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The exploration addresses the effect of variable viscosity and thermal conductivity on the 
peristaltic mechanism of Bingham fluid. A two-dimensional non-uniform porous channel 
is considered for the fluid flow, which is assumed to be inclined. The impact of heat, slip 
conditions, wall properties, homogeneous and heterogeneous reactions are examined. 
The resulting nonlinear differential equations are solved by employing the perturbation 
method. The solutions acquired are analyzed and sketched through graphs that show that 
the variable viscosity renders a critical role in regulating the velocity of the fluid in the 
channel's central part. The stream function has been analyzed to observe the trapping 
phenomenon. Further, the obtained results find its application in understanding the flow 
of blood in micro arteries. 
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1. Introduction 
 

The peristaltic mechanism is an inherent property caused by the contraction and expansion of 
the sinusoidal wave due to the flexible tube/channel walls. This mechanism is essential to understand 
bio-fluids' flow, such as blood, urine, eye drops, chyme movement, spermatozoa, etc. The mechanism 
was first investigated by Latham [1] using a Newtonian fluid model. He studied the spread of infection 
from bladder to kidney in the ureter. Shapiro et al., [2] investigated the peristaltic transport with a 
longer wavelength and lowered Reynolds number. In earlier days, research was carried out for 
Newtonian fluid. Later, Raju and Devanathan [3] studied the properties of peristaltic flow using non-
Newtonian fluid. The mechanism of peristalsis of Herschel-Bulkley fluid was analyzed by Vajravelu et 
al., [4,5] in an inclined tube, which investigates the flow characteristics of fluids. Jiménez-Lozano et 
al., [6] analyzed the peristalsis in a two-phase model to investigate the mechanism involved in 
ureteral biomechanics. Vaidya et al., [7] considered an inclined tube to study the transport of a 
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Bingham fluid and analyze the heat transfer effects during the peristalsis. Further, Manjunatha et al., 
[8] examined the function of convective boundary conditions, porous-walled tube, and variable liquid 
properties in the peristaltic movement of a non-Newtonian Bingham fluid. 

The slip effects on biological fluids have gained many researchers' attention in modern times for 
their vast application in the field of medicine. The initial studies on the influence of slip effects on 
peristaltic transport are carried out by El-Shehawey and Husseny [9] and El-Shehawey et al., [10]. 
Awgichew and Radhakrishnamacharya [11] investigated the slip effect on the flow of a couple-stress 
fluid flowing in a symmetric two-dimensional channel with mild Stenosis. Akbar et al., [12] 
emphasized the impacts of slip effects on the sinusoidal flow of nanofluids. Later on, Ellahi and 
Hussain [13] considered a rectangular duct in their studies on a Jeffrey fluid's peristalsis. They 
obtained a closed-form solution of the problem and studied the effects of MHD and partial slip 
conditions on the fluid transport. Akbar [14] studied the impact of thermal slip and velocity on the 
MHD peristaltic motion of a Cu water nanofluid. Hayat et al., [15] analyzed the motion in a non-
uniform permeable medium under the thermal slip conditions and radial magnetic field while 
accounting for the variable fluid viscosity. Recently, Manjunatha et al., [16] explored the effect of slip 
on the peristaltic flow of Rabinowitsch fluid inside an inclined non-slippery tube. Furthermore, the 
slip effects on peristaltic transport of different non-Newtonian fluids with different geometries are 
studied [17-22]. 

Over the past years, studies have shown that flow through porous media is also an essential factor 
in peristaltic studies, given its applications in various industrial and biological processes. Elshehawey 
et al., [23] obtained a precise form of the streamline function in their attempt to study the peristalsis 
in an asymmetric permeable conduit. Further, Alsaedi et al., [24] investigated the flow of an 
incompressible couple stress fluid in a permeable medium. They examined the effect of couple stress 
and permeability parameters on peristalsis inside a medium having pores. Nadeem et al., [25] studied 
the porous medium's influence on the peristalsis of a nanofluid. Ramesh and Devakar [26] studied 
the influence of heat and mass transfer in the peristalsis of a couple-stress fluid in a vertical 
asymmetric channel. They considered the effects of the magnetic field and homogeneous permeable 
medium. Recently, Rajashekhar et al., [27] examined the impact of variable liquid properties of the 
peristaltic transport through a porous medium. 

