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The objective of the yaw control system in a horizontal axis wind turbine (HAWT) is to 
follow the wind direction with a minimum error. In this paper, a data driven fault 
detection approach of a HAWT is applied. Three simulation programs were utilized in 
order to model a 1.5 MW HAWT. These programs are Fatigue, Aerodynamics, 
Structures, and Turbulence (FAST), TurbSim, and MATLAB. The approach is 
implemented under normal operating scenarios while considering different wind 
velocities. Different kinds of faults were applied to the system for a nacelle-yaw angle 
error ranging from -10° to +20°. The simulation results of the Tower Top Deflection 
(TTD) in the time domain were transferred into frequency domain by Fast Fourier 
Transform (FFT). The output variables were used in order to build a Neural Networking, 
which will monitor the performance of the wind turbine. The built Neural Networking 
will also provide an early fault detection to avoid the operating conditions that lead to 
sudden turbine breakdown. The present work provides initial results that are useful for 
remote condition monitoring and assessment of a 1.5MW HAWT. The simulation 
results indicate that the implemented Neural Networking can achieve improvement of 
the wind turbine operation and maintenance level. 
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1. Introduction 
 

Wind energy is considered as one of the fastest growing energy resources in the world. Especially 
after the petroleum oil crisis in the 1970s [1]. Consequently, the design, operation, and control of 
wind turbines is attracting more attention. The objective of the wind turbine control system is to 
follow the power reference; or if not possible minimize the reference error. This control of power 
should be done such that mechanical vibrations are kept minimal. However, it is well-known that 
Wind Turbines (WTs) have several different operating modes [2]. Concentrated wind gusts, rapid 
wind direction changes, or passage of energetic atmospheric structures can cause critical loads on 
the wind turbines and its blades [3]. A wind turbine benchmark model for the simulation of fault 
detection and accommodation schemes has been reported [4]. Different developed techniques, 
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methodologies and algorithms for monitoring the performance of wind turbines and early fault 
detection to avoid wind turbines sudden breakdown have been reviewed [5]. A wind turbine model 
for the simulation of fault detection and accommodation schemes has been studied by Odgaard et 
al., [4]. The results show that different kinds of faults were included and the model can be applied 
on a realistic wind turbine model. A data-driven fault detection for a wind turbine was introduced to 
overcome the nonlinearity, unknown disturbances, and significant measured noise [6]. This data-
driven fault detection scheme was studied with robust residual generators directly constructed from 
available process data. The effectiveness of the proposed scheme was demonstrated by the results 
obtained from the simulation of a wind turbine benchmark model. Condition monitoring is a tool 
used for early detection of faults/ failures [7]. Its main target is to minimize the number of shutdowns 
and maximize the productivity of the system. The main obstacles facing the designers of condition 
monitoring systems for wind turbines are 

i. The number and type of sensors selected 
ii. The effectiveness of signal processing methods associated with the selected sensors 

iii. The effectiveness of fusion model design (i.e., the combination of sensors and signal 
processing methods which give an improved performance). 

A modern 5 MW turbine implemented in the (FAST) software has been studied [8]. The baseline 
feedback loop uses information from sensors as input to the pitch, torque, and yaw controllers. 
Actuator models for the pitch drives, generator, and yaw drive were implemented within the Simulink 
environment. Faults were corrupting both the actuators and sensors. Controlling the power 
generation in variable speed wind turbines was proposed using a high-order sliding-mode control 
strategy to ensure the stability in operation and impose an ideal feedback control solution despite of 
model uncertainties [9]. This strategy presents attractive features such as robustness to parametric 
uncertainties of the turbine and the generator as well as to electric grid disturbances. The strategy 
was validated by (FAST) code and the results show that the strategy is effective in power regulation, 
and the torque generator remains smooth. TurbSim, FAST, and Simulink were utilized to model the 
wind, mechanical and electrical parts of a wind turbine, and its controllers [10]. The results show the 
interaction of the main three factors affecting the operation of wind turbines. Such that the electrical 
disturbance may lead to tower vibration under high speed while the turbulent wind conditions and 
power system disturbances may cause mechanical problems. 
 
2. Theoretical Background  
 

Condition monitoring and assessment of a 1.5MW HAWT is considered in the present work. As 
the HAWT have a relatively high power coefficient [11]. The specifications of the investigated wind 
turbine are listed in Table 1. 
 

