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Given that surface roughness is used to determine product quality, it is a crucial 
consideration in turning machining. Moreover, it considerably affects the cost of 
machining. This study forecasts surface roughness values for AISI 304 stainless-steel hot 
lathe machining using the particle swarm optimisation (PSO) methodology. The 
workpiece is heated to 100, 150 or 200 degrees Celsius before being turned. Afterwards, 
the depth, speed and feeding rate of cutting are adjusted to determine the surface 
roughness of the workpiece. The feeding rate is determined to be the most considerable 
influence in raising the surface roughness value, followed by cutting depth, cutting speed 
and workpiece temperature. In terms of accuracy, empirical modelling performs better. 
The PSO methodology illustrates an effective and straightforward method that can be 
applied to calibrate different empirical machining models. 
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1. Introduction 
 

Machine tool usage is integrally related to the machining industry, whether small or large. A lathe 
is a machine tool that is used in small and large manufacturing operations. The two most common 
lathe machining processes are turning with cooling fluid (cutting fluid) and dry turning (dry cutting). 
Dry turning is becoming more common in the machining industry for the foreseeable future due to 
environmental concerns [1-3]. 

Various approaches, such as cooling fluid and hot machining procedures, have been utilised to 
improve the quality of metal turning processes. Hot machining is a technique for improving the 
quality of a turning operation by softening difficult-to-work-on workpieces. It is one of the most used 
methods for metal turning of difficult-to-cut materials, such as superalloys, titanium alloys and 
ceramics [4]. Cakir and Gurarda [5] outlined a method for determining machining conditions in 
turning operations with the objective of minimizing production costs. Their approach involved 
calculating production time and cost for various combinations of workpiece and tool materials under 
the same input parameters. Meng et al., [6] introduced a machining theory aimed at identifying 
optimal cutting conditions in turning to either minimize costs or maximize production rates. Lee and 
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Tarng [7] devised a self-organizing adaptive modeling technique to establish the correlations 
between cutting speed, feed rate, depth of cut, and surface roughness, as well as cutting force and 
tool longevity. In this technique, the material is heated during or before the machining process. In 
addition, it can be used at a low cost and with a simple design. The material is heated to 
recrystallisation temperature, at which point its shear strength is reduced, making it simpler to work 
with. As a result, the chisel’s cutting force and wear are reduced [3]. 

Given the increased quality expectations, the surface roughness of any machining process has 
grown more prominently. Machining factors, including cutting speed, feed rate, cut depth, tool shape 
and specimen, are all important. Other factors influencing the manufacture of the appropriate 
surface quality of a piece of work include tool wear, vibrations, machine dynamics and temperature. 
The concept behind all optimisation algorithms is the same: optimal cutting conditions are required 
to reduce manufacturing costs. The simplest method to achieve this is to combine essential cutting 
parameters. During the turning process, cutting speed, feed rate and cutting depth are all widely 
described variables. The revolutions must increase as the cutting diameter decreases to retain the 
same cutting speed, which generally increases as the roughness decreases. It is the polar opposite in 
terms of feed rate [8]. 

Previously, machining settings were chosen by a time-consuming and costly trial-and-error 
procedure based on process planners’ experience and machining handbooks [9]. A human process 
planner selects appropriate machining process parameters based on their own experience or the 
machining tables at hand. In most cases, the parameters chosen are standard and far from optimal. 
However, when it comes to machining, choosing the right settings is crucial. Excessive cutting tool 
wear is noticeable if the machining settings are not acceptable, and the choice may result in surface 
damage. 

Surface roughness, when paired with surface quality, refers to the contour of the surface to be 
machined. The surface roughness mechanism has a complex look that is based on highly analytical 
formulae. Two primary characteristics, average roughness (Ra) and maximum peak-to-valley height 
can be used to describe the surface finish (Rt). These parameters were calculated using theoretical 
models [10]. Eq. (1) provides a fundamental theoretical model for surface roughness. 
 

𝑅𝑎 =
1000𝑓2

32𝑟𝑒
              (1) 

 

𝑅𝑡 =
1000𝑓2

8𝑟𝑒
              (2) 

 
Linear and exponential empirical models for surface roughness (Eq. (2)) as functions of cutting 

speed (V), feed (f), and depth of cut (d) are presented by Fang and Safi-Jahanshahi. According to this 
model, the feed rate must be reduced or the tool nose radius must be increased to obtain the 
appropriate surface roughness. This model assumes a big nose radius and a slow feed to some extent. 
 