In the past few years, the researchers noticed the importance of thermophysical properties in 
understanding various mechanisms associated with the human body. It is seen that in physiological 
fluids like blood and other liquids, these properties are not constant. In the variation in these 
properties, it is necessary to reflect on the variable thermal conductivity as well viscosity. The 
influence of varying viscosity was taken into consideration by Farooq et al., [28] in their peristaltic 
study on Jeffrey fluid. Abbasi et al., [29] revealed facts on the variable thermal conductivity and 
convective heat conditions in their investigations on the peristaltic motion of Carreau-Yasuda fluid. 
Both the properties of varying viscosity and thermal conductivity were reported by Baliga et al., [30] 
while investigating the peristalsis of Herschel-Bulkley fluid. In an attempt to investigate the effects of 
variable properties of a Bingham Fluid exhibiting porous peristaltic motion, Divya et al., [31] 
considered an inclined magnetic field. Due to its immense applicability in bioengineering and 
medicine, numerous researchers have studied its impact on various geometries [32-40]. 

The chemical reaction can be modified as either a homogeneous or heterogeneous process. It 
depends on whether they occur at an interface or as a single-phase volume reaction. The response is 
heterogeneous/homogeneous if it happens at an interface/in solution. There is the involvement of 
both homogeneous and heterogeneous reactions in several chemically reacting systems. Mention 
may be made to the processes occurring in catalysis, combustion, biochemical techniques, cooling 
towers, fog dispersion, crop-damaging through freezing, and many others. The study on modelling 
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the peristaltic flow under the chemical reactions can be found in [41-43]. Recently, numerous studies 
have been carried on the investigation of non-Newtonian fluids in various geometries [44-47]. 

Having considered the various researchers and their work the author concludes that no attempts 
has been made to analyze the characteristic flow of a Bingham fluid during peristalsis through a non-
uniform, inclined porous channel, where both variations of viscosity and thermal conductivity have 
also been considered. Moreover, the present study also investigates the homogeneous and 
heterogeneous reactions. The study also includes wall properties to understand the applications in 
industries and medicine better. Heat transfer is investigated with convective conditions. The 
mathematical model is solved by the method of perturbation. The consequences of relevant 
parameters on temperature, velocity, streamlines, and concentration are reported with graphs using 
MATLAB and the outcomes are explained. 
 
2. Formulation of the Problem 
 

A non-compressible non-Newtonian fluid flowing through an inclined non-uniform permeable 
channel is considered for analysis. The flow is governed by the Bingham Fluid model. The flow is 
induced by peristaltic waves moving with a constant speed C . The Cartesian coordinate system is 
chosen such that x  is the axial direction and y  is perpendicular to it. 

 
𝜇(𝑦) = 1 − 𝛼1𝑦 

 
𝑘(𝜃) = 1 + 𝛼2𝜃 

Fig. 1. Geometry of the physical model 

 
We consider the homogeneous-heterogeneous reaction model between two chemical species Î  

and Ĵ  as defined below [41,42] 
 

2ˆ ˆ ˆ3 , cI J J Rate K IJ+ → = .            (1) 

 
Further, single, isothermal and first order chemical reaction is considered on the catalyst surface. 

Thus, we have 
 

ˆ ˆ, sI J Rate K I→ = ,             (2) 

 

where I  and J  are the concentration of Î and Ĵ respectively, while cK and sK are the rate constants. 

Note that here both the reaction processes take place at the same temperature. 
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The equations that govern the flow are 
 

0
u w

x y

  
+ =
  

,              (3) 

( ) ( )1 0sin
u u u p x x x y

u w w C g T T
t x y x x x

  
   



               
   + + = − + + − + + −            

,    (4) 

 

( ) ( )1 0cos
w w w p x y y y

u w u g T T
t x y x x x

  
   



               
   + + = − + + − + −            

,     (5) 

 

( ) ( )1 0p

T T T T T
C u w k k T k T Q

t x y x x y y


               
   + + = + +                     

,     (6) 

 
2 2

2

2 2I

dI I I
M kcIJ

dt x y

  
= + − 

   
,           (7) 

 
2 2

2

2 2J

dJ J J
M kcIJ

dt x y

  
= + + 

   
,           (8) 

 
where u , w  are components of velocity in radial and axial directions respectively.  is the fluid 

density, P is the pressure, , ,x x x y y y          are extra stress components, while 
1, , , ,p I Jk T C M M , 

denotes thermal conductivity, temperature, specific heat at constant volume and mass diffusivity 
coefficient for homogeneous and heterogeneous reactions respectively. 
 