Table 1 
Specifications of the 1.5 MW HAWT 
Rated rotational speed 20 rpm 

Number of blades 3 blades 
Vcut in 4 m/s 
Vrated 12 m/s 
Vcut out 25 m/s 
Blade Diameter 70 m 
Tower height 82.39 m 
Rated power 1.5 MW 
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The wind power is proportional to the cube the wind speed, Eq. (1), where, Pwind , ρ, A, and v 
represent the wind power, air density, swept area, and wind velocity, respectively. Based on Betz 
limit, the theoretical maximum aerodynamic efficiency is 0.593 of the available wind powers [12]. 
Therefore, the wind turbine power P as a function of time (t) is defined as shown in Eq. (2). 
 

𝑃𝑤𝑖𝑛𝑑(𝑡) =
1

2
𝜌𝐴𝑣3(𝑡)             (1) 

 

𝑃(𝑡) =
1

2
𝜌𝐴𝐶𝑝(𝜆, 𝜃)𝑣3(𝑡)            (2) 

 
where Cpis the power coefficient, defined in Eq. (3), which is affected by the tip speed ratio ( λ), and 

the blade pitch angle (θ). The constants C1, C2, C3, C4, C5, and C6 equal 0.5176, 116, 0.4, 5, 21, and 
0.0068, respectively [13,14]. The tip speed ratio is considered as the ratio of the blade tip tangential 
speed, and the actual wind velocity, Eq. (4). 
 

𝐶𝑝(𝜆, 𝜃) = 𝐶1 (
𝐶2

𝜆𝐼
− 𝐶3𝜃 − 𝐶4) 𝑒𝑥𝑝 (
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where, 
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1
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0.035
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) 

 

𝜆 =
𝜔(𝑡) 𝑟

𝑣(𝑡)
              (4) 

 
where ω(t) is the rotational speed, and r is the blade radius. Nowadays, YAW, and blade pitch control 
systems are commonly used in HAWTs. The main target of the YAW control is to ensure that the rotor 
is facing the direction of the upcoming wind by adjusting the nacelle of the turbine. The blade pitch 
control is used to adjust the angle (θ) of the blade. As shown in Eq. (2), Cp is function of the angle (θ), 

and the tip speed ratio ( λ ). The maximum value of the Cp is achieved at an angle (θ) equal to zero, 

as shown in Figure 1.  
 

 
Fig. 1. Power coefficient of the 1.5 MW HAWT 
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The tip speed ratio is plotted against power coefficient for a blade pitch angle of (0°), as shown in 
Figure 2. The maximum value of the power coefficient is achieved at a tip speed ratio of 8.1. The 
target of the control system is to achieve a maximum value for the Cp between the cut-in velocity 

Vcut in, and the rated wind velocity Vrated. Meanwhile, for a wind conditions between Vrated, and the 
cut-out wind velocity Vcut out, the target of the control system is to minimize the Cp value. This is 

achieved by changing the blade pitch angle. For any specific operating wind velocity above Vrated, 
there is a corresponding tip speed ratio since the rotor speed ω(t) is fixed at its rated value, Eq. (3). 
Figure 3 shows the relation between the blade pitch angle, and the power coefficient while using 
wind speeds of 12 m/s, 14 m/s, and 18 m/s. 
 

 
Fig. 2. Power coefficient of 1.5 MW HAWT at a Blade 
pitch angle (0°) 

 

 
Fig. 3. Blade pitch angle Vs. Power coefficient under 
different wind velocities 
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3. Methodology 
 

The FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code is a comprehensive 
aeroelastic simulator capable of predicting both the extreme and fatigue loads of three-bladed 
horizontal-axis wind turbines (HAWTs) [15]. FAST has different control methods, such as: Blade Pitch 
Control, and Nacelle Yaw Control. The TurbSim stochastic inflow turbulence code was used to provide 
a numerical simulation of a full-field flow that contains bursts of coherent turbulence that reflect the 
proper spatiotemporal turbulent velocity field relationships seen in instabilities associated with 
nocturnal boundary layer flows. Its purpose is to provide the ability to drive the FAST design code 
simulations of advanced turbine designs with simulated inflow turbulence environments that 
incorporate many of the important fluid dynamic features known to adversely affect the turbine 
aeroelastic response and loading [16].The present work aims at collecting more data that contain 
different combinations of normal operating conditions and cover complete regimes of WTs in order 
to train a more accurate health reference model with better generalization ability. A FAST code of a 
1.5 MW wind turbine with TurbSim code has been used to simulate the system. The objective of the 
present study is to model the system under normal operating scenarios while considering the 
importance of different wind velocities. Then, applying nacelle-yaw faults of -10°, 10°, and 20°. A Fast 
Fourier Transform (FFT) algorithm is used to convert the output data from its original time domain to 
a representation in the frequency domain, Eq. (5) . 
 

