
 
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 87, Issue 1 (2021) 108-117 

108 
 

 

Journal of Advanced Research in Fluid 
Mechanics and Thermal Sciences 

 

Journal homepage: www.akademiabaru.com/arfmts.html 
ISSN: 2289-7879 

 

The Effect of Different Scale on Object to the Approximation of the First 
Order Polarization Tensor of Sphere, Ellipsoid, and Cube 

 

Suzarina Ahmed Sukri1, Taufiq Khairi Ahmad Khairuddin1,2,*, Mukhiddin Muminov3, Yeak Su Hoe1, 
Syafina Ahmad1 

 
1 Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia,81310 Johor Bahru, Johor, Malaysia 
2 UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia 
3 Mathematical Faculty, Samarkand State University, Samarkand, 140104, Uzbekistan 
  

ARTICLE INFO ABSTRACT 

Article history: 
Received 6 April 2021 
Received in revised form 27 July 2021 
Accepted 2 August 2021 
Available online 10 September 2021 

Polarization tensor (PT) is a classical terminology in fluid mechanics and theory of 
electricity that can describe geometry in a specific boundary domain with different 
conductivity contrasts. In this regard, the geometry may appear in a different size, and 
for easy characterizing, the usage of PT to identify particular objects is crucial. Hence, 
in this paper, the first order polarization tensor for different types of objects with a 
diverse range of sizes are presented. Here, we used three different geometries: sphere, 
ellipsoid, and cube, with fixed conductivity for each object. The software Matlab and 
Netgen Mesh Generator are the essential mathematical tools to aid the computation 
of the polarization tensor. From the analytical results obtained, the first order PT for 
sphere and ellipsoid depends on the size of both geometries. On the other hand, the 
numerical investigation is conducted for the first order PT for cube, since there is no 
analytical solution for the first order PT related to this geometry, to further verify the 
scaling property of the first order PT due to the scaling on the size of the original related 
object. Our results agree with the previous theoretical result that the first order 
polarization tensor of any geometry will be scaled at a fixed scaling factor according to 
the scaling on the size of the original geometry. 
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1. Introduction 
 

Polarization tensor (PT) or just polarization is classically studied together with the virtual mass in 
fluid mechanics and hydrodynamics [1]. It was then extended and generalized by Ammari and Kang 
[2], where the researchers named this new PT as the Generalized Polarization Tensor (GPT). Ammari 
and Kang used the mathematical formulation of PT and applied it into a simulation on a cloaking 
device [3]. The first term of GPT is the first order PT [4,5]. The study of polarization tensor has been 
applied in various areas involving electric and electromagnetic areas such as medical imaging and 
metal detection for object classification purposes [6–10]. Besides that, PT has been used by Ahmad 
Khairuddin and Lionheart [11] to study the characterization of an object by a weakly electric fish (fish 
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with a low discharge of electricity). Examples of the computation of PT based on the explicit formula 
based on the geometry and the material of the conducting material can be found in [12–15]. 

Further explanation on the characterization of objects has been discussed in the study conducted 
by Khairuddin et al., [16], where the researcher highlighted the application of PT to characterize the 
object. Polarization tensor is usually being implemented because of its properties, which depend on 
the shape, size, orientation, and material. For instance, Sukri et al., [17] studied the effect of 
translation of the geometry on the approximated first order PT. The researcher uses the different 
center of masses of an object, and its results have shown that the approximated PT is independent 
of their mass of center. An extended method by Bahuriddin et al., [18] in order to determine the semi 
principle axes of the spheroid which involves prolate and oblate spheroid. 

Therefore, in this paper, another property of the first-order PT, which is the effect of an object's 
size on the approximation of PT, will be studied and will be investigated. Different sizes of different 
types of geometry will be used to investigate its effect on approximating first-order polarization 
tensor, sphere, ellipsoid, and cube. Since the analytical solution for first-order polarization tensor is 
provided only for sphere and ellipsoid, we will first use these results and study the effect of different 
geometry sizes. We will then compute the numerical result for other geometry, a cube, and from the 
solution obtained, the effect of different scaling of a cube will be studied. The result obtained is 
presented, and a discussion on the results is provided. 

The paper is organized as follows. First, the mathematical background of the term PT will be 
reviewed in the next section. From this mathematical background, the method used will be 
explained. Then, the results obtained that show the effect of the geometry's size on the 
approximation of the PT will be presented. Lastly, the discussion and conclusion of the results 
obtained are presented. 
 
