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One of the most important factors affecting wind turbine performance is the airfoil. The 
impact of the NACA 0012 trailing edge design on airfoil performance is investigated 
numerically in this paper. Computational fluid dynamics calculations are used to design 
and simulate the airfoils. The thick trailing edge is inclined to various angles to achieve 
further improvement in the lift/drag ratio and lift coefficient. The results reveal that, 
when compared with baseline airfoil, all the designed airfoils demonstrated higher lift 
coefficients. The lift coefficient increases with the angle of the inclined trailing edge. The 
maximum lift coefficient improvement inclined airfoil is 74%. In addition, the lift/drag 
ratio increases with the increase of the inclined angle, and the maximum improvement 
ratio reaches 39.495% for the inclined airfoil with Ꝋ=15º. Any further increase in the 
inclined angle decreases the lift/drag ratio as a result of drag increase. This study 
contributes toward the design of efficient wind turbine airfoils. 
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1. Introduction 
 

With the increasing environmental pollution from fossil fuels, clean energy sources have become 
extremely important [1]. Among various systems of electrical energy generation, wind energy has 
acquired significant attention and become a major contributor in the world due to its availability and 
low cost [2]. Thousands of wind turbine plants have been built around the world and are used to 
supply electrical power to local electrical networks [3]. According to the last Global Wind Energy 
report, China has been able to install several wind power plants that, combined, produce 23 GW of 
energy every year [3].  

The blades are the main part of the wind turbine, in which kinetic energy is converted to useful 
power. Wind turbine performance depends considerably on the design of the blades, and in 
particular, the geometry of the airfoil. The airfoil is the core element of a blade [4]–[6] and it can also 
be used in many engineering applications [7]. Two of the most important factors that impact the 
performance of the airfoil are the lift/drag ratio (Cl/Cd) and lift coefficient. The desired wind turbine 

 
* Corresponding author. 
E-mail address: reham.kadhim@stu.edu.iq 
 
https://doi.org/10.37934/arfmts.91.2.133144 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 91, Issue 2 (2022) 133-144 

 

134 

should have an airfoil with a high lift/drag ratio (Cl/Cd) and lift coefficient [9]. The approaches that 
have been utilized to enhance the lift/drag ratio (Cl/Cd) and lift coefficient are classified into two 
types: active and passive systems. In the active system, an external power source such as plasma 
actuators [10], synthetic jets [11], or microtabs [12] is usually utilized to control the boundary layer 
and subsequently improve the aerodynamic forces. In contrast, the passive system does not require 
an external power source and is, generally, simpler when compared with an active system. Therefore, 
it has been used by various researchers to enhance the performance of existing airfoils. For instance, 
Taylor et al., [13] and Fouatih et al., [14] used a vortex generator that consists of a row of blades or 
airfoils to control the boundary layer. The vortex generator was placed slightly higher than the 
boundary layer and was set at an angle against the oncoming flow. The presence of this device 
markedly improved the wind turbine performance by forming vortices that propagated downstream 
to improve the free flow mixing with the boundary layer; consequently, the boundary layer stayed 
linked to the airfoil. Dane Gurney [15] inserted a flat plate (known as the Gurney flap) at the end of 
the airfoil, perpendicularly to the suction side. The inserted plate led to a noticeable increase in lift 
coefficient [16, 17]. The slotted airfoil was first introduced by Handley Page [18], in which the addition 
of slots to the airfoil controls the flow around the airfoil to improve the lift coefficient [3], [19]. 
Zhuang et al., [20] and Jawahar et al., [21] have examined the effect of a morphed trailing edge airfoil 
(flap airfoil) with various angles from the chord line on aerodynamic performance by using a 
computational fluid dynamic (CFD), with the results showing that the lift coefficient and lift/drag 
improve. A numerical computation performed by Ma et al., [22] to analyze the effects of relative 
thickness and its position on the aerodynamic performance of an airfoil can also be used to improve 
the lift coefficient. 

In the aforementioned studies, different approaches have been studied individually to improve 
the lift coefficient and lift/drag ratio of the airfoil in the passive system. Other researchers have used 
a combination of two methods to optimize the lift/drag ratio and lift coefficient. For instance, Xu et 
al., [23] studied different thick trailing edges with asymmetrical blunt trailing-edge airfoils. Their 
results show that the thickness position from the leading edge could be considered as a factor to 
modify the blunt airfoil and upgrade the lift/drag ratio. Gao et. al [24] and Kundu et al., [25] studied 
a vortex generator with a blunt and thick trailing-edge airfoil, respectively. Gamiz et al., [26] utilized 
Gurney flaps with microtabs to improve the lift/drag ratio for all angles of attack. 

