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This work introduces an immersed boundary method for two-dimensional simulation 
of incompressible Navier-Stokes equations. The method uses flow field mapping on the 
immersed boundary and performs a contour integration to calculate immersed 
boundary forces. This takes into account the relative location of the immersed 
boundary inside the background grid elements by using inverse distance weights, and 
also considers the curvature of the immersed boundary edges. The governing 
equations of the fluid mechanics are solved using a Galerkin-Least squares finite 
element formulation. The model is validated against a stationary and a vertically 
oscillating circular cylinder in a cross flow. The results of the model show acceptable 
accuracy when compared to experimental and numerical results. 
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1. Introduction 
 

Advancements in the computational capabilities of computers has reflected on the complexity of 
the problems tackled by computational fluid dynamics (CFD). Using conventional body-fitted grids [1-
5] has limited the ability to simulate problems with complex motions. Some of these techniques 
require re-gridding at some time during the simulation which adds a computational cost and 
provokes artificial numerical diffusion. However, immersed boundary techniques relaxed the 
restriction imposed by body-fitted grid methods by opening the gate for simulating multi-body 
problems with highly complex motions. 

The literature of immersed boundary methods is full of various approaches. Jafari [6] presented 
a review of various immersed boundary methods which include, but not limited to, the marker and 
cell method developed by Harlow and Welsh [7], the volume of fluid method presented by Hirt [8], 
the level set method presented by Osher and Fedkiw [9], and also the work of Udaykumar and Mittal 
[10] and Francois and Shyy [11]. 

Generally, immersed boundary methods can be divided into interface capturing and interface 
tracking methods. In interface tracking, the interface location between different phases, different 
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fluids or fluids and non-fluids is known either from an equations of motion model or a prescribed 
path. On the other hand, in interface capturing, instead of previous knowledge, the interface location 
is solved for like Bagabir et al., [12] did for capturing the interface in a compressible gas-gas flow and 
Duo-xing and De-liang [13] did to capture a fluid-fluid interface in a porous medium. Another 
classification for immersed boundary methods is finite/sharp interface treatment. 

Some methods depend on modeling the interface between different physical regions by a finite 
thickness interface across which physical quantities are smoothed between its two end values. On 
the contrary, sharp interface techniques impose an abrupt change of physical quantities across the 
interface. 

Immersed boundary methods introduce a mass conservation issue near the immersed boundary 
[14]. Various approaches are found in the literature of immersed boundary methods for treating this 
issue. In a continuous forcing approach, source terms are added to the governing equations, and 
have effect only near the interface [15-18]. Goldstein et al., [19] introduced another forcing term for 
the aim of having a velocity feedback control. The method was used for modeling startup flows over 
a circular cylinder at low Reynolds numbers. Angot el al. [20] presented the idea of a porous medium 
whose permeability is infinite for fluid regions, zero for solid regions and smoothed in between. 
Analogous to the continuous forcing approach is the discrete one. Generally, in the discrete forcing 
approach the forcing terms are added to the discretized form of the governing equations. The indirect 
boundary condition imposition method was introduced by Mohd-Yosuf [21] in which the forcing 
terms were extracted directly from the discretized form of the Navier-Stokes equations. A ghost cell 
can be defined as the cell through which the interface passes. 

In the ghost cell finite difference approach, a generic flow variable is interpolated inside the ghost 
cell from the values of the surrounding cells [22]. The cut-cell finite volume method was introduced 
by Clarke [23]. In this method, the cell through which the interface passes is re-constructed to keep 
its fluid part only. Despite its higher accuracy, this method is limited due to the complexity of the 
reconstructed polyhdera in case of three dimensions and due to the additional work needed to re-
form the connectivity of the grid at each time step. Salih et al., [24] used a cut cell method mixed 
with local adaptive mesh refinement around the immersed boundary. The method was used in a fluid 
structure interaction simulation of thin shaped bodies. 

In this work, instead of integrating flow fields on the background grid nodes, they are integrated 
along the contour of the immersed boundary itself. Figure 1 summarizes this methodology. Figure 
1(a) shows a general flow field smoothed between the solid and fluid regions. This exemplary field 
shows the stair-step region present at the interface between the solid and the fluid regions. It is 
customary that the fluid stresses are integrated over this region to compute the immersed boundary 
forces. The definition of this interface region is based on a location criterion to the edges of the 
immersed boundary, hence resulting in this stair-step form. To dismiss this situation the following is 
introduced. Figure 1(b) shows a segment of the immersed boundary represented by the dashed 
curve. For each vertex of the immersed boundary, the grid element containing this vertex maps the 
stress tensor of its fluid nodes only onto the immersed boundary vertex using an inverse distance 
weight. In this manner, the immersed boundary vertices are represented as virtual grid nodes whose 
flow field values are interpolated from the values of the actual grid nodes. Finally, Figure 1(c) shows 

an exemplary stress tensor magnitude (namely √𝜎: 𝜎 with 𝜎 being the Cauchy stress tensor) after 
the mapping process. The mapped stress distribution can be easily integrated over the edges of 
immersed boundary with any numerical integration method. By this, the relative position of the 
immersed boundary vertex inside a comprising grid element is taken into account in the inverse 
distance weight calculation. Also, the curvature of an immersed boundary can be easily accounted 
for in the integration process. 
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Fig. 1. (a) A general field smoothed between a solid 
(blue) region and a fluid (red) region. (b) A grid cell 
comprising a vertex with the fluid nodes (F) mapping 
their stresses to the vertex. (c) The distribution of 
the mapped stresses magnitude along the contour 
of the immersed boundary 