The conditions at the boundary are 
 

0 at 0
w

y
y




= =


,             (9) 

 

( ) ( )1

2
0 at sin

w
w y H l x b x ct

y






  
      + = = = + −   

,                  (10) 

 

0 at 0
T

y
y


= =


,                       (11) 

 

( )1 0 0 at
T

k T T y H
y

 


   − = − =


,                     (12) 

 

0 at 0I I y= = ,                       (13) 

 

atI s

I
M k I y H

y


 = =


,                      (14) 
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0 at 0J J y= = ,                       (15) 

 

atJ s

J
M k J y H

y


 = − =


,                      (16) 

 

where H   represents non-uniform wave wherein ( )l x is the non-uniform radius. The meanings of 

other variables used are given in the nomenclature section. 
 
We now introducing the dimensionless quantities 
 

( )

( )

22

0 01

1 0 1 1 1 0

2

1 0

0 0

, , , , , , , ,

Re , , , Pr , , ,

, , , , ,

xx xy yy

p p

p

s I
s

I J

x y w u a x x a x y a y y ct
x y w u t

a a Ca C C C

C yT T Q akaC a p
p Da y

C T T k a a k T T

ga T Tk I M I I
K Gr g f

M M C I I

   
  

    


 

 


 



                
= = = = = = = =

 

    −
= = = = = = =

 − −

  −
= = = = =

( )( )
3 3 3

1 2 33 3

, ,

, , , 1 sin 2

a b

a

a ma C a C H
E E E h mx x t

C a





 

    

 
= =



   −
= = = = = + + −



.              (17) 

 
Using Eq. (17) in Eq. (3)-(8) and by using low Reynolds number and long wavelength 

approximations, the non-dimensional governing equations take the form as below 
 

( )
1

1 sin
xyp

w Gr y
x y Da





= − + +

 
,                     (18) 

 

0
p

y


=


,                        (19) 

 

( ) 0k
y y


 

  
+ = 

  
,                      (20) 

 
2

2

2

1
Kfg

Sc y


=


,                       (21) 

 
2

2

2

g
Kfg

Sc y

 
= −


,                       (22) 

 

where ,f g are the dimensionless concentration of chemical species Î and Ĵ . Further, 
xy  denotes 

constitutive equation of Bingham fluid 
 

0 0,xy xy    = +  ,                      (23) 
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00, xy  =  .                      (24) 

 
The dimensionless boundary conditions are 
 

0 at 0
w

y
y




= =


,                       (25) 

 

1 0 at
w

w y h
y




+ = =


,
                                                                                                                         

(26) 

 

0 at 0y
y


= =


,
                                                                                                                                  

(27) 

 

2 0 at y h
y


 


+ = =


,
                                                                                                                         

(28) 

 

1 at 0f y= = ,                                                                                                                                     (29) 

 

ats

f
K f y h

y


= =


,
                                                                                                                               

(30) 

 

1 at 0g y= = ,                                                                                                                                     (31) 

 

ats

g
K f y h

y


= − =


,
                                                                                                                            

(32) 

 

where 1  and 2  are velocity and temperature slip parameters respectively. 

Assuming the diffusion constants IM  and JM  to be equal (i.e., 1 = ), which makes Eq. (29)-(32) 

take the following form 
 

1f g+ = .                        (33) 

 
Using the above, Eq. (21) and Eq. (22) take the forms 
 

( )
2

2

2

1
1

f
Kf f

Sc y


= −


,
                                                                                                                               

(34) 

 
with the boundary condition 
 

1 at 0f y= = ,                       (35) 

 

ats

f
K f y h

y


= =


,                       (36) 
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The varying viscosity across the wall channel thickness is 
 

( ) 1 11 , 1y a y for a = −  ,                      (37) 

 

where 1a is the variable viscosity coefficient. 

With respect to temperature, the thermal conductivity varies and is given by 
 

( ) 2 21 , 1k a for a = −  ,                      (38) 

 

where 2a is the coefficient of variable thermal conductivity. 

 
3. Solution to the Problem 
 

Eq. (18)-(22) are nonlinear equations. To solve these equations, we apply perturbation technique 
for smaller values of coefficients of variable viscosity and thermal conductivity respectively. 
 
