpose of identification of the different configurations, model numbers are 
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assigned as shown in the bracket. i.e., conical C1, cylindrical C2 and straight cylindrical threaded C3. 
The same numbers are used to represent the profiles in the coming sessions. 
 

 
Fig. 1. Computational Domain 

 

   
Conical (C1) Cylindrical (C2) Straight cylindrical Threaded (C3) 

Fig. 2. Pin Profiles used in the simulation with dimensions 

 
Approximately 1.8 million cells were used for meshing the domain. Hexahedral meshing scheme 

was used for C1 and C2. During FSW, the pin rotates and moves along the joint line. The straight faces 
of the models C1 and C2 causes a circulatory motion for the material around the pin. Here the metal 
flows perpendicular to the cell face of the hexahedral meshes which is preferable. Calculation 
accuracy depends on making the angle between face-normal and the flow direction as small as 
possible if the flow is not perpendicular to the cell face. In C3 model the thread pitch moves the 
material through a spiral path. Here flow is not perpendicular to the cell face. To minimize the angle 
between face-normal and the flow direction, mesh scheme is changed to tetrahedral scheme. A 
closer view of the mesh used for each model is shown in Figure 3. 
 

   
(a) (b) (c) 

Fig. 3. Closer view of the mesh (a) C1, (b) C2, (c) C3 
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The inlet, sides, top and bottom of the weldment were all moving wall and assumed to be 
approaching the stationary rotating tool with a velocity equal to the welding speed in a direction 
opposite to the welding direction. ‘Pressure outlet’ condition is given at the outlet. During the 
welding process heat loss occurs by the means of convection and radiation. Radiation effects are 
neglected in this simulation. The inlet, top, bottom and sides are under translational motion at the 
welding speed of 45 mm/min. The sides and top are exposed to air and a convection heat transfer 
coefficient of 10 W/m2K is assumed. The bottom is supported by a cast iron backing plate and hence 
a high convection heat transfer coefficient of 1000 W /m2 K is assumed. The two heat sources – heat 
generated by plastic deformation, frictional heat generation and the viscosity were embedded in the 
simulation as user - defined functions (udf) based on C programming. The tool is rotating at 1100 rpm 
and held perpendicular to the workpiece. An axial load of 7 kN applied on the tool to complete the 
welding process. 
 
3. Experimental Procedure 
 

In order to validate CFD simulation results, experimental measurements were conducted 
meticulously. The melting range of AA 7068 is 749-908 K and the maximum possible temperature 
during FSW process reported in the literature is approximately 90% of melting temperature. 
Therefore, the temperature developed in FSW of AA 7068 must lie in the range of 674- 814 K. The 
simulations for C2 model predicted peak temperature of 670 K which falls short of this range and 
hence this model was excluded from experiments. However, C3 model provided better velocity 
distribution with particle movement than C2 model resulting in the selection of C3 model for 
experiments. A semi-automatic friction stirs welding machine of 60 kN capacity was used to join the 
6 mm thick AA 7068 –T6 plates of dimensions 100 mm × 50 mm in butt configuration. The dimensions 
of the FSW tool and process parameters used are same as that used in the simulation. A photographic 
image of the FSW tool is shown in Figure 4(a) and fabricated joint is depicted in Figure 4(b). The tool 
is made of H13 tool steel. The temperature was measured using a FLUKE thermal imager TiS20. The 
micro hardness values of the weld joint nugget zone were measured using Mitutoyo micro Vickers 
hardness testing machine. A load of 1.96 N was applied for 10 seconds. The specimens extracted from 
the weld zone were observed under the metallurgical microscope after standard procedures- 
grinding, polishing and etching. Keller’s reagent was used as the etchant. 
 

 
Fig. 4. (a) FSW tool, C3 model, (b) fabricated joint 

 
4. Results and Discussions 
4.1 Temperature Contours 
 

The peak temperature from the simulation and the experiment is given in Table 3. Colegrove et 
al., [19] used peak temperature for comparing experimental and simulation results. Temperature is 
highest for the C3 model. The lowest temperature is for C2 model. The measured temperature is less 
than that obtained from the simulation and the difference is 22 with an error of 3%. 
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Table 3 
Peak Temperature 
Model C1 C2 C3 Experiment (threaded tool) 

Temperature (K) 732 670 763 741 

 
Considering the tool rotation, FS weld plate has two sides- advancing side (AS) and retreating side 

(RS). The material in the weld zone advances with the tool in the AS whereas material in the RS is 
pulled behind the tool. Temperature profile taken across a section perpendicular to the welding 
direction is shown in the Figure 5. For the cases considered, maximum and minimum temperature 
range is set to C1 case (300 - 732 K). For the three cases temperature profile is asymmetric with 
respect to the center, i. e in the advancing side temperature distribution spreads over larger area. 
Higher initial friction in the advancing side than in the retreating side is responsible for this 
asymmetry. The traverse forces increase from C1 to C3 increasing friction. Moving down in the 
direction of thickness the width of the nugget zone increases, Width C2< Width C3< Width C1. The region 
below the shoulder diameter is termed as TMAZ. The width of TMAZ is less for C2 and C3 models. 
The HAZ is wider for C2 followed by C3 and then C1 model. 
 

