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It is well known that the wavelets have widely applied to solve mathematical problems 
connected with the differential and integral equations. The application of the wavelets 
possesses several important properties, such as orthogonality, compact support, exact 
representation of polynomials at certain degree and the ability to represent functions 
on different levels of resolution. In this paper, new methods based on wavelet 
expansion are considered to solve problems arising in approximation of the solution of 
heat equation with involution. We have developed new numerical techniques to solve 
heat equation with involution and obtained new approximative representation for 
solution of heat equations. 
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1. Introduction 
 

The wavelets have wide application in engineering sciences and can be applied to solve 
mathematical problems connected with the differential and integral equations. The application of 
the wavelets possesses several important properties, such as orthogonality, compact support, exact 
representation of polynomials at certain degree and the ability to represent functions on different 
levels of resolution. Haar wavelets are orthonormal wavelets with a compact support. Haar wavelet 
method is an effective tool for solving ordinary and partial differential equations. There are many 
researchers who uses Haar wavelets to solve differential and integral equations notably papers [1-3]. 
A computational method for solving Poisson equations and biharmonic equations which are based 
on the use of Haar wavelets is investigated in Shi and Cao [4]. The method of two-dimensional Haar 
wavelets has been applied to obtain the solution of the partial differential equations in Lepik [5]. A 
collocation method based on Haar wavelet and Kronecker tensor product for solving three-
dimensional partial differential equations is presented in Lepik [6], where the proposed method is 
originated from the idea of approximating a sixth-order mixed derivative by a series of Haar wavelet 
basis functions, which is suitable for numerical solution of all kinds of three-dimensional Poisson and 
Helmholtz equations. 
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In this paper, new methods based on wavelet expansion are considered to approximate the 
solution of heat equation with involution. The output is a new approximative representation of 
solution for heat equations. 
 
2. Haar Wavelets 
 

There are two functions that play a primary role in wavelet analysis, i.e., the scaling function given 
by 
 

𝜙(𝑥) = {
1, 𝑖𝑓 0 ≤ 𝑥 ≤ 1,
0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒,

            (1) 

 
and the wavelet 
 

𝜓 = {

1, 0 ≤ 𝑥 ≤
1

2
,

−1,
1

2
≤ 𝑥 ≤ 1,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

             (2) 

 
These two functions generate a family of functions that can be used to reconstruct signals. Let 𝑀 

be any positive integer. We divide the interval [0,1] into 2𝑀 equal subintervals. We intend to do 𝐽 
levels of resolutions, hence we let 2𝑀 = 2𝐽+1. 

The Haar wavelet is system of functions defined by the following 
 

ℎ𝑛 = 𝜓𝑗,𝑘(𝑥) = 2
𝑗

2𝜓(2𝑗𝑥 − 𝑘) = {

1,
𝑘

2𝑗 ≤ 𝑥 <
𝑘+0.5

2𝑗 ,

−1,
𝑘+0.5

2𝑗 ≤ 𝑥 ≤
𝑘+1

2𝑗  ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

        (3) 

 

where 𝑛 = 2𝑗 + 𝑘 + 1, 𝑗 = 0,1,2 … 𝐽, 𝑘 = 0,1,2, … 2𝑗 − 1. The Haar wavelet system (3) form an 
orthonormal basis for 𝐿2(ℝ). The wavelet expansion of 𝑓 ∈ 𝐿2[0,1] is given by 
 
𝑓(𝑥) = ∑ 𝑎𝑛ℎ𝑛(𝑥),∞

𝑛=0   
 
where 
 

𝑎𝑛 = ∫ 𝑓(𝑥)ℎ𝑛(𝑥)𝑑𝑥.
1

0
  

 
The integration of Haar wavelets is given by 
 

𝑃𝛼,𝑖(𝑥) =
1

(𝛼−1)!
∫ (𝑥 − 𝜏)𝛼−1ℎ𝑖(𝜏)𝑑𝜏

𝑥

𝐴
, 𝛼 = 1,2, … 𝑛, 𝑖 = 1,2, … ,2𝑀.      (4) 