2. First-order Polarization Tensor Formulation  

 

Consider a Lipschitz domain where the origin is in the domain 3 , and the conductivity is 
represented by notation k . The conductivity must satisfy 0 1k   + . Assume a harmonic 

function, H  in 3  where ( )u x  is the solution of the transmission problem  
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where   is the characteristic function of the object in the domain B . Then, from this transmission 

problem, Ammari and Kang [2] introduced a far-field expansion, which yields to 
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where the multi-indices are denoted as i  and j  while the fundamental solution of the Laplacian is 

represented as  . From Eq. (2), the generalized polarization tensor is denoted as ( , )ijM k B  and it 

can also be defined by a system of integral equations over the boundary of B which is 
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such that ( )i y  is defined as  

 

( ) ( )
1*( ) ( )i

i B xy I x y   
−

= −             (4) 

 

where ( 1) / 2( 1)k k = + − . Outward normal vector is denoted as xv  while I  is the identity. The 

singular integral operator *
BK  is defined as an integral containing Cauchy Principle Value, . .p v   
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Throughout this study, we will investigate and compute the first-order polarization tensor based 

on the equation in Eq. (3), Eq. (4), and Eq. (5). 
 

3. The Analytical Solution for Sphere and Ellipsoid 
 
The analytical solution of first order PT when B is an ellipsoid with semi principle axes a, b, and c 

that Ammari and Kang [2] have derived is presented by a three by three matrix system, which is 
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where | |B  is the volume of the object while 1 2,d d  and 3d  is integrals that can be defined as 
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where ,a b  and c  are semi principle axes of an ellipsoid. Then, the researchers take the semi principle 

axes to become similar to each other, yielding to an analytical solution of the sphere where integrals 
in Eq. (7) are equal to 1/ 3 . The matrix system in Eq. (6) is then reduced as  
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In the next section, we will revise previously theoretical results, which suggest that the first order 

PT is dependent on the scaling factor of referred objects size. Following that, we will explain the 
method used for first-order PT approximation, which involves two methods to calculate PT for cube 
geometry with an unvarying value of conductivity for different sizes of geometry.  

 
4. Methodology  

 
The following proposition is considered from the research conducted by Kang [19], which explains 

the transformation formula of PT with a scaling factor  . 
 

Proposition 1: 
 

Given that ( , )M k B  is the first order PT for the referred geometry B . Let   be the scaling factor 

for the size of B . The first order PT for B  after its size is scaled, ( , )M k B  satisfies 
3( , ) ( , )M k B M k B = . 

The above formula explained that we could find the first-order PT for a specified geometry after 
the size of the geometry is scaled by using the first order PT of the original geometry. This information 
is crucial in order to validate whether the numerical computation of the first-order PT for an object 
B  with no analytical solution is correct or not. It is more straightforward to verify geometry with 
provided analytical solutions such as sphere and ellipsoid. For other geometries, we need to verify 
whether the numerical solution obtained follows the above transformation formula. If the numerical 
solution obtained followed the transformation formula, we could assume that the solution obtained 
is correct, and the proposed method can be used to evaluate the first-order PT. 

Generally, polarization tensor can be computed by using a numerical method. In this study, the 
numerical methods used to evaluate the first-order PT are numerical integration with quadratic 
element and also linear element which involve trapezoidal rule. First and foremost, the geometry is 
triangularized by a free software, which is Netgen Mesh Generator developed by Joachim Schoberl 
[20]. For the quadratic element, by setting the meshing to become a second-order element, each 
triangle will have six vertices, while for the linear element, it will generate three vertices. The 
information about all triangles will be exported to Matlab software from Netgen for computation 
purposes. 

For the computation of the first-order PT based on linear element integration, we will refer to the 
procedures by Khairuddin and Lionheart [14], while for quadratic element integration, the 
computation will follow the steps given by Sukri et al., [21]. The implementation of Gaussian 
quadrature in the first-order PT computation is needed since we are dealing with an integral equation 
[22]. The sizes of the mesh (the number of triangles on the surface of the mesh) are changed from 
coarse to very fine mesh for each geometry. The numerical results of the first order PT for different 
mesh sizes are evaluated and represented in graphical form to observe its convergence. It is expected 
that, as the meshes size increased, the numerical solutions of first-order PT will be converge to a 
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certain value. The next section will review the results obtained by using the aforementioned method 
together with the scaling factor of each geometry. 
 