However, there is little research focusing on the combination of two approaches to improve the 
lift/drag ratio and lift coefficient of a wind turbine. The effects of the thickness and morphed trailing 
edge modification on the airfoil have only been studied individually. It is important, however, to 
probe the aerodynamic performance of airfoils with thickness and morphed trailing edge 
modifications to improve the design of a wind turbine blade. Therefore, herein, we utilize these two 
approaches to modify the airfoil and study the effects on the lift/drag ratio and lift coefficient. To 
enhance the aerodynamic performance, NACA 0012 is used for the simulation. The thick trailing edge 
was inclined (morphed) to various angles (from 5° to 40°) to achieve further improvement in the 
lift/drag ratio and lift coefficient. The results revealed that inclining the thick trailing edge at 15º 
resulted in superior performance. 

 
2. Numerical Modeling 
2.1 Physical Model  

 
The impact of a two-dimensional airfoil's trailing edge on its aerodynamic performance is 

investigated. The inclined trailing edge is implemented on the 2D modified NACA 0012 airfoil of with 
the thickness ratio of the trailing edge 2%c, according to our previous study   [27], as shown in Figure 
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1. The angles of inclined trailing edge method are set to 5,10,15,20,25,30,35 and 40º. The angles are 
measured between the chord of the airfoil and the trailing edge. The chord length of the airfoil 
remains constant in all cases. The total length of the chord is 0.2m. Small scale wind turbines are a 
concerned in the present study. 

 

 
Fig. 1. NACA 0012 with and without inclined trailing edge 

 
2.2 Computational Domain and Boundary Conditions 

 
As illustrated in Figure 2, the C-H type is chosen for the computational domain. To reject the effect 

of the size domain, the simulation domain has been carefully selected 20 times from the chord of the 
airfoil for high accuracy [28, 29]. Hence, in this study, the simulation domain has been utilized 25 
from the airfoil chord and generated using ANSYS 19. The length of the airfoil chord is 0.2 m as 
mentioned before. For all cases, the following general boundary conditions are applied: At free flow 
conditions, the upstream and side boundary conditions are modeled as velocity inlets. The 
downstream boundary is specified as a pressure outlet, and the velocity is assumed to be uniform 
about 8 m/s. Furthermore, the airfoil's surface is treated as a non-slip wall. The lift and drag 
coefficients equations, which were utilized to analyze the data of the baseline and inclined airfoil, are 
as follows: 

 

𝐶𝐿 =  
𝐿

0.5 𝜌𝑈𝐶
                                                                                                                           (1) 

 

𝐶𝐷 =  
𝐷

0.5 𝜌𝑈𝐶
                                                                                                                           (2)                                                          

 
L=N cos (α) - A sin (α)                                                                                                         (3) 
 
D= N sin (α) + A cos (α)                                                                                                        (4) 
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The lift and drag ratios are used to calculate aerodynamic efficiency. The pressure coefficient is 
also determined by: 

 

𝐶𝑝 =  
𝑃

0.5 𝜌𝑈𝐶
                                                                                                                           (5) 

 

 
Fig. 2. The domain of computational 

 
2.3 Numerical Simulation 

 
The calculations in this study are done using the steady state numerical simulation method. Eleni 

et al., [25] demonstrated that the kῳ- SST model is appropriate for NACA 0012 airfoil design and 
provides accurate analyses and vortex at all angles of attack. Furthermore, according to references 
[28, 30, 31], k SST simulated the boundary layers along the airfoil's wall, which is necessary for 
capturing accurate results through numerical computations. Based on these researches, the Kῳ-SST 
model is selected for all domains in the current work for both airfoils with and without inclined 
trailing edge. The type of coupling algorithm is used to solve the equations of pressure-velocity 
coupling and the second-order upwind is selected with double-precision is used to calculate the 
governing equations including the continuity, momentum, and turbulence equations. The Iteration 
value of the calculations is stopped at 10-6 in the current study. The governing equations for the 
conservation of mass and momentum can be written as: 

 
Continuity equation: 

 
𝜕𝑢

𝜕𝑥
 + 

𝜕𝑣

𝜕𝑥
 = 0                                                                                                           (6) 

 
Two-dimensional incompressible Navier-Stokes equations: 

 
𝜕𝑢

𝜕𝑡
 +u 

𝜕𝑢

𝜕𝑥
 +υ 

𝜕𝑢

𝜕𝑥
 =

1

𝜌
 
𝜕𝑝

𝜕𝑥
 + 

𝜇

𝜌
 (

𝜕2𝑢

𝜕𝑥2
 + 

𝜕2𝑢

𝜕𝑦2
)                                                                   (7) 