𝑅𝑎 = 𝐶0𝑉𝑎𝑓𝑏𝑑𝑐             (3) 
 

Empirical models are developed in this study by using traditional methods, such as factorial 
design, statistical regression and response surface methodology. Nonconventional methodologies, 
such as the artificial neural network (ANN), fuzzy logic, support vector regression and genetic 
algorithm, are used to introduce artificial intelligence-based models [11]. 

To address the trade-off analysis between the material removal rate, specific cutting energy and 
surface roughness, Nguyen [12] used a micro genetic algorithm for dry milling. For wire-cut EDM, 
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Camposeco-Negrete [13] adopted a comprehensive design technique to regulate the results and 
contributions of four machining factors on the response variables listed above. To regulate and 
anticipate the ideal parameters in the drilling KFRP, Soepangkat et al., [14] suggested a fuzzy analysis 
and BPNN-based GA. For the boring process, Rao and Murthy [15] used predictive methods, such as 
response surface technique, ANNs and support vector machines, to predict surface roughness and 
the root mean square of workpiece vibration. Prasath et al., [16] used Taguchi and response surface 
methodology to construct a mathematical model for response prediction. The model was validated, 
and it accurately predicted surface roughness and MRR with less than 6% margin of error. 

Although substantial research has been conducted on machining AISI 4340 lathes, studies on the 
surface roughness of workpieces in the lathe machining process using hot machining methods on the 
AISI 4340 are lacking. The swarm optimisation approach is used to study the surface roughness 
modelling of AISI 4340 lathe machining via the hot machining technique. This research aims to see 
how well the particle swarm optimisation (PSO) technique predicts the surface roughness of AISI 
4340 lathe machining using hot machining methods. 
 
2. Methodology 
 

AISI 4340 is a high-strength, low-alloy steel that is primarily used in the automotive and aerospace 
sectors for shafts, gears, couplings and other components [17]. The independent variables in this 
study were cutting speed, feeding rate, cutting depth and workpiece temperature, whereas the 
dependent variable was the workpiece’s surface roughness. The surface roughness of samples by hot 
lathe machining was measured using a Handysurf Accretech E-35B. 

The central composite design (CCD) is utilised to reduce the amount of experimental data. The 
CCD model serves as a pivotal component within response surface methodology, offering notable 
advantages over traditional optimization models. One significant benefit is its heightened accuracy, 
obviating the necessity for a three-level factorial experiment to construct a second-order quadratic 
model. Following the implementation of the CCD model in experiments, a linear regression model is 
typically employed to formulate the model, utilizing combined values. Additionally recognized as the 
Box-Wilson Central Composite Design, this model augments center points with a set of "star points," 
facilitating the estimation of curvature within the design space. Unlike factorial points which maintain 
a distance of ±1 unit from the center, star points are situated at a distance of ± α, where |α| > 1, 
contingent upon specific design requirements. With the flexibility to accommodate numerous 
factors, the CCD model often includes multiple star points, representing extreme values at both lower 
and higher ends. Notably, the CCD model extends the applicability of 2-level factors, which are widely 
employed in response surface modeling and optimization endeavors [18]. Table 1 shows the level 
and coding of the independent variables used in the study. The independent variables in this study 
were coded using Eq. (1) whilst considering the lathe machining circumstances [18]. 
 

Table 1 
The level and coding of the independent variables 
Level Unit Coded level 

-1 0 +1 

Cutting speed m/min 100 125 150 
Feed rate Mm/tooth 0.035 0.0875 0.14 
Depth of cut mm 0.5 1 1.5 
Heating temperature oC 100 150 200 

 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 117, Issue 2 (2024) 147-156 

150 
 

In this study, the independent variable was coded using Eq. (3) whilst considering the lathe 
machining circumstances. In the equation, x is the code value of any factor that has the same value 
as the original. Furthermore, xn and xn1 are +1 level factors, but xn0 is the natural value of the base 
or zero level factors [10]. 

Experiments were conducted with the values of four independent variables, and up to 30 data 
retrieval numbers were used. The CCD technique was utilised in this study because it offers more 
benefits than other design methods [19]. 
 

𝑥𝑖𝑛 =
𝜉𝑖𝑛−[𝑚𝑎𝑥(𝜉𝑖𝑛)+𝑚𝑖𝑛(𝜉𝑖𝑛)]/2

[𝑚𝑎𝑥(𝜉𝑖𝑛)−𝑚𝑖𝑛(𝜉𝑖𝑛)]/2
           (4) 

 
The swarm approach has been used in various research domains, including driverless cars, 

fisheries, underwater vehicles and optimal economic load dispatch [20-25]. The PSO technique is 
based on stochastic processes and is built around a population of organisms/particles. It is also based 
on a model of live creatures, such as flocks of birds. These creatures then interact based on social–
psychological connections in the same manner as live species do, and they can adapt to diverse 
conditions. 