 
In this work, the pressure-stabilized incompressible Navier-Stokes equations [25,26] were solved 

using a Galerkin-Least Squares (GLS) finite element method following [27]. Differentiating the solid 
and fluid regions was done by solving the point inclusion in a polygon using the dual perspective 
algorithm [28]. Solid regions were modeled as infinitely viscous fluid regions where the momentum 
equation simplifies to a rigid body motion condition. So, all the solid nodes have imposed velocities 
equal to that of the moving body. The continuity equation is solved for among the fluid as well as the 
solid regions to ensure a mass conservation inside the whole domain. Solving the continuity equation 
inside the solid regions with their velocities set to that of the body itself ensures that the pressure 
propagates correctly to the fluid regions near the cylinder. Such a technique enables the usage of 
Euler explicit forward time discretization, as it ensures that all the domain nodes possess history 
regarding their pressure and velocity. After presenting the methodology the model is validated 
against problems with stationary and moving bodies. 
 
2. Methodology  
2.1 Governing Equations  
 

Brezzi and Pitk¨aranta [25] introduced the pressure stabilization form of the Stokes equation. A 
generalization of this method to the unsteady Navier-Stokes equations takes the form 
 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
− 𝜖 (

𝜕2𝑝

𝜕𝑥2 +
𝜕2𝑝

𝜕𝑦2) = 0,            (1) 

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+

𝜕𝑝

𝜕𝑥
−

1

𝑅𝑒
(

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2) = 0,          (2) 
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𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+

𝜕𝑝

𝜕𝑦
−

1

𝑅𝑒
(

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2) = 0,          (3) 

 
where 𝑢 and 𝑣 are the fluid’s velocity components, 𝑝 is the fluid’s pressure, and 𝜖 is a pressure 
stabilization parameter that is five to ten times the solution time step. Eq. (1)-(3) become the 
pressure stabilization form of the Stokes equation when 𝜖 is set to ∆𝑡 [29]. The Reynolds number 𝑅𝑒 
is defined as 𝜌𝑈∞𝐿/𝜇 with 𝜌 being the fluid’s density, 𝑈∞ being the characteristic flow velocity, 𝐿 
being the characteristic length, and 𝜇 being the fluid’s viscosity coefficient. The continuous flow field 
is discretized by the shape functions 𝜙 such that a continuous variable 𝑔 can be written inside a finite 
element as 
 
𝑔 ≈ 𝑔̃ = 𝑔𝛾𝜙𝛾,             (4) 

 
with the implicit summation of 𝛾 being made over all the nodes of the finite element such that 
𝑔𝛾 represents the value of the approximate variable 𝑔̃ at the node 𝛾. The superscript (~) indicates 

an approximated variable. After discretization, the right hand sides of Eq. (1), (2) and (3) cease to 
vanish. These right hand sides become the non-zero residuals 𝑅𝑐, 𝑅𝑥 and 𝑅𝑦 for the continuity, 𝑥-

direction momentum and 𝑦-direction momentum equations, respectively. These residuals are 
minimized by the weighting function 𝑊, such that for a computational domain Ω, the volume 
integrals 
 

∫ 𝑅𝑐𝑊 𝑑𝑉 =
Ω

∫ 𝑅𝑥𝑊 𝑑𝑉 =
Ω

∫ 𝑅𝑦𝑊 𝑑𝑉 =
Ω

0,         (5) 

 
are satisfied. The superscript (~) will be dropped from now on while taking into consideration that 
all subsequent flow variables are approximate variables stored in the grid nodes. To convert Eq. (5) 
to the weak form, second order derivatives are integrated by parts while omitting the resulting 
contour integrals around the domain boundary 𝜕Ω as they are overridden by Dirichlet boundary 
conditions or they naturally satisfy a zero Neumann boundary condition. 
 