3.1 Perturbation Solution 
 

The solution for velocity and temperature is obtained by solving Eq. (18) and Eq. (20) along with 
conditions at the boundary given by Eq. (25)-(28) using the perturbation series as follows 
 

( )1

0

n

n

n

w a w


=

= .
                       

(39) 

 

( )2

0

n

n

n

a 


=

= .                       (40) 

 
Also, the perturbation solution is obtained for the Eq. (34) for small parameter K. 
 

( )
0

n

n

n

f K f


=

= .                       (41) 

 
3.1.1 Zeroth Order Solution 
 

( ) ( )4 2 2 3 2 2

0 1 2 1 2 3sin cos 12 24 2
y y

w C C PDa B Day Da y Da B Day Da B Da
Da Da

= + − + − + + − + .              (42) 

 

2 2

0 2
2 2

y h h
 

 
 

= + + 
 

.                      (43) 

 

0 1
1

s

s

yK
f

hK
= +

−
.                       (44) 

 
 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 88, Issue 3 (2021) 1-19 

8 
 

3.1.2 First Order Solution 
 

( )
2

3

1 3 4 1 3 2 1

2

2

1
sin cos sin cos

4 84

cos sin
4 84

y y y y Da y
w C C G G y G y C y

Da Da Da Da Da

y y y Da y
C

Da Da Da

   
= + + + + + − + −          

  
+ − +    

  

.

               

(45) 

 

2 2

0 2 2
2 2

a y h h
 

 
 

= + + 
 

.
                     

(46) 

 

( )( ) ( )( )
( )

2 4 3 2 2

1 4

1 5 5 3 2 10 5

60 1

s s s s s s

s

ScK y hK kK yK h y hK h K
f

hK

− + − + − − − +
=

− +
.

                

(47) 

 
With the velocity expression, upper bound of the plug flow region is found with the help of 

following boundary condition 
 

0 at p

w
y y

y


= =


.
                       

(48) 

 
Using the above condition, we obtain the expression for stress in plug flow region. i.e., 
 

( ) ( )

( )
1 2 1 3 4 5 6

0

7 1 8 9 10 11

S S a S S S S

S S S S S




+ − + + +
=

+ + + +
.

                    

(49) 

 
Using Eq. (42) and Eq. (45) we can also obtain the plug flow velocity when 

py y=  as 

 

1 2 3 4 1 5cos sin
p p

p

y y
w X X X X a X

Da Da
= + + + + .                   (50) 

 
We now obtain the stream function using the following expression given below 
 

,w u
y x

  
= = −
 

,
                       

(51) 

 
with the boundary condition, 
 

0 at y h = = .                       (52) 

 
Then the expression for Stream function is given as 
 

0 1 1  = + ,                        (53) 
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where, 
 

5 3
2 3

0 2 1 1

3
2

2 3

sin cos 12 24
5 3

2
3

y y y y
C Da C Da PDay B Da Da Da y

Da Da

y
B Da Da y B Day


 

= − − + − + 
 

 
+ − + 

 

.

              

(54) 

 

( )

2

1 4 3 2

2 2 4

1 1 2 2

sin cos sin cos
4 4 8

1 3
cos sin

2 4 4 8 2 4

y y Da y y Da y
C Da C Da C y

Da Da Da Da

Da y y Da y y y
C y G G G

Da Da


  

= − + − − +   
  

   
+ + + + + + +        

.                (55) 

 
The expressions for A1, A2, B1, B2, B3, Ci (i = 1, 2, 3, 4), Dj (j = 1, 2, …, 8), Fk (k = 1, 2, …,7), G1, G2, G3, 

Qi (l = 1, 2, 3, ..., 11) and Xn (n = 1, 2, ..., 5) are mentioned as follows 
 

𝑃 =
𝜕𝑝

𝜕𝑥
= 8𝜖𝜋3 (−(𝐸1 + 𝐸2) cos(2𝜋(𝑥 − 𝑡)) + 𝐸3

sin(2𝜋(𝑥 − 𝑡))

2𝜋
) 

𝐴1 = −
𝛽

2
 

𝐴2 = 𝛽𝛽2ℎ + 𝛽
ℎ2

2
 

𝐵1 = 𝐺𝑟 𝐴1
2  𝛼2 sin 𝛾 

𝐵2 = 𝐺𝑟 (𝐴1 + 2 𝐴1𝐴2  𝛼2 ) sin 𝛾 
𝐵3 =  𝐺𝑟 𝐴2

2  𝛼2 sin 𝛾 

𝐶1 = 𝜏0√𝐷𝑎 
𝐶2 =  𝐶1𝐹1 + 𝐹2 + 𝐹3 + 𝐹4 

𝐶3 = √𝐷𝑎 (𝜏0 − 𝐺1 − 𝐺3 −
𝐶2

8
+

𝐶1

4
) 

