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The aim of this work is to present a suitable numerical solution for unsteady non-
Newtonian third-grade fluid which rotates at z -axis and pass through a porous 
medium. The fluid flows in magnetic field with constant acceleration and the semi-
infinite boundary condition are highlighted. The fluid problem is also deal with heat 
transfer. The nonlinear partial differential equation is discretised using the finite 
difference method (FDM). The linear system obtained for three different domains 
(lengths). Consequently, the asymptotic interpolation method is merged to solve 
problems of large sizes. This hybrid method yielded results that satisfied the boundary 
condition that reaches zero as length grows to infinite length. For velocity profile and 
temperature distribution, a comparison of FDM and hybrid method is shown. It is 
discovered that the hybrid method produces better results than FDM for this infinitely 
large problem. Several analyses have been carried out to investigate the effect of 
various fluid parameter values. The findings reveal that as the porosity parameter 
increases, the velocity decreases. The Grashof and Prandtl numbers demonstrate the 
relationship to the temperature distributions. The effects of the magnetic field and the 
non-Newtonian parameters were also illustrated, as these parameters influence the 
velocity distribution of the fluid flow. 
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1. Introduction 
 

Recently, application of non-Newtonian fluid problem in a various of disciplines, covering 
meteorology, geophysics, engineering, and mathematics have been notified [1-3]. The non-
Newtonian equations offer difficulties for researchers because they are more complex than those of 
Newtonian fluid.  

The finite difference method (FDM) is the most well numerical method that most researchers use 
to find the numerical solution especially in fluid flow problems. The FDM substitutes difference 
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quotients for derivatives in the governing field equations, which include values of the solution at 
discrete mesh points in the domain under study where this is called discretisation. This 
representation is used repeatedly to create algebraic systems of equations in terms of unknown mesh 
point values. The main problem with this system is the inaccuracy in dealing with regions of 
complicated domain, even though it can be solved using coordinate transformation techniques [4,5].  

Tome [6] applied the FDM to address two-dimensional modified Newtonian flow with several free 
surfaces within an arbitrary domain. After eight years, the problem has been extended to three-
dimensional modified Newtonian free surface flows with additional features, and it has been resolved 
using the same mathematical approach [7]. The numerical method of implicit FDM is used to convert 
partial differential equations to a system of non-linear equations by using the damped-Newton 
method to solve non-Newtonian third-grade fluid which pass a porous medium [8]. The MHD rotating 
flow equations of fourth-grade fluid bounded between two non-conducting rigid plates in a rotating 
frame with uniform transverse magnetic field is modelled. The second-order Central difference 
formula and successive under relaxation scheme have been used to solve the equation. The finding 
reveals that the flow behaviour is parameter dependent [9]. 

Parida and Padhy [10] used the FDM in 2018 to discretise the differential equation of MHD third-
grade in a non-Darcian porous medium. Garg [11] and Anitha [12] have explored the chemical 
reaction with radiation in greater details. Nayak [13] performed an investigation of heat transfer 
exists in fluid flow with the issue of focusing on differential form of MHD third grade with viscous 
dissipation. FDM is used to solve the fluid problem. According to the results, FDM is still relevant 
today as it can provide an approximate system for solving nonlinear differential equations of fluids.  

The implicit scheme finite difference Keller-box approach was used to address the problem of 
MHD incompressible viscous fluid between two parallel porous plates and velocity slip boundary 
conditions at the permeable boundaries [14]. The Keller-box approach also been used to evaluate 
heat transfer and the effects of an external magnetic field on the non-Newtonian micropolar fluid 
flow between a porous and a non-porous disc [15].  

MHD also called magnetic field fluid dynamics, is the analysis of the dynamics of electrically 
conducting fluids, like salt water and electrolytes [16]. Interactions exist between the motion in fluid 
flow where electric current is generated when fluid flows across magnetic lines and the transverse 
magnetic lines of forces which lead to other factors on fluid. This present work also focuses on other 
two parameters which are rotating frame and a porous medium. A rotating frame is one that rotates 
with respect to an inertial reference frame. Fluid flow in a porous media has recently emerged as a 
research subject of interest. Porous medium is a parameter in the momentum equation that applies 
to porous materials such as rocks or soil. Several works have been published, including the 
development of new exact solutions for MHD transient Rotating flow of a second-grade fluid in a 
porous medium [2,17], third-grade fluid in a porous medium and a rotating frame [18], MHD rotating 
flow of a fourth-grade fluid [8] and MHD flow of a third-order fluid in a porous medium [19].  

Heat transfer in non-Newtonian fluids can be seen in many industrial processes, such as the 
plastic manufacturing process. Aiyesami [20] investigated the fluid motion with temperature for the 
MHD third-grade fluid using an semi-analytical solution called HAM. El-dabe [21] used homotopy 
perturbation to solve an MHD boundary-layer flow of an incompressible fourth-grade nanofluid 
through a porous medium down a vertical cylinder with heat transfer. 