To find the optimal solution, starting organisms/particles must be produced at random. The 
method follows a fundamental path established by utilising solution particle location and particle 
velocity vectors as a guide. We may decide that a certain solution, within a particular optimisation 
period, is now determined by the velocity vector, which defines our optimal solution [26]. 

This is computed using a fitness function for each species, often known as the ability to find a 
better solution. The personal best solution is a form of vector that represents the personal best values 
for each individual organism inside the system (pBest). By contrast, each particle swarm inside a 
solitary instant has its best global location, which is referred to as gBest [27]. 

Initial locations for each organism within the search space are created randomly. The algorithm 
then performs optimisation cycles, with each iteration searching for the current personal best 
solution (pBest) and global best solution (gBest). Eq. (5) shows the core of the optimisation algorithm, 
whereas Eq. (6) stands for updating the particle location after each optimisation cycle. 
 
𝑣𝑖 = 𝑣𝑖 + 𝑐1𝑟𝑎𝑛𝑑()(𝑝𝑖 − 𝑥𝑖) + 𝑐2𝑟𝑎𝑛𝑑()(𝑝𝑔 − 𝑥𝑖)         (5) 

 
Particle location update 
 
𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖               (6) 
 

The findings below are merely typical values for the workspace. The designed system remains 
unchanged under various machining conditions, and the user only needs to prepare the new 
knowledge base. To configure a PSO algorithm correctly, some extra parameters must be chosen 
(Table 2), which in our instance are as follows [23,27,28]: 
 

Table 2 
Configuration of a PSO algorithm 
Parameters Value 

Number of iterations 150 
Correction factor c1  1.2 
Correction c2  2.4 
swarm 25 
particle 8 
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Given that PSO was used to model the machining process, PSO parameters were used to regulate 
the optimisation method. The findings were to be displayed in the form of coefficients C0, a, b and c, 
which defined the specific combination and weight factor of each independent machining parameter 
according to the design of the PSO method [20,21]. 

The PSO algorithm is provided as a method for forecasting the surface roughness of hot turning 
processes. The study employs the Particle Swarm Optimization (PSO) method with a single objective 
function. This objective function, represented by Eq. (7), demonstrates the application of PSO in 
generating an approximation equation characterized by a minimized Root Mean Square Error (RMSE) 
value. The utilization of PSO in this context aims to refine the approximation equation to closely 
match the observed data, thus enhancing the predictive accuracy of the model. As the RMSE serves 
as a crucial metric for evaluating the fidelity of the approximation equation, achieving a smaller RMSE 
value signifies a higher level of agreement between the model predictions and the actual data points. 
Consequently, when the RMSE reaches a sufficiently low level, the approximation equation derived 
through PSO becomes a reliable tool for making accurate predictions and guiding decision-making 
processes in the studied domain. For the training data testing processes using Python software, 
experimental datasets were separated. A training split of 85% of the observed dataset was used, with 
a testing split of 15%. In addition, root mean square error (RMSE) was used to evaluate the 
performance of the model prediction accuracy, see Eq. (7) [22]. 
 

𝑅𝑀𝑆𝐸 =  
√∑ (𝑦̂𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
            (7) 

 
where 𝑦̂𝑖 and 𝑦𝑖 denote the measured and predicted outputs, respectively. 
 
3. Results and Discussion 
 

The PSO algorithm was trained to forecast the surface roughness of the hot turning method using 
experimental data from Table 3. Table 3 demonstrates the experimental results for the hot turning 
process, which show 30 repetitions of each procedure to examine every combination of depth of cut, 
speed and feed rate. 

The surface roughness condition for the experiment with preheating treatment on the workpiece 
is shown in Figure 1. Figure 1 shows that when the preheating temperature rises, the workpiece’s 
surface roughness decreases. At 100, 150 and 200 degrees Celsius, the workpiece’s surface roughness 
ranges from 0.6 μm to 1.65 μm, from 0.60 μm to 1.52 μm and from 0.61 μm to 1.17 μm, respectively. 

Several alternative combinations of learning and testing datasets were used to develop prediction 
models. About 80% of the experimental findings were used in the learning phase, whereas the 
remaining 20% were used to test the prediction model. In terms of accuracy, different combinations 
of learning input datasets produced comparable outcomes. 