𝑊𝑖 = 𝜙𝑖 + 𝜏𝑄(𝜙𝑖).             (6) 
 

𝑄 = 𝑢̅
𝜕

𝜕𝑥
+ 𝑣̅

𝜕

𝜕𝑦
.             (7) 

 
For a GLS formulation, the weighting function 𝑊 is a linear combination of the shape function 𝜙 

and the differential operator 𝑄(𝜙) for the differential equation at hand [27]. In Eq. (7), the definition 
of the differential operator 𝑄 is stated with 𝑢̅ and 𝑣̅ being convection velocities that are 
approximated by the finite element averaged velocities from a previous time step. For a node 𝑖, the 
linear combination is made using a weighting parameter 𝜏 according to Eq. (6) with 𝜏 being defined 
as 
 

𝜏 = [(
2

∆𝑡
)

2

+ (
2𝑢𝑒

𝐿𝑒
)

2

+ (
4

𝑅𝑒 𝐿𝑒
2)

2

]
−0.5

.           (8) 

 
In Eq. (8), ∆𝑡 is the solution time step, 𝑢𝑒 is an element averaged velocity, and 𝐿𝑒 is an element 

length scale. Only for the continuity equation, a standard Galerkin procedure is followed by setting 𝜏 
to zero. Introducing Eq. (4) to Eq. (1)-(3) along with Eq. (5)-(8), and using Euler forward time 
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discretization for the temporal derivatives results in a set of linear systems of equations. Using an 
index notation for compactness, these equations can be expressed as 
 

𝐴𝛾𝛽 𝑝𝛽
𝑛 = −

1

𝜖
(𝐵𝛾𝛽 𝑢𝛽

𝑛 + 𝐶𝛾𝛽 𝑣𝛽
𝑛),           (9) 

 

𝑀𝛾𝛽 𝑢𝛽
𝑛+1 = (𝑀𝛾𝛽 − ∆𝑡 𝐾𝛾𝛽)𝑢𝛽

𝑛 − ∆𝑡 𝐵𝛾𝛽 𝑝𝛽
𝑛,                   (10) 

 

𝑀𝛾𝛽 𝑣𝛽
𝑛+1 = (𝑀𝛾𝛽 − ∆𝑡 𝐾𝛾𝛽)𝑣𝛽

𝑛 − ∆𝑡 𝐶𝛾𝛽 𝑝𝛽
𝑛,                   (11) 

 
In Eq. (9-11), the superscript 𝑛 refers to the time level. Eq. (9) is used to update the pressure field 

using the velocity field obtained from Eq. (10) and (11). The matrices 𝐴, 𝐵, 𝐶, 𝑀 and 𝐾 are defined 
for a finite element Ω𝑒 with a volume of 𝑉𝑒 as follows 
 

𝐴𝛾𝛽 = ∫
𝜕𝜙𝛾

𝜕𝑥𝑘

𝜕𝜙𝛽

𝜕𝑥𝑘
 𝑑𝑉𝑒Ω𝑒

.                      (12) 

 

𝐵𝛾𝛽 = ∫ 𝜙𝛾
𝜕𝜙𝛽

𝜕𝑥
 𝑑𝑉𝑒Ω𝑒

, 𝐶𝛾𝛽 = ∫ 𝜙𝛾
𝜕𝜙𝛽

𝜕𝑦
 𝑑𝑉𝑒Ω𝑒

.                   (13) 

 

𝑀𝛾𝛽 = ∫ 𝜙𝛾𝜙𝛽 𝑑𝑉𝑒Ω𝑒
.                       (14) 

 

𝐾𝛾𝛽 = 𝑢̅𝑖 ∫ 𝜙𝛾
𝜕𝜙𝛽

𝜕𝑥𝑖
 𝑑𝑉𝑒Ω𝑒

+ 𝜏 𝑢̅𝑘𝑢̅𝑙 ∫
𝜕𝜙𝛾

𝜕𝑥𝑘

𝜕𝜙𝛽

𝜕𝑥𝑙
 𝑑𝑉𝑒Ω𝑒

+
1

𝑅𝑒
∫

𝜕𝜙𝛾

𝜕𝑥𝑗

𝜕𝜙𝛽

𝜕𝑥𝑗
 𝑑𝑉𝑒Ω𝑒

.                (15) 

 
In Eq. (12)-(15), the free indices 𝛾 and 𝛽 correspond to the node order in the local finite element, 

while the dummy indices 𝑖, 𝑗, 𝑘 and 𝑙 correspond to variable order. For example, in Eq. (12), setting 
𝑘 to one indicates a derivative with respect to the 𝑥 coordinate, while setting it to two indicates a 
derivative with respect to the 𝑦 coordinate. The same analogy applies to Eq. (15) where 𝑢̅𝑘 refers 
to 𝑢̅ as well as 𝑣̅ just by setting the index 𝑘 to one or two, respectively. The integrals in Eq. (12)-(14) 
depend on the grid shape only without any dependency on the flow variables, and hence are 
computed once at the beginning of the simulation and are stored to minimize the CPU time. The used 
finite elements local coordinates range from −1 to 1 on the computational axes 𝜁 and 𝜂. Also, the 
shape function 𝜙𝑖  of the node 𝑖 in a local finite element is defined as 

 

𝜙𝑖 =
1

4
(1 + 𝜁𝑖𝜁)(1 + 𝜂𝑖𝜂),                      (16) 

 
with 𝑖 ranging from one to four (the number of nodes of a quadrilateral). 
 