The aim of this paper is to solve a third-grade non-Newtonian fluid flows with constant 
acceleration in a rotating frame across a magnetic field and porous medium with thermal 
conductivity. The nonlinear differential equation is discretised using FDM. Since the fluid problem 
has a semi-infinite boundary domain which present an infinite length, a hybrid method of finite 
difference - asymptotic interpolation method is designed and applied to the problem system. 
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Asymptotic interpolation method is implemented to boost the result where this method has been 
applied in mechanical and chemical hydrodynamics [22,23] and investigating fluctuating fluid 
membranes to give accurate predictions at infinity [24]. The hybrid method has previously been used 
to solve MHD third grade fluid in a rotating frame [25,26]. The discussions are centred on the 
comparison between classical FDM and hybrid method, and the effect of velocity profile and 
temperature distribution with varying dimensionless parameter values.  
 
2. Mathematical Formulation 
 

Define the velocity field, 𝑉 = (𝑢(𝑧, 𝑡), 𝑣(𝑧, 𝑡), 𝑤(𝑧, 𝑡)) that exists in fluid where 𝑢, 𝑣 and 𝑤 are 

the velocity elements that correspond to the 𝑥 -axis, 𝑦 -axis and 𝑧 -axis. The equation of continuity is 
given by 
 
𝛻 ∙ 𝑉 = 0.               (1) 
 
The following equations govern the MHD fluid flow in a porous medium and a rotating frame 
 

(
𝜕𝑉

𝜕𝑡
+ (𝑉 • 𝛻)𝑉 + 2Ω × 𝑉 + Ω × (Ω × 𝑟)) = −𝛻𝑝 + 𝑑𝑖𝑣𝑇 − 𝜎𝛽0

2𝑉 + 𝑅       (2) 

 
where 𝜌 is the density, 𝑝 is the pressure, 𝑟 is the radial coordinate and Ω is the rotating parameter 
which rotates about 𝑧-axis with 𝑉 = (𝑢(𝑧, 𝑡), 𝑣(𝑧, 𝑡), 0). Lorentz force per unit volume is given by 

𝐽 × 𝐵 = −𝜎𝛽0
2𝑉 where 𝐽 is current density and 𝐵 is total magnetic field. According to Abelman [3], 

the flow resistance for third grade fluid is given by 
 

𝑅 = −
𝜑

𝑘
[𝜇 + 𝛼1

𝜕

𝜕𝑡
+ 2𝛽3 ((

𝜕𝑢

𝜕𝑧
)

2

+ (
𝜕𝑣

𝜕𝑧
)

2
)] 𝑉          (3) 

 
𝑇 = −𝑝𝐼 + ∑ 𝑆𝑗

𝑛
𝑗=1  is the stress tensor, where 𝑝 is force or pressure and 𝐼 is the identity tensor [1-

3]. The first three tensors are given by 𝑆1 = 𝜇𝐴1, 𝑆2 = 𝛼1𝐴2 + 𝛼2𝐴1
2 and 𝑆3 = 𝛽1𝐴3 +

𝛽2(𝐴2𝐴1 + 𝐴1𝐴2) + 𝛽3(𝑡𝑟𝐴1
2)𝐴1 where 𝜇 is the shear viscosity coefficient. The material constants 

are 𝛼𝑖(𝑖 = 1,2), 𝛽𝑗(1,2,3), 𝛾𝑘(𝑘 = 1,2, . . . ,8) while 𝐴𝑛 is the Rivlin-Ericson tensors 𝐴𝑛 =
𝑑

𝑑𝑡
(𝐴𝑛−1) +

𝐴𝑛−1(𝑔𝑟𝑎𝑑𝑉) + (𝑔𝑟𝑎𝑑𝑉)𝑇𝐴𝑛−1, 𝑛 > 1 where 𝐴1 = (𝑔𝑟𝑎𝑑𝑉) + (𝑔𝑟𝑎𝑑𝑉)𝑇 and 𝐴2 =
𝑑𝐴1

𝑑𝑡
+

𝐴1(𝑔𝑟𝑎𝑑𝑉) + (𝑔𝑟𝑎𝑑𝑉)𝑇𝐴1. The constitutive equation for third grade fluid (𝑛 = 3), is 𝑇 = −𝑝𝐼 +
𝜇𝐴1 + 𝛼1𝐴2 + 𝛼2𝐴1

2 + 𝛽1𝐴3 + 𝛽2(𝐴2𝐴1 + 𝐴1𝐴2) + 𝛽3(𝑡𝑟𝐴1
2)𝐴1 which satisfies 𝜇 ≥ 0, 𝛼1 ≥ 0, |𝛼1 +

𝛼2| ≤ √24𝜇𝛽3, 𝛽1 = 𝛽2 = 0, 𝛽3 ≥ 0 and 𝛾𝑘 = 0 [3,18-20,27,28].  

 
3. Governing Equation  
 
The momentum equation of third grade fluid flow with heat transfer is derived as follows.  
 