𝑥(𝑘) = ∑ 𝑥(𝑛) exp (−𝑗2𝜋
𝑛𝑘

𝑁
) = ∑ 𝑥(𝑛)𝑊𝑁

𝑛𝑘𝑁−1
𝑛=0

𝑁−1
𝑛=0         (5) 

 
where, 𝑥(𝑘):is the kth harmonic (k=0...N-1), 𝑥(𝑛): is the nth input sample (n=0...N-1), and 𝑊𝑁:is 

shorthand for exp(
−𝑗2𝜋

𝑁
).The Neural network, Eq. (6), which is an artificial network, composed of 

neurons, and nodes. This network can be used for predictive modeling, adaptive control, and 
applications where they can be trained via a dataset. By self-learning, the networks can derive 
conclusions from complex and related set of information 
 
𝑎 = 𝜎(∑ 𝜔𝑖𝑥𝑖 + 𝑏𝑖 )             (6) 
 
where, 𝑥𝑖  : input vector, 𝑏 : bias, 𝜎 :activation function, and 𝜔𝑖 : synapse weight associated with each 
input. 
 
4. Results and Discussion 
 

As wind turbine grow in size, the output power, and structural loads increase. These structural 
loads lead to undesirable performance, and early failure. A fault detection strategy to suppress wind 
turbine tower vibration is presented. Normally, wind turbines are subjected to different wind 
profiles. As the average wind speed for the majority of the international wind farms is 15 m/s, the 
1.5MW HAWT has been simulated under different wind profiles in the range from 7m/s to 18m/s 
[17]. 

Results of the tower top deflection Side to Side were analyzed by Fast Fourier Transform (FFT), as 
shown in Figure 4. At the beginning, a 7 m/s wind velocity was applied to the system as in Figure 4(a). 
The magnitude of amplitude spectrum under normal operating conditions is 0.039 at 5.67 Hz, and 
reached 0.06 while applying Yaw error of 20° at the same frequency. Results show that the magnitude 
of the amplitude spectrum of Yaw error 20° is 1.5 times that under normal conditions. The 1.5 MW 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Frequency_domain
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HAWT was tested under other different wind velocities. The magnitude of the amplitude spectrum 
of yaw error 20° reached 1.28, 1.36, and 1.17 compared to that of the normal conditions while 
applying 9m/s, 14m/s, and 18m/s, respectively. 
 

 
 

(a) (b) 

  
(c) (d) 

Fig. 4. Effect of YAW error on the tower top deflection SS (frequency domain) (a)Wind speed 7 m/s, (b) Wind 
speed 9 m/s, (c) Wind speed 14m/s, (d) Wind speed 18 m/s 

 
A neural network was built to identify the faults in the HAWT. One of its most important features 

is that a neural network has a learning ability. This ability allows it to learn its environment and 
improve its performance. Neural networks consist of three layers, an input layer, an intermediate 
layer, and an output layer. It is considered that the Feed-forward neural networks are the mostly 
encountered type of artificial neural networks, and applied to many diverse fields [18]. A feed 
forward back propagation was used. The results show that the best validation performance of the 
cycle is 0.01122. 
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5. Conclusion 
 

A fault detection strategy to suppress wind turbine tower vibration and prevent early turbine 
failure was introduced. The results of the nacelle-yaw angle error ranging from -10° to +20° of the 
Tower Top Deflection under different wind speed conditions were transferred from time domain to 
frequency domain by FFT. While applying a 7m/s wind speed, the magnitude of the amplitude 
spectrum of Yaw error 20° was 1.5 times compared to that under normal conditions. All results in the 
frequency domain were utilized to build a neural network. The neural network got a best validation 
performance of 0.011. As a result, it is recommended to use the Tower Top Deflection as an indicator 
for fault detection in wind turbines, and measure its value by a laser vibrometer. 
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