2.2 Stress Calculation Along the Moving Body 
 

The calculation of the forces acting on a moving body is very crucial for most applications. In 
traditional immersed boundary techniques, the forces acting on the immersed boundary are 
calculated by integrating the stresses over some of the background grid nodes. These nodes are 
mainly selected based on a location criterion relative to the immersed boundary edges. The locus of 
these nodes can result in a poor surface of integration, hence affecting the accuracy. To avoid this 
issue, the stress integration is made along the edges of the immersed boundary itself. This is done by 
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mapping the flow field onto the vertices of the immersed boundary. The Cauchy stress tensor 𝜎 of a 
fluid is defined using an index notation as 
 

𝜎𝛾𝛽 = −𝑝 𝛿𝛾𝛽 +
1

𝑅𝑒
(

𝜕𝑢𝛾

𝜕𝑥𝛽
+

𝜕𝑢𝛽

𝜕𝑥𝛾
),                     (17) 

 
where 𝛿𝛾𝛽 is the Kronecker delta function. Eq. (17) is written for a continuous domain. Re- writing 

the equation in a finite element context using an index notation and a standard Galerkin procedure 
results in 
 

(𝜎𝛾𝛽)
𝑗

∫ 𝜙𝑖𝜙𝑗  𝑑𝑉𝑒Ω𝑒
= −𝑝𝑘 𝛿𝛾𝛽 ∫ 𝜙𝑖𝜙𝑘 𝑑𝑉𝑒Ω𝑒

+
1

𝑅𝑒
[(𝑢𝛾)

𝑠
∫ 𝜙𝑖

𝜕𝜙𝑠

𝜕𝑥𝛽
 𝑑𝑉𝑒Ω𝑒

+ (𝑢𝛽)
𝑙

∫ 𝜙𝑖
𝜕𝜙𝑙

𝜕𝑥𝛾
 𝑑𝑉𝑒Ω𝑒

]

                         (18) 
 

where (𝜎𝛾𝛽)
𝑗
 is the stress tensor𝜎𝛾𝛽  at the node 𝑗, and (𝑢𝛾)

𝑠
 is the 𝛾 component of the velocity field 

for the node 𝑠. For each of the vertices defining the immersed boundary, the grid element enclosing 
this vertex is defined. This grid element should by definition possess at least one grid node that is 
classified as inside the body by the dual perspective algorithm [28]. The Cauchy stress tensor at a 
body vertex inside this grid element can be obtained by interpolating the stress tensor of the 
element’s fluid nodes using an inverse distance interpolation [30]. For an enclosing element 
having 𝑁𝑒′ fluid nodes, the Cauchy stress tensor at a vertex 𝑖 that is 𝑑𝑗 away from the fluid node 𝑗 is 

 

(𝜎𝛾𝛽)
𝑖

=
∑ 𝑑𝑗

−𝜅𝑁𝑒
′

𝑗=1
(𝜎𝛾𝛽)

𝑗

∑ 𝑑𝑗
−𝜅𝑁𝑒

′

𝑗=1

,                      (19) 

 
where, 𝜅 is a power parameter. The mapped stresses are then integrated along the immersed 
boundary contour to get the resultant acting forces. 
 
2.3 Computational Procedure 
 

In the previous two sections, the equations and the mapping technique were stated. In this 
subsection, the procedure of the model is stated. One of the advantages of the presented model is 
that the background grid is time invariant in all its aspects. Hence, all grid related processes can be 
made only once at the beginning of the simulation and are stored for later usage. This behaviour may 
harm memory usage but is definitely in favour of CPU time consumption. Generally, scientific 
computations face a trade-off between memory usage and computation time. It is worth mentioning 
that the memory usage of the presented model is around 4.5 Gigabytes for a grid with a million 
nodes. This number may be different from one program to another. So, favouring the CPU time was 
not very harmful from a memory usage point of view. 

The integrals of the shape functions 𝜙 are computed for each grid element using a Gauss-
Legendre quadrature. Global matrices like the ones stated in Eq. (12-15) are highly sparse and are 
stored in a matrix compressed format. The locations of the non-zero cells in the global matrix 
depends on the connectivity of the grid’s elements which is time invariant. So, for an exemplary node, 
identifying the global ID of the nodes that share a grid element with this node defines the location of 
the non-zero cells in the row corresponding to the exemplary node in a global matrix. 
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The matrices of Eq. (12)-(14) are time invariant, while the matrix 𝐾 of Eq. (15) is dependent on 
the convection velocity. However, the element’s volume integrals in Eq. (15) are time invariant. So, 
they can be computed and stored for each grid element to be used in filling the predefined nonzero 
locations in matrix 𝐾 at each time step. 

Now, for each solution time step, the nodes of the grid are classified into fluid and solid nodes by 
using the dual perspective algorithm [28]. Moreover, when a simulated body is not moving, the nodal 
classification process regarding this body is done only once at the first time step. It is beneficial to 
define a virtual time invariant bounding box that encloses all the bodies during all the times. The 
purpose of this virtual bounding box is to make an initial nodal classification before the time iterations 
begin to determine the nodes inside the bounding box. Nodes that are outside this bounding box are 
always fluid nodes and hence are eliminated from any nodal classification process. Nodes that are 
classified as solid nodes are given a Dirichlet velocity boundary condition according to the velocity of 
their enclosing body. 