𝜌 (
𝜕𝑢

𝜕𝑡
− 2Ω𝑣) = 𝜇

𝜕2𝑢

𝜕𝑧2
+ 𝛼1

𝜕3𝑢

𝜕𝑧2𝜕𝑡
+ 2𝛽3

𝜕

𝜕𝑧
[
𝜕𝑢

𝜕𝑧
((

𝜕𝑢

𝜕𝑧
)

2

+ (
𝜕𝑣

𝜕𝑧
)

2

)] 

−𝜎𝛽0
2𝑢 −

𝜑

𝑘
[𝜇 + 𝛼1

𝜕

𝜕𝑡
+ 2𝛽3 ((

𝜕𝑢

𝜕𝑧
)

2

+ (
𝜕𝑣

𝜕𝑧
)

2
)] 𝑢 +

𝛽𝑔

𝜌
(𝑇 − 𝑇∞)𝑢       (4) 
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𝜌 (
𝜕𝑣

𝜕𝑡
+ 2Ω𝑢) = 𝜇

𝜕2𝑣

𝜕𝑧2
+ 𝛼1

𝜕3𝑣

𝜕𝑧2𝜕𝑡
+ 2𝛽3

𝜕

𝜕𝑧
[
𝜕𝑣

𝜕𝑧
((

𝜕𝑢

𝜕𝑧
)

2

+ (
𝜕𝑣

𝜕𝑧
)

2

)] 

−𝜎𝛽0
2𝑣 −

𝜑

𝑘
[𝜇 + 𝛼1

𝜕

𝜕𝑡
+ 2𝛽3 ((

𝜕𝑢

𝜕𝑧
)

2

+ (
𝜕𝑣

𝜕𝑧
)

2
)] 𝑣 +

𝛽𝑔

𝜌
(𝑇 − 𝑇∞)𝑣       (5) 

 
with a simple energy equation is  
 

𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
= 𝑘

𝜕2𝑇

𝜕𝑧2
              (6) 

 
where 𝛽 is the coefficient of thermal expansion, 𝑔 is gravity, 𝑇 is fluid temperature, 𝑇∞ is ambient 
temperature, 𝐶𝑝 represents a fluid at constant pressure and 𝑘 is thermal conductivity. Following 

Nazari [29] for constant acceleration, the boundary and initial condition are  
 
𝑢(0, 𝑡) = 𝐴𝑡, 𝑣(0, 𝑡) = 0 ,𝑡 > 0 , 𝑇 = 𝑇𝑤 
𝑢(𝑧, 𝑡) → 0, 𝑣(𝑧, 𝑡) → 0 as 𝑧 → ∞ ∀𝑡, 𝑇 → 𝑇∞         (7) 
𝑢(𝑧, 0) = 0, 𝑣(𝑧, 0) = 0 ,𝑧 > 0.          
 
Eq. (5) is multiplied by 𝑖 and added to Eq. (4). The momentum equation becomes  
 
𝜕𝐹

𝜕𝑡
+ 2𝑖Ω𝐹 

= 𝑣
𝜕2𝐹

𝜕𝑧2 +
𝛼1

𝜌

𝜕3𝐹

𝜕𝑧2𝜕𝑡
+

2𝛽3

𝜌

𝜕

𝜕𝑧
[(

𝜕𝐹

𝜕𝑧
)

2

(
𝜕𝐹

𝜕𝑧
)] −

𝜎

𝜌
𝛽0

2𝐹 −
𝜑

𝑘𝜌
[𝜇 + 𝛼1

𝜕

𝜕𝑡
+ 2𝛽3 (

𝜕𝐹

𝜕𝑧
) (

𝜕𝐹

𝜕𝑧
)] 𝐹 +

𝛽𝑔

𝜌
(𝑇 −

𝑇∞)𝐹                (8) 
 
where 𝐹 = 𝑢 + 𝑖𝑣 and 𝐹̅ = 𝑢 − 𝑖𝑣. The boundary and initial condition now are 
 
𝐹(0, 𝑡) = 𝐴𝑡, 𝑇(𝑧, 0) = 0 at 𝑡 = 0 
𝐹(𝑧, 𝑡) → 0, 𝑇(𝑧, 𝑡) → 𝑇∞ as 𝑧 → ∞           (9) 
𝐹(𝑧, 0) = 0, 𝑇(𝑧, 0) = 0 at 𝑡 = 0 
 

The dimensionless parameters in this problem are 𝜃∗ =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
, 𝐺𝑟 =

𝑔𝛽(𝑇𝑤−𝑇∞)𝐴3

𝑣2 , 𝑃𝑟 =
𝜇𝐶𝑃

𝑘
 

where 𝜃∗ is the temperature of the velocity profile, 𝐺𝑟 is the Grashof number and 𝑃𝑟 is the Prandtl 
number. The nonlinear equations with heat transfer are  
 