 
𝜕𝜐

𝜕𝑡
 +u 

𝜕𝜐

𝜕𝑥
 +υ 

𝜕𝜐

𝜕𝑥
 =

1

𝜌
 
𝜕𝑝

𝜕𝑦
 + 

𝜇

𝜌
 (

𝜕2𝜐

𝜕𝑥2 + 
𝜕2𝜐

𝜕𝑦2)                                                                   (8) 
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where 
ρ= 1.225 kg/m3 
μ = 1.7894*105 kg/(m.s)  

 
The turbulent kinetic energy transport model equations of 𝑘 and 𝜔 can be stated by the following, 
respectively: 

 
𝜕(ρk)

𝜕𝑡
 + 

𝜕(ρ𝑢𝑗 𝑘)

𝜕𝑥𝑗
 = p-β*   ρώk + 

𝜕

𝜕𝑥𝑗
 [(σ𝑘 μ𝑡 + μ)

𝜕𝑘

𝜕𝑥𝑗
]                                                        (9) 

 
𝜕ρώ

𝜕𝑡
+

𝜕(ρ𝑢𝑗 ώ)

𝜕𝑥𝑗
=

γ

𝑉𝑡
P- ρβ ώ2+

𝜕

𝜕𝑥𝑗
[(σώ μ𝑡 + μ)

𝜕ώ

𝜕𝑥𝑗
]+2(1-F1)𝜎ώ2  (

ρ

ώ
)(

𝜕𝐾

𝜕𝑥𝑗
)( 

𝜕ώ

𝜕𝑥𝑗
)                            (10) 

 
where  
 

𝑆𝑖𝑗 =o.5 (
𝜕𝑢𝑗

𝜕𝑥𝑖
+

𝜕𝑢𝑖

𝜕𝑥𝑗
), 𝑃 = τ𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
, τ𝑖𝑗=μ𝑡 (2𝑆𝑖𝑗  - 

2

3

𝜕𝑢𝑘

𝜕𝑥𝑘
 𝑆𝑖𝑗)− 

2

3
 𝜕𝑘𝑆𝑖𝑗                                            (11) 

 
2.4 Mesh Independence Test 
 

The grid independence test is generally performed to ensure that the results do not depend on 
the number of elements [32]. The grid independence study is performed for the NACA 0012 airfoil at 
an attack angle of 4º and Re= 3×106 by using ANSYS-R19-ICEM. The structured mesh is utilized in this 
study because its heigh accuracy in predicting the experimental data [33]. Table 1 shows the standard 
parameters of the mesh quality; it is clear that our results fall within the scope of standard mesh 
quality in the ICEM software [34]. The hexahedral mesh type is used as shown in Figure 3. The range 
of the dimensionless distance of the wall (Y+) is smaller than (1), which is necessary to figure out 
more information about the flow of the boundary layer over the airfoil surface. Three different nodes 
number are compared in size: coarse, medium, and large (63,644, 119,909, and 181,739, 
respectively). The grids are taken when the magnitude of the lift and drag coefficients stops 
significantly varying with an increase of node number. Figure 4 shows that convergence occurs when 
the grids number 119,909, and so this number is used for all the current cases of airfoil design flow 
simulations. The relative error value is 7%. 

 
Table 1 
The values of mesh quality 
Parameter Standard Mesh Quality [34] Present Work 

Angle Greater than 18 59 
Minimum determinant Greater than 0.2 0.8 
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Fig. 3. Distribution of mesh around the airfoil 

 

 
Fig. 4. Comparisons of three different numbers of grids at α=4° 

 
3. Results and Discussion  
3.1 Aerodynamic Performance of Airfoils with Inclined Thick Trailing Edge at Different Angles 
 