5. Results and Discussions 
 

We start discussing the result by presenting the approximation for a sphere with a few scales of 
sizes. By fixing conductivity to be equal to 1.5  and different radius which are 0.01r = , 0.1 ,10 and 
20 , the theoretical results for first-order PT is computed. For each sphere (with a different radius), 
the norm for the first order polarization tensor is presented in Table 1. If 
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M M M

 
 

=
 
  

           (9) 

 

the matrix norm is calculated by using the formula 2 2
11 33( , )M k M M = + + . 

 
Table 1 
The theoretical results for the first order 
polarization tensor for a sphere when conductivity 

1.5k =  for a few radius r 
r  ( , )M k   

0.01  

50.17952 10−
 

0.1  

20.17952 10−
 

1  

10.17952 10
 

10  

40.17952 10
 

20  

50.14362 10
 

100  

70.17952 10
 

 
We set a sphere with a radius 1 to become the reference geometry. The scaling factor,   for 

other sizes of a sphere, is calculated using the formula 1 0/r r  where 1r  is the new radius of a sphere, 

while 0r  is the initial size of a sphere (reference size) which is 1. Therefore, we present the ratio of 

the norm values of the first order PT with their scaling factor in Table 2. It is observed that the ratio 
of the norm values of first-order PT, which is based on the reference size of geometry, all are equal 

to 
3  except when 20 =  but the ratio is still almost equal to 

3 . This is due to the rounding in 
decimal places for the value 3/(2 )k+ in the first order PT given by Eq. (8). 
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Table 2 
The ratio of the norm of the theoretical results for 
the first order polarization tensor for an ellipsoid 
with the scaling factor,   


 ( , )

( , )

M k

M k




 

0.01  

610−
 

0.1  

310−
 

10  

310  

20  8000.22  

100  

610  

 
Similar conductivity has been used in the computation of the first order polarization tensor for 

an ellipsoid where the conductivity is 1.5 . For ellipsoid, we used different lengths of semi principle 

axes of ,a b  and c  denoted by ( , , )a b c  which are, (0.01,0.02,0.03) , (0.1,0.2,0.3) , (1,2,3) and (2,4,6)  

where the reference axis is set to be (1,2,3) . The norm computed using the theoretical results for 

the first-order PT for an ellipsoid are presented in Table 3.  
 

Table 3 
The norm for the theoretical results for the first 
order polarization tensor for an ellipsoid with fixed 
conductivity 1.5k =  and different sizes of an 
object 

Semi principle axis,

( , , )a b c  
( , )M k   

(0.01,0.02,0.03)
 

51.1655 10−  

(0.1,0.2,0.3)
 

0.0117  

(1,2,3)
 

11.6554  

(2,4,6)
 

93.2439  

 
Table 4 depicted the ratio of the norm for the first-order PT with respect to the first order PT of 

the reference ellipsoid. It is observed that each ratio for the norm of the first-order PT, which is based 

on the reference ellipsoid (1,2,3) , is approximately equal to 
3 . Two ratios are not exactly equal to 

3  due to Eq. (7) has been evaluated by numerical integration, which will cause a small error in the 
first order PT for every ellipsoid.  
 

Table 4 
The ratio of the norm of the theoretical results for 
the first order polarization tensor for an ellipsoid 
with the scaling factor,   


 ( , )

( , )

M k

M k




 

0.01
 

79.9997 10−  

0.1
 

31.0040 10−  

2
 

8.0000
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Next, we will consider the results for cube and observe whether the result obtained using the 
proposed methods satisfy Proposition 1. Figure 1, Figure 2, and Figure 3 show the norm values of the 
first-order PT for cubes at conductivitiy also equal to 1.5. Here, the dimension of the cube is set to be 
0.2 0.2 0.2  (see Figure 1), 0.4 0.4 0.4  (see Figure 2), and 0.6 0.6 0.6  (see Figure 3). From 
Figure 1, we can observe that, as the total number of surface elements increased, the norm of the 
first-order PT will eventually lead to a specified norm of the first-order PT. However, the numerical 
results for the first-order PT show a stable solution when using quadratic elements. From the graph 
in Figure 1(b), from 424N =  to 1696N = , the norm values of the first-order PT have less difference 
than the norm values shown by the first-order PT using linear element in Figure 1(a). 
 