(1 + 𝜁)
𝜕𝑓

𝜕𝜏
+ (2𝑖Ω + 𝑀 + 𝑐 − 𝐺𝑟∗𝜃∗)𝑓 

=
𝜕2𝑓

𝜕𝜂2 + 𝑎
𝜕3𝑓

𝜕𝜂2𝜕𝜏
+ 𝑏 [2 (

𝜕2𝑓

𝜕𝜂2) (
𝜕𝑓

𝜕𝜂
) (

𝜕𝑓

𝜕𝜂
) + (

𝜕𝑓

𝜕𝜂
)

2

(
𝜕𝑓

𝜕𝜂
)] − 2𝑏𝑐𝑓 [(

𝜕𝑓

𝜕𝜂
) (

𝜕𝑓

𝜕𝜂
)]                (10) 

 
𝜕𝜃

𝜕𝜏
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝜂2                        (11) 

 

where 𝐺𝑟∗ =
𝐺𝑟

𝜌
(

𝑣7

𝐴5)

1

3
 . The boundary and initial conditions are 
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𝑓(0, 𝜏) = 𝜏, 𝜃(0, 𝜏) = 1 for 𝜏 > 0 
𝑓(𝜂, 𝜏) = 0, 𝜃(𝜂, 𝜏) = 0 as 𝜂 → ∞                     (12) 
𝑓(𝜂, 0) = 0, 𝜃(𝜂, 0) = 0 
 
4. Method of Solutions 
4.1 Finite Difference Method  (FDM) 
 

The nonlinear equations of Eq. (10-11) are discretised using central and forward difference as 
follow 
 
(1 + 𝜁)

∆𝜏
(𝑓𝑖

𝑗+1
− 𝑓𝑖

𝑗
) + (2𝑖Ω + 𝑀 + 𝑐 − 𝐺𝑟∗𝜃∗)𝑓𝑖

𝑗
 

=
𝑓𝑖+1

𝑗
− 2𝑓𝑖

𝑗
+ 𝑓𝑖−1

𝑗

∆𝜂2
+

𝑎

∆𝜂2∆𝜏
[(𝑓𝑖+1

𝑗+1
− 2𝑓𝑖

𝑗+1
+ 𝑓𝑖−1

𝑗+1
) − (𝑓𝑖+1

𝑗
− 2𝑓𝑖

𝑗
+ 𝑓𝑖−1

𝑗
)] 

+
𝑏

∆𝜂4
(𝑓𝑖+1

𝑗
− 2𝑓𝑖

𝑗
+ 𝑓𝑖−1

𝑗
)(𝑓𝑖+1

𝑗
− 𝑓𝑖−1

𝑗
) (𝑓

𝑖+1

𝑗
− 𝑓

𝑖−1

𝑗
) +

𝑏

2∆𝜂4
(𝑓𝑖+1

𝑗
− 𝑓𝑖−1

𝑗
)

2
(𝑓

𝑖+1

𝑗
− 2𝑓

𝑖

𝑗
+ 𝑓

𝑖−1

𝑗
) 

 −
𝑏𝑐

2∆𝜂
𝑓𝑖

𝑗
(𝑓𝑖+1

𝑗
− 𝑓𝑖−1

𝑗
) (𝑓

𝑖+1

𝑗
− 𝑓

𝑖−1

𝑗
)                      (13) 

 
and 
 
𝜃𝑖

𝑗+1
−𝜃𝑖

𝑗

Δ𝜏
=

1

𝑃𝑟
(

𝜃𝑖+1
𝑗

−2𝜃𝑖
𝑗
+𝜃𝑖−1

𝑗

(Δ𝜂)2
)                        (14) 

 

where 𝑖 and 𝑗 are indices of 𝑓(𝜂𝑖 , 𝜏𝑗). Bring the time-step of 𝑗 + 1 to the left side and hence the 

equations become 
 

(1 + 𝜁)

∆𝜏
𝑓𝑖

𝑗+1
−

𝑎(𝑓𝑖+1
𝑗+1

− 2𝑓𝑖
𝑗+1

+ 𝑓𝑖−1
𝑗+1

)

∆𝜂2∆𝜏
 

=
𝑓𝑖+1

𝑗
− 2𝑓𝑖

𝑗
+ 𝑓𝑖−1

𝑗

∆𝜂2
−

𝑎

∆𝜂2∆𝜏
(𝑓𝑖+1

𝑗
− 2𝑓𝑖

𝑗
+ 𝑓𝑖−1

𝑗
) 

+
𝑏

∆𝜂4
(𝑓𝑖+1

𝑗
− 2𝑓𝑖

𝑗
+ 𝑓𝑖−1

𝑗
)(𝑓𝑖+1

𝑗
− 𝑓𝑖−1

𝑗
) (𝑓

𝑖+1

𝑗
− 𝑓

𝑖−1

𝑗
) 

+
𝑏

2∆𝜂4
(𝑓𝑖+1

𝑗
− 𝑓𝑖−1

𝑗
)