𝐶4  = 𝐶3𝐹1 + 𝐹5 + 𝐶2𝐹6 + 𝐶1𝐹7 

𝐷1 =
𝛽1

√𝐷𝑎
sin

ℎ

√𝐷𝑎
−  cos

ℎ

√𝐷𝑎
 

𝐷2 =
𝛽1

√𝐷𝑎
cos

ℎ

√𝐷𝑎
+ sin

ℎ

√𝐷𝑎
 

𝐷3 = 𝐵2(−𝐷𝑎 ℎ2 + 2 𝐷𝑎2 − 2 𝐷𝑎 𝛽1 ℎ) 
𝐷4 = 𝐵1(𝐷𝑎 ℎ4 − 12 𝐷𝑎2ℎ2 + 24 𝐷𝑎3 + 4 𝐷𝑎 ℎ3𝛽1 − 24 𝐷𝑎 𝛽1 ℎ) 
𝐷5 =  𝐵3 𝐷𝑎 − 𝑃 𝐷𝑎  
𝐷6 =  (𝐺1 + 𝐺3)(ℎ + 𝛽2) + 𝐺2ℎ2(ℎ + 3 𝛽1) 

𝐷7 = (
ℎ

4
+

𝛽1

4

ℎ2

𝐷𝑎
+

1

8
)  cos

ℎ

√𝐷𝑎
−  (

ℎ2

4√𝐷𝑎
+ 5

√𝐷𝑎

8
−

ℎ

4
) sin

ℎ

√𝐷𝑎
 

𝐷8 = (
ℎ2

4√𝐷𝑎
−

√𝐷𝑎

8
+

3

2
𝛽1 ℎ −

𝛽1

4√𝐷𝑎
)  cos

ℎ

√𝐷𝑎
+  (ℎ −

1

4
−

𝛽1

4

ℎ2

𝐷𝑎
+ 7

𝛽1

8
) sin

ℎ

√𝐷𝑎
 

𝐹1 =
𝐷2

𝐷1
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𝐹2 = −
𝐷3

𝐷1
 

𝐹3 =
𝐷4

𝐷1
 

𝐹4 =
𝐷5

𝐷1
 

𝐹5 =
𝐷6

𝐷1
 

𝐹6 =
𝐷7

𝐷1
 

𝐹7 =
𝐷8

𝐷1
 

𝐺1 =  −144 𝐵1√𝐷𝑎5 

𝐺2 = 16 𝐵1√𝐷𝑎3 

𝐺3 = 4 𝐵2√𝐷𝑎3 
𝑆1 =  𝐵3 𝐷𝑎 (24 𝐷𝑎 𝑦𝑝 − 𝑦𝑝

3) − 2 𝐵2 𝐷𝑎  

𝑆2 = − 
(𝐹1 + 𝐹3)

√𝐷𝑎
sin

𝑦𝑝

√𝐷𝑎
 

𝑆3 =  (𝐺1 + 𝐺3)  + 𝐺2𝑦𝑝
2 

𝑆4 =  
(𝐹2 + 𝐹3)

√𝐷𝑎
(

𝑦𝑝
2

4 𝐷𝑎
+  

1

8
) cos

𝑦𝑝

√𝐷𝑎
− (

𝑦𝑝

4
 +  

√𝐷𝑎

2
) sin

𝑦𝑝

√𝐷𝑎
 

𝑆5  = − 
(𝐺1 + 𝐺3)

√𝐷𝑎
cos

𝑦𝑝

√𝐷𝑎
 

𝑆6  = − 
𝐷6

√𝐷𝑎
sin

𝑦𝑝

√𝐷𝑎
 

𝑆7  = 𝐹1 sin
𝑦𝑝

√𝐷𝑎
+ cos

𝑦𝑝

√𝐷𝑎
 

𝑆8 = 𝐹1√𝐷𝑎 (
𝑦𝑝

2

4 𝐷𝑎
+  

1

8
) cos

𝑦𝑝

√𝐷𝑎
− (

𝑦𝑝

4
 +  

√𝐷𝑎

2
) sin

𝑦𝑝

√𝐷𝑎
 

𝑆9 =  √𝐷𝑎 (−
𝑦𝑝

2

4 𝐷𝑎
+ 

7

8
) sin

𝑦𝑝

√𝐷𝑎
 +

3

2
√𝐷𝑎𝑦𝑝  −

1

4
cos

𝑦𝑝

√𝐷𝑎
 

𝑆10 =  − (1 +
√𝐷𝑎

4
 −  

𝐹1

8
) cos

𝑦𝑝

√𝐷𝑎
 

𝑆11  = ((1 +
√𝐷𝑎

4
 −  

𝐹1

8
)