  
(a) (b) 

Fig. 1 Norm of the first-order PT for cube with the dimension 0.2 0.2 0.2   with conductivity, 

1.5k =  obtained by using (a) linear element with the total number of the surface elements are 
12,48,106,424,6784N =  and 12288  (b) quadratic element integration with the total number of 

the surface elements are 12,48,106,424,N =  and 1696  

 
Next, for the norm for the first-order PT with dimension 0.4 0.4 0.4   and 0.6 0.6 0.6  , based 

on Figure 2 and Figure 3, the graphs’ pattern followed graph’s pattern for a cube with dimension 
0.2 0.2 0.2  .  
 

  
(a) (b) 

Fig. 2 Norm of the first-order PT for cube with the dimension 0.4 0.4 0.4  with conductivity, 

1.5k =  obtained when using (a) linear element with the total number of the surface elements 
are 12,48,102,408,6528N =  and 12288  (b) quadratic element integration with the total 

number of the surface elements are 12,48,102,408,N =  and 1632  
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(a) (b) 

Fig. 3 Norm of the first-order PT for cube with the dimension 0.6 0.6 0.6   with conductivity, 
1.5k =  obtained using (a) linear element with the total number of the surface elements are 
12,36,104,416,6656N =  and 12288  (b) quadratic element integration with the total number of 

the surface elements are 12,36,104,416,N =  and 1664  

 
Next, for scaling purposes, we need to set one size of cube to be our reference geometry. Here, 

our reference geometry is cube with dimensions 0.4 0.4 0.4  . Hence scaling factor   for cube with 
dimension 0.2 0.2 0.2   is equal to 1/ 2  while for cube with dimension, 0.6 0.6 0.6  , the scale is 
3 / 2 . Table 5 showed the numerical results of the norm of the first-order PT for the cube with 
different dimensions. In this table, the total number of surface elements used for all cubes are 
inconsistent since they are automatically generated by Netgen. 
 

Table 5 
The norm of the first-order polarization tensor for the cube with dimension 
0.2 0.2 0.2  , 0.4 0.4 0.4   and 0.6 0.6 0.6  by using the linear and quadratic 
element integration 
Dimension Total number of 

the surface 
element, N  

Norm of first-order PT 

(linear), ( , )LM k   

Norm of first-order PT 

(quadratic), ( , )QM k   

0.2 0.2 0.2 
 

1696
 

63.4503 10−  

63.4376 10−  

0.4 0.4 0.4 
 

1632
 

-52.7597 10  

52.7496 10−  

0.6 0.6 0.6 
 

1664
 

-59.3170 10  

59.2825 10−  

 
Table 6 then showed the comparison between the ratio for the norm of the first-order PT 

obtained from quadratic and linear element integrations for the cubes together with their scaling 

factor. From Proposition 1, the ratio of the norm values of first-order PT must be equal to 
3 . It can 

be observed that, for a cube with dimension 0.6 0.6 0.6  , the ratio 3.3759 obtained when quadratic 

element integration is used is closer to the value 
3 3.375 =  if compared to the linear element, which 

is 3.3761. Nevertheless, both methods showed a similar ratio, for 0.2 0.2 0.2   which are 0.125 . 
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Table 6 
The comparison between the ratio of norm of the first-order polarization tensor for the cubes with 
dimension 0.2 0.2 0.2  and 0.6 0.6 0.6   based on the referred cube with dimension 0.4 0.4 0.4   
the computed first order where 1.5k =  for linear and quadratic element 
Dimension The scaling 

factor,   

3  ( , )

( , )
L

L

M k

M k




 

( , )

( , )

Q

Q

M k

M k




 

0.2 0.2 0.2 
 1

2
 

0.1250
 

0.1250
 

0.1250
 

0.6 0.6 0.6 
 3

2
 

3.375
 

3.3761
 

3.3759
 

 
6. Conclusions 
 

In this study, we have shown that the first order PT computed using both theoretical and 
numerical methods follow the transformation property as stated in Proposition 1 where, the first 
order PT of an object is dependent on the size of the object. Specifically, the scaling factor used on 
the object can be calculated based on the first order PT of the referred object and the first order PT 
of the scaled object. In addition, for the first order PT for cube, approximated by using numerical 
method, we have included the results for both linear and quadratic element integration using 
graphical and tabulation representation. It can be concluded that, as the number of surface element 
increased, the numerical solution of the first order PT converged to a certain value. As our results 
show that the first order PT for all geometries considered satisfy Proposition 1, it is also suggested to 
compute the first order PT for another geometry by the proposed numerical method before 
observing whether the obtained solutions also follow Proposition 1 in order to further investigate as 
well as improving the performance of the numerical method used.  
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