In this section, the trailing edge of the optimized thick trailing edge is inclined by various angles 
(Ꝋ)—5°, 10°, 15°, 20°, 25°, 30°, 35°, and 40°—as mentioned before, and the effects of these changes 
on lift/drag ratio and lift coefficient are studied. Figure 5(a) shows the results for the lift and drag 
coefficients. The influence of the inclined thick trailing edge is to considerably enhance the lift 
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coefficient. Compared with the baseline airfoil and smooth thick airfoil, the maximum lift coefficient 
is gradually improved with the increase of the angle of the inclined trailing edge. No matter what the 
angle is, the lift coefficient is higher than that of the baseline airfoil for all angles of attack. Besides, 
Figure 5(a) also indicates that the optimum lift coefficient for the inclined airfoil occurs at α=10° and 
is smaller than the stall thick airfoil angle. The maximum lift coefficient value is 1.44 for the inclined 
airfoil of Ꝋ=40° and is increased by 74%. The drag coefficients versus the angles of attack are also 
shown in Figure 5(a). The drag coefficient slightly increases with the inclined angle when the α is 
between 1° and 8°, however, at an α above 8°, a considerable increase in the drag coefficient is 
observed. In Figure 5 (b), the lift/drag ratios for the inclined airfoils are greater than that of the 
baseline airfoil. The lift/drag ratio increases with the angle of the inclined trailing edge. The maximum 
lift/drag ratio is achieved for the inclined airfoil of Ꝋ=15° and is increased by 39.495%. After that, the 
lift/drag ratio decreases with the enlargement of the angle of the inclined trailing edge until it reaches 
the minimum value at inclined airfoil of Ꝋ=40°. The lift/drag ratio of inclined airfoil of Ꝋ=40° is 
approximately equal to that of the baseline airfoil. Because of the rate of increase, the drag 
coefficient begins to grow larger than the rate of increase of the lift coefficient, and then the lift/drag 
ratio drops significantly to that of the baseline airfoil. Figure 6 shows the pressure coefficient of the 
baseline airfoil and inclined airfoils. The figure illustrates that as the angle of inclined trailing edge 
airfoil increases, the difference in the pressure coefficient increases. The optimum pressure 
coefficient is reached for the inclined airfoil of Ꝋ=40º, and this, in turn, leads to an increase in the lift 
coefficient. The increase of the trailing edge angle (Ꝋ) causes an increase in trailed vortices formation, 
and this, consequently, increases the drag coefficient due to the increase in the negative pressure 
behind the trailing edge, as shown in Figure 7.  

 

  
(a) Lift and drag coefficients (b) Lift/drag ratio 

Fig. 5. Aerodynamic coefficients for the baseline airfoil and inclined airfoils with angles of attack 
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Fig. 6. Comparison of pressure coefficient over an airfoil with and 
without modification at α=10°. 

 

 

 

 

(a) Baseline airfoil (b) Inclined airfoil with δ=2%c and Ꝋ=0° 
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(c) Inclined airfoil with δ=2%c and Ꝋ=5º (d) Inclined airfoil with δ=2%c and Ꝋ=15º 

 

 

(e) Inclined airfoil with δ=2%c and Ꝋ=25º (f) Inclined airfoil with δ=2%c and Ꝋ=40º 

Fig. 7. Velocity contours and streamlines of the airfoils at α=10º 
 

As seen in the above method, the angle of inclined trailing edge stops at =40o as the lift/drag ratio 
of these airfoils decreases and becomes too near to the lift/drag ratio of the baseline airfoil. 

Table 2 summarizes the lift coefficient values and lift/drag ratios for all airfoils. The inclined airfoil 
with the best performance is highlighted. Based on the previous results, the case of the inclined airfoil 
with Ꝋ of 15o is the best case in this study for improving the lift/drag ratio. Based on lift coefficient 
improvement, the case of the inclined airfoil with Ꝋ =40o is the best airfoil when compared with other 
studied airfoils. 
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Table 2  
Comparisons of maximum values of lift coefficients and lift/drag ratios for baseline 
airfoil and thick airfoils 
Percentage of 
Modification 

α Optimum Lift 
Coefficient 

α Optimum Lift/Drag Ratio 

Baseline Airfoil 10 0.8278 8 28.1198 
Inclined Airfoil 
δ=2%c, Ꝋ=5º 10 1.0563 8 32.4928 
δ=2%c, Ꝋ=10º 10 1.1816 6 33.8398 
δ=2%c, Ꝋ=15º 10 1.2829 6 34.0957 
δ=2%c, Ꝋ=20º 10 1.3396 6 33.2791 
δ=2%c, Ꝋ=25º 10 1.3262 6 32.1454 
δ=2%c, Ꝋ=30º 10 1.4036 6 31.1462 
δ=2%c, Ꝋ=35º 10 1.4226 6 29.2188 
δ=2%c, Ꝋ=40º 10 1.4455 6 28.3280 

 
4. Conclusions  
 

This paper numerically investigates the effect of various inclined of thick trailing edge on the 
aerodynamic performance improvement by Computational fluid dynamics with the k-ῳ SST 
turbulence model. Based on our observation, the results are summarized as follows: 

i. The lift coefficient increases with the increase in the inclining angle. The optimum lift 
coefficient improvement is achieved for the inclined airfoil with Ꝋ=40º, increasing by 74%. 

ii.  The drag coefficient also increases with the inclined angle increases. 
iii.  The lift/drag ratio increases with the increase of the inclined angle, and the maximum 

improvement ratio reaches 39.495% for the inclined airfoil with Ꝋ=15º. Any further increase 
in the inclined angle decreases the lift/drag ratio as a result of drag increase.  

To conclude, the inclined airfoil with Ꝋ=15º results in the highest lift/drag ratio (39.495%) of all 
the studied airfoils.  
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