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Stirling engine as an external combustion engine with high efficiencies and able to use any 
types of heat source is the best candidate to recover waste heat of the exhausted gas by 
converting it into power. Thus, in this study Stirling engine was introduced to evaluate the 
possibility of recovering waste heat from biomass to produce power. For this reason, 
Computational Fluid Dynamic (CFD) simulation test was performed to design an initial 
computational model of Stirling engine for low temperature heat waste recovery. The CFD 
model was validated with the experiment model and shows 6.11% of average deviation. 
This result proves that the computational model can be further used to evaluate the 
performance of Stirling engine as waste heat recovery of biomass-based industrial boilers 
for low-grade temperature heat source. 
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1. Introduction 
 

Since Malaysia is one of the largest palm oil producers in the world, biomass has an advantage 
over other types of renewable energy replacing coal or natural gas in order to reduce carbon dioxide 
emissions [1]. For developing country like Malaysia, switching to renewable energy sources like 
biomass is critical to ensure the energy security of energy supply [2]. In the process of using biomass 
as energy source, biomass pellets are used for domestic water heating, co-firing of pulverized 
biomass and coal for electricity generation. For most industrial boilers using biomass, the range of 
thermal efficiency is 60-90%. For most industrial boilers using biomass, the range of thermal 
efficiency is 60-90%. Industrial boilers have a large fraction of thermal energy lost to the atmosphere 
while using biomass to produce electricity. The temperature of the exhaust flue gas range is low 
between 150-180°C (423.15 - 453.15K) [3], and in some cases it can reach up to 220°C (493.15K). For 
that reason, it has a significant potential to recover heat from the exhausted flue gas. It is important 
to recover heat as much as possible for environmental protection and energy conservation [4]. 

Compared to steamed engines, Stirling engine as an external combustion engine is known for its 
ability to use any kind of heat source including solar, biological, geothermal, or even industrial waste 
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heat [5]. Because of its high efficiencies and quite operation, Stirling engine has a great ability to 
recover low temperature waste heat from flue gas and convert it into power [6]. Nevertheless, the 
performance of the Stirling engine will decrease if attached with low temperature heat sources; 
between 200-500°C according to Bianchi and Pascale [7]. Therefore, study to enhance the heat 
transfer in the Stirling engine with low temperature biomass heat sources should be taken into 
consideration. 

The energy to power the Stirling engine movement is completely driven by an external source of 
energy, generating work from the expansion and the compression of the working fluid, whereas 
energy in form of heat is added externally to the expansion chamber and removed from the 
compression chamber due to a differential temperature [8]. Thus, the loses of heat happening during 
the heat transfer process in and out of the engine become important [9]. Stirling engine as an external 
combustion engine, which means the energy used to power the engine movement is entirely 
obtained from the external source, the losses due to the heat transfer in and out of engine or due to 
the heat bypass within the engine structure may be more important than that the mechanical losses 
[9]. The method to increase heat transfer performance is known as heat transfer enhancement [10]. 
Hence, in order to achieve maximum efficiency of heat transfer for the best performance of the 
engine, it is crucial to study methods for heat transfer enhancement for the external part of the 
tubular heater [11]. Earlier works have been done to study and explore the behaviour of this external 
heat transfer by adding different materials as heat transfer enhancement [12]. However, a more 
accurate validation is needed to strengthen the numerical result. 

Hence, this study is linking the gap of lacking research in studying the external part of tubular 
heater. Few researches have been done related to external part of the tubular heater of Stirling 
engine, disregarding the importance of this part in enhancing heat transfer as an external combustion 
engine. Apart from the experimental method that is widely used in modelling the optimum heat 
enhancement techniques in Stirling engine, numerical modelling also is widely used before 
performing the experimental model method [13]. Stirling engine consists of many multi-dimensional 
components which have significant geometrical effects to resolve the numerical models accurately. 
Computational Fluid Dynamic (CFD) approach is one of the numerical models that can simulating the 
multi-dimensional components and complicate processes in Stirling engine, hence gives an accurate 
prediction on the overall engine performance [5]. Therefore, CFD analysis is used to perform this 
study. 

In this study, Stirling engine is introduced to evaluate the possibility of recovering waste heat 
from biomass to produce power. This paper presents the initial model of Stirling engine for further 
improvisation for low temperature heat transfer process from the biomass heat source to the 
external part of the tubular heater of the Stirling engine. This paper shows the validation of the 
baseline model of Stirling engine according to the previous researcher by applying different engine 
speed and comparing the trend lines of the power output based on every engine speed. This work is 
useful for further research in heat transfer enhancement of Stirling engine for low temperature heat 
source. 
 