2
(𝑓

𝑖+1

𝑗
− 2𝑓

𝑖

𝑗
+ 𝑓

𝑖−1

𝑗
) −

𝑏𝑐

2∆𝜂
𝑓𝑖

𝑗
(𝑓𝑖+1

𝑗
− 𝑓𝑖−1

𝑗
) (𝑓

𝑖+1

𝑗
− 𝑓

𝑖−1

𝑗
) 

+
(1+𝜁)

∆𝜏
𝑓𝑖

𝑗
− (2𝑖Ω + 𝑀 + 𝑐 − 𝐺𝑟∗𝜃∗)𝑓𝑖

𝑗
                     (15) 

 
and 
 
1

Δ𝜏
𝜃𝑖

𝑗+1
=

1

Δ𝜏
𝜃𝑖

𝑗
+

1

𝑃𝑟(Δ𝜂)2 (𝜃𝑖+1
𝑗

− 2𝜃𝑖
𝑗

+ 𝜃𝑖−1
𝑗

)                   (16) 

 

The initial and boundary conditions are 𝑓1
𝑗

= 𝐴(𝑗 − 1)Δ𝜏, 𝜃1
𝑛 = 1 for 𝑗 = 1, 2, 3, …, 𝑓𝐿

𝑛 = 0, 𝜃𝐿
𝑛 =

0 for every 𝑛 = 1, 2, 3, …, 𝐿 = 𝐿1, 𝐿2, 𝐿3 and 𝑓𝑖
1 = 0 for 𝑖 = 1,2,3, . . . , 𝑁 + 1. The equation can be 

written in matrix form, with dimension 𝑁 − 2 
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[𝐴𝑓][𝑓] = [𝑏𝑓]                         (17) 

 
and 
 
[𝐴𝜃][𝜃] = [𝑏𝜃]                        (18) 
 

To satisfy semi-infinite boundary condition in Eq. (12), this research investigated the fluid flow 
problem at three lengths which are 𝐿 = 𝐿1, 𝐿2, 𝐿3 = 6, 12, 18. In this paper, the step sizes are ∆𝜂 =
1

4⁄  and ∆𝜏 = 1
5⁄  with time iteration is 6. Since the equations involve complex functions such that 

in Eq. (8) and is very difficult to calculate manually, MATLAB programming is coded to find the output. 
Table 1 presents the velocity profile obtained from FDM with 𝑎, 𝑏, 𝑐, 𝜁, Ω, 𝑀, 𝐺𝑟, 𝑃𝑟, 𝑡 = 1 keep fixed. 
They show that the velocities start different either increase or decrease at 𝜂 = 4. Table 2 presents 
the temperature distribution where they start different at 𝜂 = 4. These prove that the velocity and 
temperature are different for different length. In order to obtain the accurate results for each node, 
these three lengths will be blended together in nonlinear least square in the next section.  

The data from Table 1 and Table 2 are plotted to see the convergence results. Figure 1 shows the 
curvature of results which they are converges to the solution at each length, 𝐿 = 𝐿1, 𝐿2, 𝐿3 =
6, 12, 18.  
 

Table 1 
The velocity profile at different lengths by FDM 

 𝒖 (real part) 𝒗 (imaginary part) 
eta(𝜼) 𝐿 = 6 𝐿 = 12 eta(𝜼) 𝐿 = 6 𝐿 = 12 eta(𝜼) 

0 1 1 0 1 1 0 
2 0.0268 0.0268 2 0.0268 0.0268 2 
4 0.0008932 0.0008939 4 0.0008932 0.0008939 4 
6 0 2.74 × 10−5 6 0 2.74 × 10−5 6 
8  7.88 × 10−7 8  7.88 × 10−7 8 
10  2.157 × 10−8 10  2.157 × 10−8 10 
12  0 12  0 12 
14   14   14 
16   16   16 
18   18   18 

 
Table 2 
The temperature distribution at 
different lengths by FDM 
 𝜃 
eta(𝜂) 𝐿 = 6 eta(𝜂) 𝐿 = 6 

0 1 0 1 
2 0.01208 2 0.01208 
4 0.000146 4 0.000146 
6 0 6 0 
8  8  
10  10  
12  12  
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Fig. 1. FDM at 𝐿 = 𝐿1, 𝐿2, 𝐿3 = 6, 12, 18 with 
𝑎, 𝑏, 𝑐, 𝜁, Ω, 𝑀, 𝐺𝑟, 𝑃𝑟, 𝑡 = 1 fixed 

 
4.2 Asymptotic Interpolation Method 
 

The nonlinear least square follow a special function of 𝑦(𝐿𝑖) = 𝑎1 + 𝑎2𝑒−𝑎3
2𝐿𝑖  [25,26]. MATLAB 

is used to achieve the best fit of data. Table 3 until Table 5 show the results up to the 𝐿 = 6. Using 

minimisation techniques, coefficient 𝑎 = (

𝑎1

𝑎2

𝑎3

) are found from three nonlinear equations as follow 

 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 87, Issue 2 (2021) 90-105 

97 
 

∑ −2(𝑦𝑖 − 𝑎1 − 𝑎2𝑒−𝑎3
2𝑥𝑖) = 0

3

𝑖=1

 