 

 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. Temperature contours on a transverse section for pin profile (a) C1, (b) C2, (c) C3 

 
The temperature contours over the top of the work piece are shown in the Figure 6. As the tool 

pin profile changes from C1 to C3 it can be seen that the maximum temperature developed increases. 
The measured values of total contact surface area for the threaded pin are 425.0 mm2, for the conical 
pin - 417 mm2 and for the cylindrical pin - 422.534 mm2. Because the surface area is the least heat 
transfer is less for the C1 model. The cooling will be slow. The larger surface area of the C2 model 
transfer heat at a faster rate uniformly in all directions. The large surface area of C3 model attributed 
by the presence of threads results in higher amount of heat generation due to friction. These threads 
in C3 model act like extended surfaces (fins) and release heat to the stirred material inwards. 
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Moreover, the heat transfer is not uniform in this region. During rotation, material entrapped 
between the threads absorbs the generated frictional heat which in turn causes slow cooling in C3 
model. 

 

   
(a) (b) (c) 

Temperature range 300 -732 K Temperature range 300-670 K Temperature range 300- 763 K 
Fig. 6. Temperature contours on the top surface of the workpiece for the models: (a) C1, (b) C2, 
(c) C3 

 
4.2 Material Flow 
 

The velocity vectors for the three models are depicted in Figure 7. The flow direction of each 
particle under the shoulder and pin can be seen. The rotation of the shoulder brings material from 
the AS to the RS. At the same time movement of the pin throws up material from the bottom. The 
material mixing is dependent on how effectively these movements happen. The movement of the 
tool is opposed by a layer of stagnant material in front and an opposing force is build up. The 
temperature developed in the plunging stage softens this layer and reduces the force. 

In the previous section it was explained that higher temperatures are developed in C3 model, 
followed by C1 model and C2. Hence C3 model can transfer particles from AS to RS with less effort 
compared to other two. There is rotational and translational motion imparted to the material by the 
threads in the C3 model. These findings are in tune with that reported by Patel et al., [20]. 

The flow pattern is similar for the three models, but the swirling is different. The thread features 
on the C3 model provide a helical motion upwards for the particles near its vicinity. For example, 
path of a particle starting from a much deeper point below the shoulder is marked by black arrows 
in the Figure 7(c). Similar path is traced by a particle well inside the pin region in the Figure 7(a). 
These particles trace  a helical path and finally end up at the outer radius of the shoulder. Here 
mixing is better as such particles from different points mix in different layers. In the Figure 7(b) the 
particle path inside the pin region is circular. However, from the inner shoulder radius, particles are 
transferred to the outer edge. Thus, mixing is confined to certain planes and there is no particle 
exchange between different layers. 
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(a) (b) (c) 

 
Fig. 7. Velocity vectors for the three models: (a) C1, (b) C2, (c) C3 

 
Figure 8 shows the 3D streamlines through the domain staring from the inlet for the three models. 

Streamlines are segregated in the retreating side. For the three models the initially straight 
streamlines are bent around the shoulder. This indicates a circular movement of material below the 
shoulder. Flow pattern is different in the advancing and retreating sides for the three models. The 
higher amount of heat generation in model C3 causes the material to stick to the shoulder. Thus, 
streamlines are closer to shoulder in C3 model. Similarly, in C1 model the streamlines wrap around 
the tapered pin due to the high heat generation. 
 

 
(a) 

 
(b) (c) 

Fig. 8. Streamlines for the three models: (a) C1, (b) C2, (c) C3 

 
Figure 9 shows velocity distribution taken on a section perpendicular to the weld direction. For 

all three models’ maximum velocity is occurs below the shoulder edge. The highest flow velocity (1.14 
m/s) is same for the three models. There is a small region below the pin where the velocity is zero. If 
the temperature is not high enough here, root defect (lack of penetration) may develop. Pin profiles 
that produce more frictional heat can eliminate root defects. For the C3 model there is vertical 
movement down the thickness imparted by the threads. This movement improves the mixing 
efficiency. 
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(a) (b) (c) 

 
Fig. 9. Velocity distribution on a plane perpendicular to the weld direction (a) C1, (b) C2, (c) C3 

 
4.3 Microstructure Analysis 
 

In the microstructure of FSW joints there are four distinct regions with notable differences. At 
the center of the weld, the nugget zone (NZ) is subjected to intensive stirring and higher 
temperatures. A unique feature of this region is the recrystallized fine grains. The region below the 
shoulder is the thermo mechanically affected zone (TMAZ). The temperature effects are higher, 
plastic deformation is less compared to NZ. Near to TMAZ temperature effects are spread to some 
extend far from the tool. This is the heat affected zone (HAZ). Adjacent to the HAZ the base metal 
remains unaffected. In precipitation hardened alloys, the hardness of each zone is a function of grain 
size and precipitate distribution. 