 
3. Heat Equation 
 

Consider a uniform rod of length 1 with non-uniform temperature lying on the 𝑥 −axis from 𝑥 =
0 to 𝑥 = 1. By uniform rod, we mean the density 𝜌, specific heat 𝑐, thermal conductivity 𝐾0 are 
constant. Assume the sides of the rod are insulated and only the ends may be exposed. Let denote 
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by 𝑢(𝑡, 𝑥) a temperature throughout the slice of the rod at the point 𝑥 and time 𝑡. Further we assume 
that the heating process is restricted to the interval 0 ≤ 𝑡 ≤ 𝑇, where 𝑇 is sufficiently big positive 
number. We consider the second order linear heat equation with involution of the following form 
 

2

2

( , )
( , ) ( , ), 0 ,0 1 

u u t x
T t x f t x t T x

t x

 
− = +    

       (5) 
 

( )0, 0,  [0,1], u x x= 
     (6) 

 

( ),0 ( ,1) 0, [0,1].u t u t t= = 
     (7) 

 
To solve the problem (5)-(7), we use the method of approximation by wavelets. Assume that 
 
𝑢(𝑡, 𝑥) = 𝑣(𝑡) ⋅ 𝑤(𝑥).  
 
We have 
 

( ) ( ) ( ) ( )
0

, 0 0 0 0;
t

u t x v w x v
=
=  =  =

 
 
𝑢(𝑡, 𝑥)|𝑥=0 = 𝑣(𝑡) ⋅ 𝑤(0) = 0 ⇒  𝑤(0) = 0;

𝑢(𝑡, 𝑥)|𝑥=1 = 𝑣(𝑡) ⋅ 𝑤(1) = 0 ⇒  𝑤(1) = 0;
  

 
By substituting a function 𝑢(𝑡, 𝑥) = 𝑣(𝑡) ⋅ 𝑤(𝑥), into the Eq. (5), we obtain 
 

( ) ( ) ( )
2

2

( ) ( )
( )

dv T t d w x
w x v t v t w x

dt dx


−
 + = 

. 
 
From here 
 

( ) ( )
( )

2

2

1 ( ) 1 ( )
,

dv T t d w x
w x

v t dt w x dx
 
 −

= −  
   

 
where 𝜇 - certain constant. Thus, if the solution of the problem (5)-(7) is represented as 𝑢(𝑡, 𝑥) =
𝑣(𝑡) ⋅ 𝑤(𝑥),then the functions 𝑣(𝑡) and 𝑤(𝑥) are solutions to the following spectral problems: 
 

( )
( )

,
dv T t

v t
dt


−

=
 
( )0 0,v =

 
 
and 
 

( )
2

2

( )
, [0,1]

d w x
w x x

dx
= − 
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( )0 (1) 0,w w= =
 

 
where 𝛾 = 𝜇 − 𝜆. The spectral problem 
 

( )
( )

,
dv T t

v t
dt


−

=
 ( )0 0,v =

 
 
has an infinite set of eigenvalues 
 

( )
1

1 ,  0,1,2,...,
2

n

n n n
T




 
= − + = 

   
 
and their corresponding eigenfunctions 
 

( )
2 1

sin ,  0,1,...,
2

n

t
v t n n

T T

 
= + = 

   
 
which form an orthonormal basis of the space𝐿2(0, 𝑇). We use expansions of the functions 𝑢(𝑡, 𝑥) 

and 𝑓(𝑡, 𝑥) in the system {𝑠𝑖𝑛 (𝑛 +
1

2
)

𝜋𝑡

𝑇
}

𝑛=0

∞

for fixed 𝑥 ∈ [0,1], as follows 

 

𝑢(𝑡, 𝑥) = ∑ 𝑢𝑛(𝑥) ⋅ 𝑠𝑖𝑛 (𝑛 +
1

2
)

𝜋𝑡

𝑇
∞
𝑛=1           (8) 

 

𝑓(𝑡, 𝑥) = ∑ 𝑓𝑛(𝑥) ⋅ 𝑠𝑖𝑛 (𝑛 +
1

2
)

𝜋𝑡

𝑇
∞
𝑛=1 .          (9) 

 
By substitution to the Eq. (5) we obtain 
 

∑ ((−1)𝑛 (𝑛 +
1

2
)

𝜋

𝑇
𝑢𝑛(𝑥) −

𝑑2𝑢𝑛(𝑥)