∑ −2𝑒−𝑎3
2𝑥𝑖(𝑦𝑖 − 𝑎1 − 𝑎2𝑒−𝑎3

2𝑥𝑖) = 03
𝑖=1                     (19) 

∑ 2(𝑦𝑖 − 𝑎1 − 𝑎2𝑒−𝑎3
2𝑥𝑖) ⋅ 2𝑎3𝑥𝑖(𝑎2𝑒−𝑎3

2𝑥𝑖) = 0

3

𝑖=1

 

 
The data obtained by the hybrid method shown in Table 3 , Table 4 and Table 5 operating with 

three different lengths 𝐿 = 𝐿1, 𝐿2, 𝐿3 = 6, 12, 18 to define the infinite length. 𝑦1, 𝑦2 and 𝑦3 are the 

results at different lengths and 𝜀𝑖 is prediction errors, 𝜀𝑖 = 𝑦𝑖 − 𝑦(𝐿) = 𝑦𝑖 − (𝑎1 + 𝑎2𝑒−𝑎3
2𝑥𝑖). The 

results obtained at each node are similar with 𝑎1.  
 

Table 3 
The real part of velocity profile after asymptotic interpolation method 
𝜂 𝐿 𝑦1 𝑦2 𝑦3 

𝑎 = (

𝑎1

𝑎2

𝑎3

) 
𝜀𝑖 𝑢 

0 𝐿1 
𝐿2 
𝐿3 

1 1 
1 

1 
1 
1 

1.0000 
0.8504 
1.1483 

9.728 × 10−8 1 

2 𝐿1 
𝐿2 
𝐿3 

0.0268 
0.0407 
0.0407 

0.0268 
0.0268 
0.0407 

0.0268 
0.0268 
0.0268 

0.0268 0.8589 1.1491 9.7297 × 10−8 0.0268 

4 𝐿1 
𝐿2 
𝐿3 

0.0009 
0.0014 
0.0014 

0.0009 
0.0009 
0.0014 

0.0009 
0.0009 
0.0009 

0.0009 0.8590 1.1492 9.7529 × 10−8 0.0009 

6 𝐿1 
𝐿2 
𝐿3 

0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 

0.0000 0.8561 1.1521 1.0589 × 10−7 0.0000 

 
Table 4 
The imaginary part of velocity profile after asymptotic interpolation method 
𝜂 𝐿 𝑦1 𝑦2 𝑦3 

𝑎 = (

𝑎1

𝑎2

𝑎3

) 
𝜀𝑖 𝑢 

0 𝐿1 
𝐿2 
𝐿3 

0 0 
0 

0 
0 
0 

0.0000 
0.8591 
1.1491 

9.729 × 10−8 0.0000 
 

2 𝐿1 
𝐿2 
𝐿3 

-0.0029 
-0.0039 
-0.0039 

-0.0029 
-0.0029 
-0.0039 

-0.0029 
-0.0029 
-0.0029 

-0.0029 
0.8592 
1.1491 

9.7288 × 10−8 -0.0029 
 

4 𝐿1 
𝐿2 
𝐿3 

-0.0002 
-0.0002 
-0.0002 

-0.0002 
-0.0002 
-0.0002 

-0.0002 
-0.0002 
-0.0002 

-0.0002 
0.8592 
1.1490 

9.7225 × 10−8 -0.0002 
 

6 𝐿1 
𝐿2 
𝐿3 

0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 

-0.0000 
0.8599 
1.1484 

9.5355 × 10−8 -0.0000 
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Table 5 
The temperature distribution after asymptotic interpolation method 
𝜂 𝐿 𝑦1 𝑦2 𝑦3 

𝑎 = (

𝑎1

𝑎2

𝑎3

) 
𝜀𝑖 𝜃 

0 𝐿1 
𝐿2 
𝐿3 

1 1 
1 

1 
1 

1 

1.0000 
0.8504 
1.1483 

9.728 × 10−8 1 

2 𝐿1 
𝐿2 
𝐿3 

0.0121 
0.0120 
0.0120 

0.0121 
0.0121 
0.0120 

0.0121 
0.0121 
0.0121 

0.0121 0.8590 1.1491 9.729 × 10−8 0.0121 

4 𝐿1 
𝐿2 
𝐿3 

0.0001 
0.0003 
0.0003 

0.0001 
0.0001 
0.0003 

0.0001 
0.0001 
0.0001 

0.0001 0.8591 1.1491 9.7297 × 10−8 0.0001 

6 𝐿1 
𝐿2 
𝐿3 

0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 

0.0000 0.8589 1.1493 9.7826 × 10−8 0.0000 

 
Table 6 shows the comparison results from FDM and hybrid method of finite difference - 

asymptotic interpolation with all parameters set to 𝑎, 𝑏, 𝑐, 𝜁, Ω, 𝑀, 𝐺𝑟, 𝑃𝑟, 𝑡 = 1. The output from 
FDM clearly show that the terminal node received zero value but not in hybrid method. The results 
of the hybrid method show that as length increases, the velocity profile and temperature increase 
and approaching zero which is satisfied the boundary condition of 𝑓(𝜂, 𝜏) → 0 as 𝜂 → ∞ This findings 
present that the hybrid method is better compared to FDM.  
 