Figure 10 depicts the microstructure of the different regions of the welded joint fabricated using 
threaded pin profile. Rolled sheets of AA 7068-T6 were used as the base material. In the base metal 
microstructure shown in Figure 10(a) elongated grains with homogeneous distribution of precipitates 
are seen. The presence of precipitates and the strain hardening effect due to rolling gives the base 
metal, hardness value of 200 HV and UTS of 641 MPa. Figure 10(b) depicts the HAZ. Here the grains 
are elongated; precipitates are distributed homogeneously as in the base metal. Microstructure of 
the TMAZ is shown in Figure 10(c). The grains are stretched and deformed. Nugget zone is depicted 
in Figure 10(d). The grain structure is entirely different from that of the base metal. Grains are finer 
in this region. Precipitates are coarser than the base metal. 

The samples have been examined using energy-dispersive X-ray analyses (EDAX) detector 
attached to the SEM (FE-SEM, Carl Zeiss Sigma) to investigate the chemical compositions (Figure 11). 
EDX analysis revealed the presence of zinc, magnesium, chromium and copper which are 
representatives of the equilibrium precipitate. 
 

  
(a) (b) 
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Fig. 10. (a) Base metal, (b) HAZ, (c) TMAZ, (d) Nugget zone 

 

 

 
Fig. 11. EDAX result of friction stir weld 

 
4.4 Hardness Measurements 

 
Figure 12 shows micro hardness values of different weld regions taken along a section 

perpendicular to the weld direction. The ‘W’ shaped profile is not symmetric about the center. 
Hardness values are lower in the RS than the AS. The reduction in hardness in the RS is due to the 
lack of proper coalescence of material in that zone. The hardness values range between 149.2 HV 
and 167 HV. The hardness of base metal AA 7068–T6 is 200 HV. The dislocations resulted from rolling 
operation and the precipitates formed after precipitation hardening increases hardness of the base 
metal. However, the high heat input in FSW relieves the strain hardening effects of the base metal. 
Thus, hardness of the different regions of weld zone is lower than the base metal. The nugget zone 
(NZ) hardness is 165 HV. The average hardness of TMAZ falls to 159.2 HV in AS and 156.22 HV in the 
RS. The lowest hardness values measured are 149.2 in the RS and 152 HV in the AS. This is the 
interface region between TMAZ and the heat affected zone (HAZ). There is a sharp increase in 
hardness on both sides beyond the interface of HAZ and TMAZ. Beyond this region hardness further 
increases on both sides approximating a straight line. The results of hardness measurements are in 
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good agreement with the microstructure. The microstructure of the HAZ shows elongated grains and 
precipitates. This is the reason for the lowering of hardness in HAZ. In the TMAZ precipitates are more 
clustered, grains are deformed and elongated hence lower hardness. Higher hardness of NZ has 
resulted from finer grain size. 
 

 
Fig. 12. Hardness Profile 

 
5. Conclusions 
 

A 3D CFD model is developed to study the effect of tool pin profile on the flow field and 
temperature field in the FSW of AA 7068 alloy. Three pin profiles were considered- Conical (C1 
model), Cylindrical (C2 model) and straight cylindrical threaded (C3 model). RNG k-ε turbulence 
model is used for the simulations. The peak temperatures, temperature distributions and the velocity 
profile of the three models were compared. The peak temperature is higher and cooling is faster for 
C3 model. The velocity profile proposes a better mixing in C3 model. Hence C3 model may give good 
microstructure and mechanical properties to FSW joints.  

Based on the numerical results, C3 model is selected for the fabrication of AA 7068-T6 joints. The 
welding was performed successfully at a rotational speed of 1100 rpm, transverse speed of 45 
mm/min and axial load of 7 kN. The microstructure studies were made and hardness of the welded 
region was measured. The prepared welds were free of defects in the macro and micro levels. The 
minimum hardness value obtained at the interface (149.2 HV) is 71 % of that of the base metal. This 
value indicates that the effect of precipitation hardening is not lost at the temperature developed. 
The numerical and experimental study suggest that straight cylindrical threaded pin (C3 model) is the 
ideal pin profile to be used in the friction stir welding of AA 7068-T6 at a welding speed of 45 mm/min, 
tool rotational speed of 1100 rpm and axial load of 7kN. 

 The developed model can be used for parameter optimisation avoiding time consuming and 
expensive experimental trials.  
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