𝐹1

√𝐷𝑎
+

𝐹1𝐹6

√𝐷𝑎
 + √𝐷𝑎𝐹7) sin

𝑦𝑝

√𝐷𝑎
 

𝑋1 = 𝐶2 + 𝛼1 (𝐶1 (
𝑦𝑝

2

4√𝐷𝑎
 − 

√𝐷𝑎

8
) + 𝐶2

𝑦𝑝

4
 +  𝐶4) 

𝑋2 =  𝐶1 +  𝛼1 (𝐶1 (𝑦 −
1

4
) + 𝐶2

√𝐷𝑎

8
+ 𝐶3) 

𝑋3 =  𝐵2 (𝐷𝑎𝑦𝑝
2 − 2 𝐷𝑎2) + 𝐵3 𝐷𝑎 − 𝑃𝐷𝑎 

𝑋4 =  𝐵1(𝐷𝑎𝑦𝑝
4 − 12 𝐷𝑎2𝑦𝑝

2 + 24 𝐷𝑎3) 

𝑋5 =  (𝐺1 + 𝐺3) 𝑦𝑝 + 𝐺2𝑦𝑝
3 − 𝐶2 
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4. Results and Discussion 
 

In the current segment, the influence of important parameters on the temperature profiles, 
velocity profiles and stream function are discussed. The effects of rigidity parameter (𝐸1), stiffness 
parameter (𝐸2), viscous damping force parameter (𝐸3), variable viscosity (𝛼1), Darcy number (Da), 
velocity slip parameter (𝛽1), temperature slip parameter (𝛽2), non-uniformity parameter (m), 
strength of heterogeneous reaction (Ks) and homogeneous reaction (K), Schmidt number (Sc), are 
analyzed and discussed through graphs. MATLAB programming has been employed for the 
pictographic depictions of pertinent parameters of importance, taking the following values of 
parameters: 𝐸1=0.5, 𝐸2=0.5, 𝐸3=0.5, m=0.1, Da=0.2, 𝛼1= 0.01, t=0.2, x= 0.22, 𝛽1= 0.1, 𝛽2=2, Gr =1, 

𝑦𝑝=0.3, 𝜖=0.3, 𝐾𝑠 = 2, 𝐾 = 0:2; 𝑆𝑐 = 0:5 and 𝛾 =
𝜋

3
. 

 
4.1 Velocity Profiles 
 

The influence of 𝛼1, 𝛽, 𝛽1, Da, 𝜀, 𝐸1, 𝐸2, 𝐸3, 𝛾 and m on velocity are illustrated through Figure 2. 
Each of these parameters are studied for their influence on velocity of the Bingham fluid model. The 
Figure 2(a) to Figure 2(j) clearly exhibit the parabolic profiles for velocity. Figure 2(a) is drawn to 
analyze the behavior of variable viscosity on the velocity profiles. The figure infers that, in the central 
part, growth of variable viscosity diminishes the velocity profiles of the fluid, while the behavior is 
contrast in the central part of the conduit for heat generating parameter Figure 2(b). The influence 
of velocity slip on velocity profile is represented in Figure 2(c) and we notice a decrease in velocity 
when the velocity slip parameter value increases. The velocity enhances for an increase in the 
porosity at the center of the channel (see Figure 2(d)). As the amplitude ratio rises, the central 
channel velocity enhances with larger estimation (Figure 2(e)). The effects of changes in the wall 
properties on the fluid are plotted. It is noticed that enhancing the values of E1 and E2 confronts an 
increase in the fluid velocity. With rise in the values of E3, the velocity of the flow diminishes, and we 
can also notice that the change in velocity with respect to varying E3 is so small that it can be negligible 
(see Figure 2(f) to Figure 2(h)). From the Figure 2(i) we observe that larger the inclination angle of 
the channel, faster the fluid moves. Also, as the channel becomes more non-uniform, velocity of the 
fluid reduces (see Figure 2(j)). 
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Fig. 2. Velocity profiles for varying (a) 𝛼1, (b) 𝛽, (c) 𝛽1, (d) Da, (e) 𝜀 (f) 𝐸1, (g) 𝐸2, (h) 𝐸3, (i) 𝛾 and (j) 𝑚 

