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Mesh type and quality play a significant role in the accuracy and stability of the 
numerical computation. A computational method for two-dimensional subsonic flow 
over NACA 0012 airfoil at angles of attack from 0o to 10o and operating Reynolds 
number of 6×106 is presented with structured and unstructured meshes. Steady-state 
governing equations of continuity and momentum conservation are solved and 

combined with k- shear stress transport (SST-omega) turbulence model to obtain the 
flow. The effect of structured and unstructured mesh types on lift and drag coefficients 
are illustrated. Calculations are done for constant velocity and a range of angles of 
attack using Ansys Fluent CFD software. The results are validated through a comparison 
of the predictions and experimental measurements for the selected airfoil. The 
calculations showed that the structured mesh results are closer to experimental data 
for this airfoil and under studied operating conditions.  
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1. Introduction 
 

Computational Fluid Dynamics (CFD) plays a vital role in nowadays routine design and analysis 
engineering work. CFD is one of the numerical methods of choice in the simulation and design of 
many aerospace, automotive and industrial components to reduce the number of wind tunnel testing 
and increase the number of design configurations being explored [1]. CFD starts with selecting the 
mathematical model that describes the problem, followed by specifying the computational domain 
of interest. Computational domain discretization or mesh generation is an early and essential step in 
almost all commercial numerical solution packages. Therefore, it is crucial to choose mesh type and 
size from the beginning of the solution process. Mesh generation can be classified into two general 
types structured and unstructured. Structured meshes are typically either quad or hexahedral. 
Triangle and Tetrahedral meshes are the most common unstructured meshes. As to the answer to 
the question, which is better. It is problem-dependent. Flow alignment (grid quality) and fewer nodes 
(memory and computation time) are in the fervor of structured grid. Unstructured grid types are 
more suitable with complex geometries and complex 3D shapes [2]. That is why it is simpler to 
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generate unstructured mesh for irregular shapes. Therefore, this paper aims to explore the 
discretization effect on aerodynamic lift and drag coefficients of an airfoil. 

When simulating the flow over an airfoil, the effect of a grid on the solution convergence and 
accuracy is crucial to the accuracy and the computational cost of the simulation process. Grid 
generation consumes over 80% of the numerical simulation time [3]. Recently, Shu least square-
based finite difference-finite volume (LSFD-FV) method on unstructured grids was proposed by Shu 
and his colleagues [4-6]. Kajal et al., worked on meshing over an airfoil design with a linear triangle 
element, keeping the idea of meshing intuitive [7]. 

Flow around bluff bodies using structured grids for numerical simulation are presented in many 
letratures [8, 9]. The generation of organized grids is a bigger influence for complex shape domains 
in the computational phase. However, the unstructured grids should be running more effectively and 
more flexibly. In hydrodynamics, unstructured triangular grids are widely used in practical 
engineering. The gradient smoothing method (GSM) solution with unstructured triangular grids is 
stable and precise, according to repeated research efforts. Therefore, GSM has been applied to solve 
a series of practicing solids and fluids flows governed by the Lagrangian Navier-Stokes equations. [10-
12]. 

Among others, the Large-Eddy Simulation (LES) structured mesh of high Reynolds number flow 
past a square cylinder is presented by Sohankar [13] and Voke [14]; and more recently by Mao and 
Liu [15]. LES applications in real-world complex configurations, such as the actual urban environment 
and full-scale bridges, are becoming the earliest convenience in order to bring numerical predictions 
closer to reality. These complex configurations allow un-structured grids that are defined by irregular 
connectivity to be implemented. The possible elements can be of arbitrary form. The numerical 
schemes of second order precision are still widely used on unstructured grids by most general-
purpose computational fluid dynamics (CFD) codes, including the major commercial solvers. 
Structured meshing is employed by Khan et al., [16] to investigate for the analysis for lift and drag 
coefficients using different turbulence models. Hence, Abobaker et al., [17] applied unstructured grid 
for the two-dimensional subsonic flow over a NACA 0012 airfoil to investigate a wind tunnel wall 
effect on lift curve slope correction factor. 

In this study, lift and drag characteristics of the NACA 0012 airfoil as a function of angle of attack 
are computed. This airfoil is selected because it offers a wide range of uses. The B-17 Flying Fortress 
and Cessna 152, the helicopter Sikorsky S-61 SH-3 Sea King, and horizontal and vertical axis wind 
turbines are also examples of airfoil used. The Reynolds-averaged Navier-Stokes equations are solved 
inside the computational domain to yield the aerodynamic lift and drag coefficients. The details of 
the mathematical model can be found in many references [18] and [19] are avoided, and its numerical 
solution is given elsewhere. In order to evaluate the aerodynamics characteristics of the NACA 0012 
airfoil were performed some CFD analyses in the following conditions, as in many experimental 
investigations in usual wind tunnels [20-22]. A Mach number 0.15, Reynolds number of the flow is 
6×106, and angle of attack range from 0 to 10 degrees. The airfoil chord length is 1.752 m. The rest 
of the reference values were considered as the aviation standard for air. 
 