Moreover, the weighting parameter 𝜏 is calculated for each element according to Eq. (8), and 
then, along with the velocities of the previous time step, is used to calculate the matrix 𝐾 according 
to Eq. (15). Eq. (9) is used to update the pressure field by first forming its right hand side and imposing 
pressure boundary conditions. Eq. (10) and (11) are solved for the new velocity field after imposing 
the Dirichlet boundary conditions of the solid nodes along with the wall nodes, velocity inlet nodes, 
and symmetry planes nodes. After obtaining the pressure and velocity fields, the Cauchy stress tensor 
can be calculated at grid nodes that are relevant to the mapping process according to Eq. (18). Note 
that the shape functions integrals in Eq. (18) are time invariant and are among the integrals calculated 
before the time iterations begin. To map the Cauchy stress tensor on the vertices of the moving body, 
the grid element enclosing a moving body vertex is searched for. To speed up this process, the closest 
grid node to each moving body vertex is determined during the nodes classification process. The grid 
element enclosing the moving body vertex is one of the grid elements sharing its closest grid node. 
After identifying the enclosing grid element, Eq. (19) is used to map the stresses of the fluid nodes of 
the enclosing grid element onto the moving body vertex. These mapped stresses are then integrated 
along the contour of the moving body using the edges’ normal vectors. Such a process is repeated 
for every moving body in the domain. 
 
3. Results 
 

The flow over a circular cylinder whether oscillating or stationary is quite important for studying 
off-shore structures as well as heat exchangers that are subjected to induced vibrations. 
Experimental work for the oscillating circular cylinder can be found in [31-33]. Numerical simulations 
are also present like that discussed in [34-42].  
 
3.1 Flow Over a Stationary Circular Cylinder 
 

Persillon and Braza [43] discussed the effect of the domain size on the accuracy of CFD simulations 
of circular cylinders especially in small Reynolds number simulations. According to their conclusions, 
the rectangular domain is constructed to have the dimensions shown in Figure 2. 

The cylinder is placed in a virtual bounding box with square grid elements of length 𝛿𝑒 referenced 
to the cylinder diameter. To select a proper value for 𝛿𝑒, a grid convergence study is conducted by 
varying the value of 𝛿𝑒 and measuring the natural frequency 𝑓𝑜 of the generated lift signal for a 
stationary circular cylinder at a Reynolds number of 185. The value of 𝛿𝑒 is reduced until the natural 
shedding frequency stabilizes whilst keeping 𝛿𝑒 at acceptable levels for computational practicality. 
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Figure 3 shows the grid convergence analysis for the selection of 𝛿𝑒. The figure shows that at a value 
of 0.01 for 𝛿𝑒, the changes in the natural shedding frequency is almost insignificant. Reducing 𝛿𝑒 
below 0.01 would raise the size of the grid with no significant gains. Moreover, although reducing 𝛿𝑒 
from 0.03 to 0.01 changed the natural shedding frequency by around 0.2% only, setting 𝛿𝑒 to 0.03 
affected other solution variables more severely than 0.2%. So, the natural shedding frequency was 
not the only variable considered while choosing 𝛿𝑒. 
 

 
Fig. 2. A schematic of the dimensions of the computational 
domain referenced to the cylinder diameter 

 

 
Fig. 3. Natural shedding frequency variation as a function of grid size 𝜹𝒆 
for a stationary circular cylinder at a Reynolds number of 𝟏𝟖𝟓 

 
The domain’s boundary conditions are set as follows. The inlet side of the rectangular domain has 

a velocity inlet boundary condition, where the velocity component 𝑢 is set to one referenced to the 
characteristic velocity 𝑈∞ and the velocity component 𝑣 is set to zero. The upper and lower sides 
have a symmetry boundary condition, along which the velocity component 𝑣 is set to zero and the 
velocity component 𝑢 has a zero Neumann boundary condition (𝜕𝑢/𝜕𝑦 = 0). For the outlet side, a 
point is selected to have a Dirichlet boundary condition with a value of zero. This is considered as a 
reference pressure point. The rest of the points of the outlet side have a zero Neumann boundary 
condition (𝜕𝑝/𝜕𝑥 = 0). As for the initial conditions, the domain is initialized by a zero pressure field 
and a value of one for both velocity components to perturb the domain in order to accelerate the 
vortex shedding. The non-dimensional time step ∆𝑡 for the stationary cylinder simulations is set to 
0.001 with a pressure stabilization parameter 𝜖 set to 0.01. 

To explore the effect of the immersed boundary (IB) method along with the mapping technique, 
the same physical domain is used to simulate the same problem set up but using a body fitted (BF) 
grid. Figure 4 shows a comparison between the body fitted grid and the immersed boundary grid 
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showing only a part of the cylinder. For the immersed boundary grid, grid nodes that fall inside the 
cylinder are colored in red, while the blue colored points represent fluid nodes. Guilmineau [37] 
reported a plot comparing the natural shedding frequency of a stationary circular cylinder as a 
function of the diameter based Reynolds number from various publications. This frequency is 
obtained from a Fourier transform of the lift coefficient signal. Figure 5 is a reproduction of that plot 
while adding the results of the current model to it. The immersed boundary case and the body fitted 
case are both reported. The figure shows that the results of the presented model are in acceptable 
agreement with experimental and numerical results of other publications. It also shows that there 
are not significant differences in the natural shedding frequency between the immersed boundary 
simulation and the body fitted simulation. 
 