2. Methodology  
2.1 Governing Equations 
 

The flow field and heat transfer phenomena that happen in Stirling engine can be described 
mathematically by transient axisymmetric compressible Never-Stokes equations, conservation of 
energy equation, conservation of mass and ideal gas equations written as Eq. (1) to Eq. (8) 
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Energy conservation 
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Ideal gas equation 
 
𝜌𝑉 = 𝜌𝑓𝑅𝑇𝑓              (4) 

 
Displacement of piston and displacer 
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Velocity of the piston 
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Velocity of the displacer 
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2.2 Modelling and Geometry 
 

Computational fluid dynamics (CFD); ANSYS Fluent 20.1 software is used in this study to solve the 
continuity, momentum and energy. To include the conduction heat transfer through external wall, 
the wall features and thickness were detailed in the wall boundary condition. There are very few 
computational works in the literature that fully provides complete information about geometry and 
boundary conditions that is needed to design geometry for the CFD simulations. The computational 
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analysis from Ben-Mansour et al., [14] is referred for the initial geometry of Stirling engine model 
since it provides a concise information needed for the CFD simulation. 

A rhombic drive mechanism of β-type Stirling engine which consists of three zones; compression 
zone, expansion zone, and narrow zone as shown in Figure 1 is arrogated as a reference. The narrow 
zone that connects the expansion and compression zone is assumed to have no regenerator 
materials. The dimensions of the geometries are listed in Table 1. 
 

Table 1 
Dimension of simulated geometry of the 
Stirling engine in (mm) [14] 
Working fluid Air 

r1 43 
r2 42.25 
ld 155 
l1 = l2 = l3 = l4 66 
Rd(mm) l1/2.6666 
Lpt 50.93 

Ldt 163.74 
Rd 3.5 
Engine speed  360-500rpm 

 
The simulation model of Stirling engine is solved as 3D geometry as shown in Figure 2. Air is 

utilized and treated as an ideal gas in this study. Air is assumed to be dependent on the gas 
temperature. The dimension of simulated geometry of the Stirling engine is stated in Table 1. The 
cylinder wall features, and thickness is detailed in the wall boundary condition is as shown in Table 
2. The thermal boundary conditions are between 775K for hot temperature (𝑇𝐻) and 300K for cold 
temperature (𝑇𝐶). 
 

Table 2 
Cylinder wall dimensions and properties [14] 
Thickness (mm) 1 

Material Steel 
Density (kg/m3) 7840 
Thermal conductivity 
(Wm−1. k−1) 

43 

Specific heat (J.kg−1. K−1) 450 

 
The engine will start to move when there is a source of heat at the cylinder head. The displacer is 

a loose fit; its job is to shuttle air back and forth within the cylinder. The air within the cylinder is 
forced upward to the hot end of the engine while the displacer travels towards the cold end. The air 
heats up, expands, and the power piston is pushed towards the crankshaft as a result. The air is forced 
to the cold side of the cylinder as the displacer travels to- wards the hot end. The power piston is 
pulled inwards, away from the crankshaft, as the air cools and contracts [15]. 

Further analysis on the work done by the engine is performed and compared with the 
experimental data of work done reported by Aksoy and Cinar [16] to ensure that the model is viable. 
The model then will be used for further evaluation with lower temperature of heat sources. 

Geometry of Stirling engine used in CFD simulation is generated in Solidworks 2019. Figure 2(b) 
shows physical domain of Stirling engine with outer diameter of 90 mm and height of 213.12 mm. 
The displacer is located 13.98 mm from the bottom surface, has diameter of 132.73 mm and height 
of 155 mm. 
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         (a)                                                    (b) 

Fig. 1. Engine configuration [14]  Fig. 2. (a) Schematic diagram and (b) CFD Domain 

 
2.2 Mesh and Boundary Condition Setup 
 

To have a better control of mesh generated and to reduce computational Stirling engine domain 
is divided into four sub-domains (volumes) to simplify the analysis. The volumes were named as 
displacer top volume, displacer bottom volume, engine gap volume and piston volume as shown in 
Figure 3. 
 

 
Fig. 3. Four volumes of Stirling engine generated in 
crosscut at mid-plane 

 
The layering dynamic mesh function and user-defined function (UDF) is applied for the movement 

of the piston and displacer at transient condition. Air is utilized as working fluid and set as the ideal 
gas. For the validation model, the thermal boundary condition for the heating surface is 775K and 
300K for the piston surface. The basis pressure is in the Stirling engine cycle for this study is 1 atm. 
The analysis is pressure based with unsteady RANS (URANS). Analysis performed with k-omega SST 
turbulence model with Energy model is turned on. The equations then were discretized with the 
Coupled Scheme Pressure-velocity coupling algorithm because it shows a relatively fast convergence 
compared to SIMPLE scheme [17]. For the density, momentum and energy equations, the second-
order upwind scheme is used while the first-order upwind scheme is used for the turbulent kinetic 
energy and specific dissipation rate. 
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Figure 4(a) shows overall mesh in this study, with minimum and maximum cells size are 1.5mm 
and 4 mm, respectively. Minimum cells size is for the regenerator area (gap) between displacer and 
engine that is so narrow and very crucial to apply dense mesh. All the mesh generated using 
structured mesh with combination of hexahedral and quadrilateral 3D elements with total cell 
number of 87,882. Figure 4(b) shows mesh at the gap between displacer and engine gap with element 
size of 1.5 mm. Temperature source defined in boundary condition as shown in Figure 5 for (a) hot 
surface and (b) cold surface. 
 