𝑑𝑥2
) 𝑠𝑖𝑛 (𝑛 +

1

2
)

𝜋𝑡

𝑇
= ∑ 𝑓𝑛(𝑥)𝑠𝑖𝑛 (𝑛 +

1

2
)

𝜋𝑡

𝑇
∞
𝑛=1

∞
𝑛=1               (10) 

 
By comparing the terms on the left and right sides we obtain 
 

(−1)𝑛 (𝑛 +
1

2
)

𝜋

𝑇
𝑢𝑛(𝑥) −

𝑑2𝑢𝑛(𝑥)

𝑑𝑥2 = 𝑓𝑛(𝑥)  

𝑢𝑛(0) =
𝑑𝑢𝑛(0)

𝑑𝑥
= 0.  

 
We assume that the solution is represented by Haar wavelets (3) as follows 
 
𝑑2𝑢𝑛(𝑥)

𝑑𝑥2 = ∑ 𝑎𝑖ℎ𝑖(𝑥)2𝑀
𝑖=1                       (11) 

 
By integrating the Eq. (11) in the interval [0, 𝑥] we have 

 
𝑑𝑢𝑛(𝑥)

𝑑𝑥
= ∑ 𝑎𝑖𝑃𝑖1(𝑥) +

𝑑𝑢𝑛(0)

𝑑𝑥

2𝑀
𝑖=1   

 

𝑢𝑛(𝑥) = ∑ 𝑎𝑖𝑃𝑖2(𝑥) +2𝑀
𝑖=1 𝑢𝑛(0)  
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where 𝑃𝑖1(𝑥) and 𝑃𝑖2(𝑥) are defined as in Eq. (4). Substitute to ordinary differential equations 
 

(−1)𝑛 (𝑛 +
1

2
)

𝜋

𝑇
∑ 𝑎𝑖𝑃𝑖2(𝑥)2𝑀

𝑖=1 − ∑ 𝑎𝑖𝑃𝑖1(𝑥)2𝑀
𝑖=1 = 𝑓𝑛(𝑥)  

 
After we simplify 
 

∑ 𝑎𝑖 ((−1)𝑛 (𝑛 +
1

2
)

𝜋

𝑇
𝑃𝑖2(𝑥) − 𝑃𝑖1(𝑥))2𝑀

𝑖=1 = 𝑓𝑛(𝑥)  

 

We evaluate the latter in the following collocation points 𝑥𝑙 =
2𝑙−1

4𝑀
, 𝑙 = 1,2, … ,2𝑀. 

 

∑ 𝑎𝑖 ((−1)𝑛 (𝑛 +
1

2
)

𝜋

𝑇
𝑃𝑖2(𝑥𝑙) − 𝑃𝑖1(𝑥𝑙))2𝑀

𝑖=1 = 𝑓𝑛(𝑥𝑙)  

 
The evaluation at collocation points leads to 
 
𝑼 = 𝑷𝒂                        (12) 
 
𝑼 = (𝑢𝑛(𝑥1), 𝑢𝑛(𝑥2), … , 𝑢𝑛(𝑥𝑙) )𝑇,  
 
𝒂 = (𝑎1, 𝑎2, … , 𝑎𝑛)𝑇 ,  
 

𝑷 = (
𝑝21(𝑥1) ⋯ 𝑝2𝑙(𝑥1)

⋮ ⋱ ⋮
𝑝21(𝑥𝑙) ⋯ 𝑝2𝑙(𝑥𝑙)

).  

 
By solving the system, we obtain 
 

𝒂 = 𝑷−𝟏𝑼  
 
which substitute into the Eq. (11) yields the following 
 
𝑑2𝑢𝑛(𝑥)

𝑑𝑥2
= 𝑯𝑷−𝟏𝑼,  

 
where we denoted 
 

𝑯 = (
ℎ1(𝑥1) ⋯ ℎ𝑙(𝑥1)

⋮ ⋱ ⋮
ℎ1(𝑥𝑙) ⋯ ℎ𝑙(𝑥𝑙)

).  

 
4. Conclusion 
 

We have developed new methods based on wavelet expansion are considered to solve problems 
arising in approximation of the solution of heat equation with involution. New numerical techniques 
are modified to solve heat equation with involution and obtained new approximative representation 
for solution of heat equations. 
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