Table 6 
Comparison of velocity profile by FDM and hybrid method 

eta(𝜂) 𝑢 𝑣 𝜃 
 FDM Hybrid Method FDM Hybrid Method FDM Hybrid Method 

0 1 1 0 0 1 1 
1 0.1406 0.1406 -0.007967 -0.007966 0.1099 0.1099 
2 0.0268 0.0268 -0.002858 -0.002858 0.01208 0.01208 
3 0.004955 0.004956 -7.319×10-4 -7.316×10-4 0.001328 0.001329 
4 0.0008932 0.0008943 -1.624×10-4 -1.622×10-4 0.000146 0.0001464 
5 0.0001532 0.0001583 -3.206×10-5 -3.288×10-5 1.586×10-5 1.643×10-5 
6 0 2.779×10-5 0 -6.065×10-6 0 -2.147×10-6 

 
4.3 Validation With HAM 
 

The validation of the hybrid method is carried out by comparing the result with Nazari [29] 
without heat transfer. Figure 2(a) depicts the real and imaginary parts of the velocity profile obtained 
from HAM. Meanwhile Figure 2(b) depicts the velocity profile from the present study, which has been 
obtained using a hybrid method. This graph shows that the velocity profiles for both methods 
increase as time increases. 
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(a) 

 
(b) 

Fig. 2. Comparison of velocity profile for different value of time, 𝜏 with others parameter fixed (a) 
HAM (Nazari [29]) (b)Hybrid method (present work) 

 
The velocity profile from HAM is also shown in Figure 3(a), and the current results from the hybrid 

method are shown in Figure 3(b). The figures seem to have the same curvature pattern. With an 
increasing in the third-grade parameter, the velocity profile increases.  
 

 
(a) 
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(b) 

Fig. 3. Comparison of velocity profile for different value of third grade fluid, 𝑏 with others parameter 
fixed (a) HAM (Nazari [29]) (b)Hybrid method (present work) 

 
5. Results and Findings 
 

MATLAB Software with Intel(R) Core (TM) i7 processor was used to illustrate the findings. 
Different values of parameter were tested. Figure 4 depicts the velocity distribution at the real and 
imaginary parts for various porosity parameter values. The results show that as 𝑐 increases from 1 to 
15, the velocity decreases. This result is similar with Zeeshan [30], who discovered that increasing 
porosity reduces fluid velocity. This is related to permeability, where the fluid can quickly move 
through the medium with large pores. According to Billen [31], the loose medium has greater 
permeability than the consolidated medium. 

 

  
Fig. 4. Velocity profile for different value of porous parameter, 𝑐 with others parameter fixed at 
𝑎, 𝑏, 𝜁, Ω, 𝑀, 𝐺𝑟, 𝑃𝑟, 𝑡 = 1 

 
In this fluid issue, the value of the Grashof number is chosen to be 𝐺𝑟 > 0, which corresponds to 

fluid medium cooling, as highlighted by Nayak [8]. Figure 5 depicts the results for various Grashof 
number values. A large number of 𝐺𝑟 decreases kinematic viscosity and thus increases the velocity 
profile's boundary layer. Anita [12] investigated the impact of different values of 𝐺𝑟 and reported to 
a similar conclusion. It should be noted that for 𝑃𝑟 = 1, both heat and momentum dissolve over the 
fluid in about the same ratio.  
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Fig. 5. Velocity profile for different value of Grashoff number, 𝐺𝑟 with others parameter fixed at 
𝑎, 𝑏, 𝑐, 𝜁, Ω, 𝑀, 𝑃𝑟, 𝑡 = 1 

 
Figure 6 depicts the relationship between the Grashof number, 𝐺𝑟 and the Prandtl numbers, 𝑃𝑟. 

Four 𝐺𝑟 and 𝑃𝑟 couple sets are investigated. 𝑃𝑟 < 1 shows that thermal diffusivity is the dominant 
factor. As a result, for every value of 𝐺𝑟 the temperature distribution increased. In this case, heat 
conduction happens. The thickness of the thermal boundary layer is greater than that of the velocity 
boundary layer. A liquid metal, such as mercury, is a typical example of this fluid. Meanwhile, 𝑃𝑟 > 1 
indicates that momentum diffusivity is dominant and essential to the convection phase. As a result, 
the thermal boundary layer becomes thinner. However, it is also shown that for 𝐺𝑟 > 𝑃𝑟, the 
boundary layer is thicker than for 𝐺𝑟 < 𝑃𝑟. Furthermore, it is observed that as 𝑃𝑟 increases, the 
temperature decreases [32,33].  
 