 
Fig. 4. Mesh generated for this study (a) overall mesh (b) 
refined mesh at the engine gap 

 

 
Fig. 5. Two boundary conditions for heat source 
(a) hot surface and (b) cold source surface 

 
3. Results 
3.1 Validation of the Stirling Engine Model 
 

This section discusses the results of Stirling engine validation. The model was previously validated 
in our previous study [18]. However, in this paper, in order to ensure the validity of the power 
calculation versus the engine speed, the model is once again verified by comparing the simulation 
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results obtained from this study with the experimental results that were obtained in the study by Aksoy 
and Cinar [16]. Figure 6 shows the comparison of engine power-engine speed relation of experimental 
result and CFD result obtained from this study. The engine power is calculated by multiplying the engine 
work done with rotational engine speed per minute. The work done by the system can be derived by 
integrating the area of this P-V diagram. The pressure value is taken from the pressure in the cold 
volume every time step of the engine cycle. While the volume is the area of the displacer surface and 
the height of cold volume in every time step. From this result, the trend lines are sketched in Figure 6. 
From the trend lines of CFD data and experimental data in Figure 6, engine speed of 440-525 rpm, cold 
source temperature of 300K, and hot source temperature of 775K were determined. 
 

 
Fig. 6. Engine speed vs power 

 
For CFD results, maximum engine power was found to be 43.75W at 525 rpm of engine speed. 

While the minimum engine power obtained was 36.67W at 440 rpm engine speed. From Table 3, we 
can observe that the smallest deviation of 0.82% is found when the engine speed is at 490 rpm. While 
the largest deviation of 12.28% when the engine speed is at 440 rpm. The overall comparison of the 
trend lines of experimental result and CFD result shows average deviation of 6.11% for every engine 
speed applied. Although the comparison result shows a small deviation, as the preliminary result, it 
can be further improved and exploited to determine the best method for the heat transfer in Stirling 
engine especially from the heat source into the top volume of the Stirling engine. 
 

Table 3 
Cylinder wall dimensions and properties 
Engine Speed (rpm) CFD-Engine Power (W) Experimental-Engine Power (W) Deviation% 

440 36.67 41.8 12.28 
450 37.5 41 8.54 
485 40.42 40.8 0.94 
490 40.83 40.5 0.82 
500 41.67 40.0 4.17 
525 43.75 39.8 9.92 

 
The final total temperature distribution profile for every engine speed applied is shown in Figure 

7(a) to Figure 7(f) below. From the CFD simulation plotted, the results obtained shows that the 
difference of the power output with experimental value is small for engine speed 485 rpm, 490 rpm 
and 500 rpm. As shown in Figure 8, turbulence swirl of higher temperature heat starts to form within 
the hot volume when engine speed is 485 rpm. This indicates that for higher engine speed, the fluid 
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is in a good state of thermal performance in expansion zone. Meanwhile, the results obtained for 
engine speed 440 rpm and 450 rpm shown in Figure 7(a) and Figure 7(b) give an understandable point 
that heat is unevenly distributed between the expansion and compression zone in the cylinder wall. 
This is also a not very outstanding thermal performance of fluid throughout the cylinder. As shown 
in Figure 7(c), Figure 7(d) and Figure 7(e) quite good temperature and heat distributions are achieved 
for engine speed 485 rpm, 490 rpm and 500 rpm. 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 7. Total temperature distribution (a) 440rpm (b) 450rpm (c) 485rpm (d) 490rpm (e) 500rpm (f) 525rpm 

 
It can be observed that the surface area is important for the heat to establish an actual fluid flow 

towards the expansion zone which is located at the upper part of the cylinder. It can be seen clearly 
that results achieved when engine speed is 485, 490 and 500 rpm are the most suitable for the CFD 
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model to get the nearest power output value to the experimental result. From all the results above, 
one can observe that significant criteria of parameter in this study would be the suitable engine speed 
in CFD model to get the minimum deviation percentage from the actual experimental value. 
 
4. Conclusions 
 

The validation of the baseline model of Stirling engine according to the previous researchers is 
presented in this study. The validation is conducted by applying different engine speed and 
comparing the trend lines of the power output based on every engine speed. It shows that the CFD 
results obtained in this study is deviated 6.11% from the actual experimental results. The details of 
the temperature distribution within the engine’s wall are also described in here so that one can 
understand better the effect of the different engine speed to the engine’s power output. 

From the validated model obtained, further study could be done on the Stirling engine model by 
studying different parameters analysis especially focusing on the engine wall area. This part can be 
modified by using different types of material; in order to enhance the heat transfer process and 
eventually the power output of the engine. 
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