 
Fig. 4. A comparison between the body fitted grid (left) and the 
immersed boundary grid (right) for a segment of the circular cylinder 

 

 
Fig. 5. The natural shedding frequency of a stationary circular 
cylinder as a function of the Reynolds number [44,45] 
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Table 1, values relevant to the lift and drag coefficients are tabulated versus the Reynolds number 
for the case of the stationary cylinder using both immersed boundary and body fitted simulations. 
Since a non- rotating circular cylinder does not generate lift, the lift coefficient signal (𝐶𝑙) is 
symmetric about the zero-lift line, resulting in a zero average of the signal. The amplitude of the signal 
(denoted by the subscript a) is used to measure the lift signal while the mean (denoted by an upper 
bar sign) is used with the drag signal (𝐶𝑑) as it is not symmetric about a zero-drag line. The stress 
tensor as described by Eq. (17) consists of two terms, a pressure term and a viscous term. Both terms 
contribute differently to the generated forces, so their effect is shown separately in Table 1, where 

(𝐶𝑙𝑝
) is the lift coefficient obtained from the pressure term in Eq. (17) and (𝐶𝑙𝑣

) is the lift coefficient 

obtained from the viscous term. The same nomenclature is applied to the drag coefficient. Table 1 
shows that that the amplitude of the lift signal is rising with the Reynolds number. This rise is caused 
by a rise in the amplitude of both the pressure and viscous terms in Eq. (17). On the other hand, the 
rise in Reynolds number raises the mean drag caused by the pressure term while it reduces the mean 
drag due to the viscous term. Overall, the mean drag coefficient becomes less when the flow 
becomes more dominant by inertia forces. The table also shows the discrepancies caused by the 
immersed boundary and the stress mapping relative to the body fitted case. 
 

Table 1 
Forces generated on a stationary circular cylinder at various Reynolds numbers 

𝑅𝑒 Type (𝐶𝑙)𝑎 (𝐶𝑙𝑝
)

𝑎
 (𝐶𝑙𝑣

)
𝑎

 𝐶𝑑̅ 𝐶𝑑̅𝑝
 𝐶𝑑̅𝑣

 

85 IB 0.265 0.232 0.038 1.438 1.086 0.352 
BF 0.288 0.252 0.042 1.436 1.064 0.371 

100 IB 0.326 0.289 0.043 1.420 1.100 0.322 
BF 0.351 0.310 0.047 1.418 1.080 0.342 

120 IB 0.400 0.358 0.047 1.414 1.124 0.291 
BF 0.425 0.380 0.052 1.403 1.092 0.311 

135 IB 0.452 0.408 0.050 1.412 1.140 0.272 
BF 0.477 0.429 0.055 1.398 1.105 0.293 

150 IB 0.501 0.456 0.052 1.414 1.157 0.257 
BF 0.527 0.477 0.057 1.396 1.118 0.278 

165 IB 0.548 0.501 0.054 1.418 1.174 0.243 
BF 0.574 0.522 0.059 1.395 1.131 0.265 

185 IB 0.606 0.558 0.056 1.425 1.197 0.228 
BF 0.633 0.579 0.061 1.398 1.148 0.250 

200 IB 0.647 0.598 0.056 1.429 1.211 0.218 
BF 0.674 0.619 0.063 1.402 1.162 0.240 

 
Figure 6 shows a comparison of the pressure contours between the body fitted case, shown on 

the upper part of the figure, and the immersed boundary case on the bottom side of the figure for a 
stationary cylinder and a Reynolds number of 100. The contours were generated at a moment in time 
after the start of the vortices shedding in both simulations. The figure shows a great agreement 
between the contours of both cases. In the lower sub-figure the contours inside the cylinder are 
suppressed as they present no physical meaning. However, these inside nodes are shown in Figure 7 
having a zero velocity (the velocity of the stationary cylinder). Figure 7 shows velocity surfaces of 
both the body fitted and immersed boundary cases. Figure 8 shows the distribution of the cycle 
averaged pressure coefficient along the surface of the cylinder at a Reynolds number of 100 for both 
the immersed boundary and body fitted simulations. Both results are compared to the results of Park 
et al., [46].  
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Fig. 6. A pressure contour comparison between the body fitted 
simulation (top) and the immersed boundary simulation (bottom) for 
a stationary circular cylinder at a Reynolds number of 100 

 

 
Fig. 7. A velocity field comparison between the body fitted 
simulation (top) and the immersed boundary simulation (bottom) 
for a stationary circular cylinder at a Reynolds number of 100 
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The cycle averaged pressure distribution along the cylinder’s surface is symmetric. So, only half 
of the cylinder is shown in Figure 8 with the angle 𝜃 being zero at the leading stagnation point. The 
figure shows great accordance between the current model and previous publications. Mapping the 
pressure field onto the cylinder resulted in some noise in the pressure coefficient distribution. Such 
a noise is directly proportional to the grid size. In this work, the magnitude of the Cauchy stress tensor 

is defined as √𝜎: 𝜎, where : is the double contraction tensor operator. The cycle averaged stress 
magnitude is plotted in Figure 9 for both the immersed boundary and the body fitted simulations. 
The plot shows a great accordance between the two models and hence strengthening the reliability 
of the presented immersed boundary model. 
 