 
Fig. 6. Effect of 𝐺𝑟 and 𝑃𝑟 towards the 
temperature distribution 

 
Figure 7 depicts the effect of a magnetic field on the velocity of a fluid. Physically, as the magnetic 

parameter increases from 5 to 15 the Lorentz force emerges and slows the fluid motion [34]. The 
fluid's velocity decreases because of this condition. The effect of different values of second- and third-
grade parameters on the velocity profile of fluid flow is investigated. Figure 8 shows that increasing 
the non-Newtonian parameter 𝑎 leads to increase in velocity. This result is consistent with the results 
of previous research by Siddiqui [35]. Figure 9 also shows that increasing the parameter 𝑏 cause 
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velocity to increase. Figure 10 also presents the relationship between time and velocity profile are 
directly proportional where velocity increase when time increase.  
 

  
Fig. 7. Velocity profile for different value of magnetic parameter, 𝑀 with others parameter fixed 
at 𝑎, 𝑏, 𝑐, 𝜁, Ω, 𝐺𝑟, 𝑃𝑟, 𝑡 = 1 

 

  
Fig. 8. Velocity profile for different value of second-grade parameter, 𝑎 with others parameter fixed 
at 𝑏, 𝑐, 𝜁, 𝑀, Ω, 𝐺𝑟, 𝑃𝑟, 𝑡 = 1 

 

  
Fig. 9. Velocity profile for different value of third-grade parameter, 𝑏 with others parameter fixed at 
𝑎, 𝑐, 𝜁, 𝑀, Ω, 𝐺𝑟, 𝑃𝑟, 𝑡 = 1 
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Fig. 10. Velocity profile for different value of third-grade parameter, 𝑡 with others parameter fixed at 
𝑎, 𝑏, 𝑐, 𝜁, 𝑀, Ω, 𝐺𝑟, 𝑃𝑟 = 1 

 
6. Discussions  
 

The third-grade fluid flows in a rotating frame through a magnetic field and a porous medium 
have been analysed. In order to address the fluid flow problem, a hybrid method of finite difference 
– asymptotic interpolation is adopted. To fulfil the infinite size of the domain, this hybrid method 
used three different lengths in FDM as shown in Figure 1 , Table 1 and Table 2, which had been later 

combined with an asymptotic function 𝑦 = 𝑎1 + 𝑎2𝑒−𝑎3
2𝐿 [25,26]. The best fit is achieved by using a 

non-linear least square curve fit. The hybrid process solution is 𝑎1 [25,26]. Table 3 until Table 5 
indicate the hybrid solution and how the outcomes met the condition in Eq. (16). There is no exact 
solution to this problem that has been published. The issue has been compared with semi-analytical 
HAM in the absence of heat transfer, as shown in Figure 2 and Figure 3 .  

Heat transfer is assigned to the fluid flow problem in the following section. The lengths of the 
problem 𝐿 = 𝐿1, 𝐿2, 𝐿3 = 6, 12, 18 are chosen to present the limiting case 𝜂 → ∞. Table 6 shows that 
the outputs of the hybrid method are larger than the outputs of the finite difference method. Various 
values of the porosity parameter, Grashof number, Prandtl number, MHD parameter, time, second- 
and third-grade parameters are tested to see how they influence the velocity and temperature 
distribution. The outcomes are depicted in Figure 4 until Figure 10. The fluid velocity decrease as the 
porosity parameter increased. Increasing the Grashof number, on the other hand, will boost the 
buoyancy force of the flow and leads to increase the velocity profile [33]. Figure 4 describes the 
relationship between Prandtl and Grashof numbers. Temperature goes up for a low Prandtl number 
( 𝑃𝑟 < 1). The fluid flow in a magnetic field. As a result, the higher the MHD, the slower the velocity. 
The results are consistent with previous studies.  
 
7. Conclusions 
 

The problem of unsteady constant acceleration MHD third-grade fluid flow in a rotating frame 
through porous medium with a presence of heat transfer is conducted. A new hybrid method of finite 
difference method and asymptotic interpolation method is adopted to deal with the semi-infinite 
size of the fluid flow problem. The procedure of method is shown in separate sections with all the 
parameters fixed; 𝑎, 𝑏, 𝑐, 𝜁, Ω, 𝑀, 𝐺𝑟, 𝑃𝑟, 𝑡 = 1. The advantage of the hybrid method over FDM is 
presented. It reveals that the results from the hybrid method are greater and fulfil the boundary 
condition compared to the FDM that presents zero result at infinite length. The result is validated 
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with HAM. Various parameters with different value are tested and the findings show that there is 
relation between parameters with velocity and temperature distribution.  
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