The coefficients obtained via the PSO approach for surface roughness were indicative and would 
represent for preparing the computing models referring to Eq. (2). Given the removal of specific 
coefficients, minor variations may be observed between the starting polynomial (Eq. (2)) and the final 
polynomials; hence, the partial result was negligible for the final result. 
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Table 3 
Data for demonstrates the experimental results for the hot turning process 
No Type Variables Ra (µm) 

Vc f a Tw 

1 Factorial 100 0.035 0.5 100 1.1821 
2 150 0.035 0.5 100 0.6288 
3 100 0.14 0.5 100 1.4666 
4 150 0.14 0.5 100 1.2557 
5 100 0.035 1.5 100 0.9212 
6 150 0.035 1.5 100 0.6034 
7 100 0.14 1.5 100 1.3388 
8 150 0.14 1.5 100 1.6466 
9 100 0.035 0.5 200 0.6766 
10 150 0.035 0.5 200 1.0166 
11 100 0.14 0.5 200 1.0466 
12 150 0.14 0.5 200 1.29 
13 100 0.035 1.5 200 1.11 
14 150 0.035 1.5 200 1.02 
15 100 0.14 1.5 200 1.1166 
16 150 0.14 1.5 200 1.4266 
17 Axial 100 0.0875 1 150 1.5232 
18 150 0.0875 1 150 0.9532 
19 125 0.035 1 150 0.5968 
20 125 0.14 1 150 1.22 
21 125 0.0875 0.5 150 0.69 
22 125 0.0875 1.5 150 0.89 
23 125 0.0875 1 100 1.1734 
24 125 0.0875 1 200 1.0466 
25 Center 125 0.0875 1 150 0.9289 
26 125 0.0875 1 150 0.6746 
27 125 0.0875 1 150 0.6066 
28 125 0.0875 1 150 0.9621 
29 125 0.0875 1 150 0.9523 
30 125 0.0875 1 150 0.6877 

 

 
Fig. 1. Effect of preheating temperature on surface roughness 
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Figure 2 shows a surface plot for cutting parameters and surface roughness. A trend surface graph 
is a visual representation of a fitted surface that describes the general trend or pattern of variation 
in a dataset. These graphs are commonly used in surface modeling to illustrate the overall behavior 
of a continuous variable across a spatial or temporal domain. The link between surface roughness 
and cutting settings can be examined. Low cutting speed (100 mm/min) and low feed rate (0.0035 
mm/s) generate roughness of about 1.4 m, as shown in Figure 2(a). As illustrated in Figure 2(b), a 
combination of low cutting speed (100 mm/min) and shallow cut depth (0.5 mm) produces a rough 
surface (1.54 μm). As illustrated in Figure 2(c), the situation is considerably different, that is, a 
combination of fast feed rate (0.14 mm/teeth) and low cut (1.5 mm) produces larger roughness 
values (1.56 μm). 
 

  
(a) (b) 

 
(c) 

Fig. 2. Surface plots of machining parameters of a hot turning: (a) cutting speed 
vs. feed rate influence on surface roughness, (b) cutting speed vs. depth of cut 
influence on surface roughness, (c) depth of cut vs. feed rate influence on surface 
roughness 

 
A phase of testing and deviation analysis of the developed models must be confirmed during the 

experimentation step. Figure 3 shows the graphical representation of the output value of surface 
roughness Ra acquired in the experiment. The experimental surface roughness values are categorised 
in accordance with how much heat was applied to the workpiece prior to the machining operation. 
The predicted surface roughness findings are shown in Figure 3. A comparison plot of experimental 
and predicted surface roughness levels is shown in Figure 3(a). 
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The RMSE of the workpiece surface roughness between predicted and experimental is less than 
10%, as shown in Figure 3(b). The findings of this RMSE comparison suggest the accuracy of the curve 
fitting and coefficient optimisation of the workpiece’s surface roughness model. 
 

 
(a) 

 
(b) 

Fig. 3. (a) Comparison of the predicted and experimental surface 
roughness and (b) the RMSE between predicted and experimental 
surface roughness 

 
4. Conclusions 
 

In this work, the PSO machine learning technique was used to predict the surface roughness of 
AISI 304 stainless steel during the hot turning process. The PSO system was trained using an 
experimental dataset that included cutting speed, feed rate and cut depth. These PSO algorithm 
features are critical for estimating surface roughness with a given set of machine settings, thus saving 
money and time on experimental runs. To illustrate the effectiveness of PSO, the predicted surface 
roughness values were compared with the measured values. The predicted results were found to be 
close to the experimental results. Furthermore, the difference between testing and predicted surface 
roughness levels during the hot turning process was less than 10%. 
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