 
Fig. 8. Cycle averaged pressure coefficient distribution around the 
cylinder’s surface at a Reynolds number of 100 

 

 
Fig. 9. Cycle averaged Cauchy stress magnitude distribution around the 
cylinder’s surface at a Reynolds number of 100 

 
3.2 Transverse Flow Over a Vertically Oscillating Circular Cylinder 
 

In this section, the presented model is validated against experimental and numerical data in the 
literature for vertically as well as horizontally oscillating circular cylinders. The flow domain is the 
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exact to that of the stationary cylinder with the same boundary conditions except that of the solid 
nodes which get the velocity of the oscillating cylinder. 
 
𝜒 = −𝐸𝑎 sin(2𝜋𝑓𝑒𝑡)                       (20) 
 

The case of an oscillating circular cylinder is defined, beside the flow Reynolds number, by the 
excitation frequency 𝑓𝑒 and the excitation amplitude 𝐸𝑎 as shown in Eq. (20), where 𝜒 is the direction 
of motion of the cylinder (𝑦 for a vertically oscillating cylinder, and 𝑥 for a horizontally oscillating 
cylinder). 𝜒 and 𝐸𝑎 are referenced to the cylinder diameter 𝐷. The excitation frequency 𝑓𝑒 is often 
referenced to the natural shedding frequency 𝑓𝑜 of the stationary correspondent of the oscillating 
cylinder. The frequency ratio 𝑓𝑟 is defined as the ratio between the excitation frequency 𝑓𝑒 and the 
natural shedding frequency 𝑓𝑜 of the stationary cylinder at the same Reynolds number. 
 
𝑓𝑟 = 𝑓𝑒/𝑓𝑜.                        (21) 
 

The lock-in phenomenon of the oscillating circular cylinder is defined as a state where the 
frequency of vortices shedding for an oscillating cylinder is locked to the excitation frequency [23]. 
Pham et al., [39] simulated several cases of vertically oscillating cylinders that fall inside the lock-in 
zone on the excitation amplitude - excitation frequency plane. Three different frequency ratios will 
be simulated and compared to the results of [39] for validation. For a Reynolds number of 185 and 
an excitation amplitude of 0.2, the frequency ratios 𝑓𝑟 of 0.8, 1.0, and 1.1 will be simulated using the 
immersed boundary model. Table 2 shows a comparison of the frequency of vortices shedding 𝑓𝑠, the 
root mean squared lift coefficient (𝐶𝑙)𝑟, and the mean drag coefficient 𝐶𝑑̅ between the current 
immersed boundary model and the results of [39] for a Reynolds number of 185 and an excitation 
amplitude of 0.2. The table shows a great agreement with the published results, while noting that 
the values in the ”𝑓𝑠” column of the current model are exactly the product of the frequency ratio 𝑓𝑟 
and the natural shedding frequency 𝑓𝑜 at a Reynolds number of 185 as shown in Figure 5 by a value 
of 0.1956. This is in accordance with the fact that the three simulated points lie in the lock-in zone. 
 

Table 2 
A comparison between shedding frequency, root mean squared lift coefficient, and mean drag coefficient 
at various excitation frequency ratios between the current model and the results of Pham et al., [39] at a 
Reynolds number of 185 and an excitation amplitude of 0.2 

𝑓𝑟 Current- IB Pham et al., [39] 

𝑓𝑠 (𝐶𝑙)𝑟 𝐶𝑑̅ 𝑓𝑠 (𝐶𝑙)𝑟 𝐶𝑑̅ 
0.8 0.1564 0.1009 1.31 0.1533 0.101 1.24 
1.0 0.1956 0.443 1.653 0.1933 0.424 1.532 
1.1 0.2151 0.8504 1.4304 0.2133 0.866 1.388 

 
To demonstrate the effect of both pressure and viscous terms of Cauchy stress tensor, the values 

of the pressure and viscous components of both the lift and drag coefficients are tabulated in Table 
3. Again, lift coefficient related values are tabulated as root mean squared values, while drag 
coefficient related values are tabulated as mean values. Figure 10 shows the temporal variation of 
the lift and drag coefficients signals for the frequency ratios of 0.8, 1.0, and 1.1, respectively. The 𝑥-
axis of each of these figures has the time normalized by its own excitation period, such that the axis 
represents cycles of excitation. In this way, all the plots share the same 𝑥-axis. In Figure 10, the black 
curves represent the lift coefficient and the red curves represent the drag coefficient. For the top and 
middle plots of Figure 10, the excitation frequency did not surpass the natural shedding frequency of 
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the stationary cylinder. For such cases, the generated forces signals are purely sinusoidal with their 
shedding frequencies equal to the excitation frequencies. However, when the excitation frequency 
exceeds the natural shedding frequency of the stationary cylinder, the generated forces become 
sinusoidal but with a limit-cycle behaviour. This means that the signal is composed of patches of 
sinusoidal signals that are repeated with a frequency that is less than the primary shedding 
frequency. The latter is still equal to the excitation frequency as long as the excitation frequency and 
amplitude remain in the lock-in zone. 
 