2. Structured Mesh 

 
A square domain is used for structured mesh with boundary conditions, as illustrated in Figure 1. 

The computational domain extends 12C in all directions, where C is the chord length. This is to ensure 
very far boundaries so we can simulate freestream conditions. A mesh sensitivity study is performed, 
which results in a number of node points in the entire computational domain of 154560 and the 
number of elements of 153600. A close-up view of the mesh is shown in Figure 2. 
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Fig. 1. A general view of the computational domain 

 

 
Fig. 2. A general view of the computational domain 

 
The obtained results are presented graphically in Figure 3, and the drag polar in Figure 4. The 

obtained results are compared with the experimental data published in the literature [20-22]. Kω SST 
turbulence model is used for a range of angles of attack up to 12o. 

Simulation results show that lift and drag coefficients have good agreement with experimental 
data up to the angle of attack 8o. It can be seen from Figure 3 that there is a significant difference 
between published data for angles of attack greater than 8o. On the other hand, simulation results 
are very close to the experimental data obtained from [20]. It is worth noting that these results were 
obtained by eliminating the high skewness from domain bounders mesh and clustering the mesh 
around leading and trailing edges of the airfoil.  
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Fig. 3. Comparison of lift coefficient versus angle of attack with 
experimental data [20, 22] 

 

 
Fig. 4. Comparison of drag polar with experimental data 
[21, 22] 

 
 
3. Unstructured Mesh 

 
A square domain is also utilized for the unstructured mesh, as shown in Figure 5. The size is 12C 

in each direction. The number of node points is 12371 point and the number of elements is 23298 
elements. A close-up view in Figure 6 shows a mesh clustering near the wall to capture boundary 
layer. 
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Fig. 5. A general view of the computational domain and 
the unstructured mesh 

 

 
Fig. 6. A close-up view of the airfoil profile in 
unstructured rectangular grid 

 
The obtained results of lift coefficient versus angle of attack and drag polar are presented in 

Figure 7 and Figure 8, respectively. The obtained results were compared with the experimental data. 
As can be seen, there are acceptable differences between results obtained with Fluent concerning 
the lift and drag coefficients. The deviations from experimental data between the angles of attack of 
8o to 10o are acceptable. 
 

 
Fig. 7. Comparison of calculated lift coefficient with experimental 
measurement [20] 
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Fig. 8. Comparison of drag polar with experimental measurement 
[21,22] 

 
4. Comparison of Structured and Unstructured Mesh with Experimental Data 
 

In order to come up with a conclusion about the accuracy of the aerodynamic coefficients, the 
obtained coefficients for structured and unstructured grids are plotted in Figure 9 and Figure 10 
together with the experimental measurements. 
 

 
Fig. 9. Comparison of the lift coefficient curve between 
numerical and experimental data [20] 
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Fig. 10. Comparison between numerical and experimental data [21] 

 
The above comparisons show that structured mesh results are closer to experimental data than 

unstructured mesh. In addition to that unstructured mesh consistently overestimates the lift 
coefficient, which results in a higher lift curve slope. 

It is important to note that, generating a structured mesh with tilted airfoil with angles of attack 
more than 2 degrees was not possible with the prescribed domain shape.  Due to this reason the 
unstructured grid was adopted to simulate wind tunnel wall effects on airfoil at all angles of attack. 
This is the topic of the next research paper. 

 
5. Conclusion 

 
In this paper, structured and unstructured meshes are generated for large computational domain 

12 times the chord of NACA 0012 airfoil. A k- SST turbulence model is used in all cases and angles 
of attack. The obtained lift and drag coefficients are compared at a Mach number of 0.15 and 
Reynolds number of 6 × 106 with available experimental measurements from the literature.  The 
numerical results show that at the linear aerodynamic range, i.e. up to 8 degrees, structured and 
unstructured grid follow experimental data with the same accuracy. For angles of attack higher than 
8 degrees, the unstructured mesh overestimates the experimental lift coefficient, while structured 
grid results are closer to experimental data. It is also worth mentioning that the experimental data 
of drag polar from both references show a clear discrepancy. The structure grid results lay in the 
middle of these experimental data. 
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