 
4.2 Temperature Profiles 
 

Graphical representations in Figure 3(a) to Figure 3(d) depict the variation in temperature profiles 
for varying physical parameters. The significance of 𝛽 in fluid temperature is shown in Figure 3(a), 
where it can be seen to increase the temperature with its rising value. In the flow of blood in 
arterioles, this behavior is reasonable due to the thickening of the boundary layer as heat is 
generated, which results in an appreciable rise in the temperature of the boundary layer. However, 
Figure 3(b) shows an enhancement in the fluid temperature with increasing variable thermal 
conductivity. The effect of thermal slip parameter can be seen to have an enhancement in 
temperature with an increase in these parameters (see Figure 3(c)). Figure 3(d) shows that the non-
uniformity parameter enhances the temperature. 
 
4.3 Homogeneous and Heterogeneous Reaction Effects 
 

The effect of heterogeneous and homogeneous reactions 𝐾𝑠 and 𝐾, Schmidt number 𝑆𝑐 and non-
uniformity parameter m on the concentration profiles are plotted in Figure 4(a) to Figure 4(d). From 
Figure 4(a) and Figure 4(b), it can be understood that while the parameter 𝐾𝑠 enhances the 
concentration with its increasing values, higher values of the parameter 𝐾 results in a diminution in 
the concentration. An increase in 𝑆𝑐 would mean an increase in the molecular diffusion, thus 
resulting in a reduction in the concentration. This behavior is reflected in Figure 4(c). A contrary 
behavior of the non-uniformity parameter is depicted in Figure 4(d). 
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Fig. 3. Temperature profiles for varying (a) 𝛽, (b) 𝛼2, (c) 𝛽2 and (d) 𝑚 
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Fig. 4. Concentration profiles for varying (a) 𝑆𝑐, (b) 𝑚, (c) 𝐾𝑠 and (d) 𝐾 

 
4.4 Trapping Phenomenon 
 

Trapping mechanism is an integral part of the peristaltic movement. This phenomenon occurs 
during peristalsis when few of its streamlines gets closed, resulting in the development of bolus that 
circulates on the inside and advances with speed of the peristaltic waves. This section attempts to 
study this interesting phenomenon of trapping through the plots of stream functions. Figure 5 is 
plotted to study the influence of variable viscosity on the pattern of stream function, in which it can 
be noticed that 𝛼1 contributes to a decrease in the bolus size. Effects of porous parameter Da is seen 
to increase the bolus size during peristalsis (see Figure 6). While opposite behavior is seen for velocity 
slip parameter (Figure 7). A reduction in the bolus size is clearly seen as the value of Grashof number 
(Gr) increases in Figure 8. 
 

  
(a) (b) 

Fig. 5. Streamlines for varying (a) 𝛼1 = 0.02 and (b) 𝛼1 = 0.03 
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(a) (b) 

Fig. 6. Streamlines for varying (a) 𝐷𝑎 = 0.2 and (b) 𝐷𝑎 = 0.25 

 

  
(a) (b) 

Fig. 7. Streamlines for varying (a) 𝛽1 = 0.1 and (b) 𝛽1 = 0.15 

 

  
(a) (b) 

Fig. 8. Streamlines for varying (a) 𝐺𝑟 = 1 and (b) 𝐺𝑟 = 3 

 
5. Conclusion 
 

The current model investigates the consolidated impacts of convective boundary conditions and 
variable fluid properties on the peristaltic component of Bingham liquid in a slanted non-uniform 
channel. Some considerable findings from the current investigation are: 

• Porous parameter aids for enhancing the velocity profiles while the slip parameter diminishes 
the velocity. 
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• The variable thermal conductivity and heat generating parameters are increasing function of 
temperature. 

• The wall parameters E1 and E2 increases the velocity of the fluid, whereas viscous damping 
force parameter E3 reduces the velocity. 

• The trapped bolus reduces its volume for higher values of velocity slip parameter and variable 
viscosity.  

• The porous parameter is an aid for increasing the bolus formed during trapping. 
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