Table 3 
Forces generated on an oscillating circular cylinder at various excitation frequencies for a Reynolds number 
of 185 and an excitation amplitude of 0.2 

𝑓𝑟 (𝐶𝑙)𝑟 (𝐶𝑙𝑝
)

𝑟
 (𝐶𝑙𝑣

)
𝑟
 𝐶𝑑̅ 𝐶𝑑̅𝑝

 𝐶𝑑̅𝑣
 

0.8 0.1009 0.1160 0.0152 1.31 1.0904 0.2196 
1.0 0.4430 0.4393 0.0405 1.653 1.3954 0.2575 
1.1 0.8504 0.7624 0.1083 1.4304 1.2022 0.2282 

 

 
Fig. 10. Lift and drag coefficient signals for a Reynolds number of 
𝟏𝟖𝟓 and an excitation amplitude of 𝟎. 𝟐. Top: 𝒇𝒓  =  𝟎. 𝟖, middle: 
𝒇𝒓  =  𝟏. 𝟎, bottom: : 𝒇𝒓  =  𝟏. 𝟏 
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3.3 A Horizontally Oscillating Circular Cylinder in a Stagnant Fluid 
 

Dutsch et al., [47] presented some experimental measurements for a horizontally oscillating 
circular cylinder in a stagnant fluid. The measurements included vertical velocity profiles at multiple 
longitudinal locations. Since no free stream velocity is present, the definition of the Reynolds number 
is altered. In this context, the Reynolds number will be based on the maximum oscillation velocity of 
the cylinder 𝑢𝑚𝑎𝑥 = 2𝜋𝑓𝑒𝐸𝑎. So, the definition of the Reynolds number becomes 𝑅𝑒 = 𝜌𝑢𝑚𝑎𝑥𝐷/𝜇. 
The Keulegan-Carpenter number 𝐾𝐶 is defined as 𝑢𝑚𝑎𝑥/(𝑓𝑒𝐷) . For a Reynolds number of 100 and 
an excitation amplitude 𝐸𝑎 of 5/2𝜋 (corresponding to a Keulegan-Carpenter number of 5), Figures 
(11-14) shows the vertical distributions of both velocity components at four different longitudinal 
locations. The locations are at𝑥 = −0.6, 𝑥 =  0, 𝑥 =  0.6, and 𝑥 =  1.2 with experimental 
measurements provided by Dutsch et al., [47] and numerical results provided by Uzunoglu et al., [48]. 
The figures show a good agreement with both the experimental data and the numerical results. 
Figure (15) shows a comparison with [47] and [48] regarding the variation of the in-line (drag) force 
during the excitation cycle of the cylinder. Again, the results are quite close. 
 

 
Fig. 11. The velocity distribution at a longitudinal location of 𝒙 = −𝟎. 𝟔 in 
the middle of an excitation cycle for a Reynolds number of 𝟏𝟎𝟎 and 𝑲𝑪 of 𝟓. 
Black: 𝒖, Red: 𝒗 
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Fig. 12. The velocity distribution at a longitudinal location of 𝒙 = 𝟎 in the 
middle of an excitation cycle for a Reynolds number of 𝟏𝟎𝟎 and 𝑲𝑪 of 𝟓. 
Black: 𝒖, Red: 𝒗 

 

 
Fig. 13. The velocity distribution at a longitudinal location of 𝒙 = 𝟎. 𝟔 in 
the middle of an excitation cycle for a Reynolds number of 100 and KC of 
5. Black: u, Red: v 
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Fig. 14. The velocity distribution at a longitudinal location of 𝒙 = 𝟏. 𝟐 in 
the middle of an excitation cycle for a Reynolds number of 100 and KC of 
5. Black: u, Red: v 

 

 
Fig. 15. In-line force variation during an excitation cycle 

 
4. Summary and Conclusions 
 

In this work, an immersed boundary technique based on stress mapping is presented. The 
technique depends on modeling the solid regions as infinitely viscous fluid regions to ensure a proper 
transfer of momentum from the moving body to the flow. The stresses acting on the moving body 
are calculated using a mapping technique where each vertex of the body is regarded as a virtual fluid 
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node whose stress is interpolated from the fluid nodes of its enclosing grid element. The mapped 
stresses are then integrated over the body’s contour creating a well-defined proper contour of 
integration. The presented model was validated against published experimental measurements and 
numerical results for a stationary cylinder, a transversely oscillating cylinder, and a longitudinally 
oscillating cylinder in stagnant flow. The validation showed good agreement with the literature.  
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