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In this present work, the effects of coating of graphene oxide (GO) at different 
concentrations (0, 0.2, 0.3, 0.4, 0.5, and 0.6 mg/ml) onto zinc oxide (ZnO) nanostructured 
were investigated. ZnO and ZnO coated with GO (ZnO/GO) were prepared using 
immersion method. The structural, morphology and optical properties of all samples have 
been studied using x-ray diffraction (XRD), field emission scanning microscopy (FESEM) 
and UV Vis spectroscopy. The peak obtained from the XRD pattern shows that all samples 
are in the hexagonal-wurtzite structure. The (002) peak shows the strongest intensity for 
all samples with the highest (002) peak obtained for the ZnO/GO sample coated at a GO 
concentration of 0.5 mg/ml. The diameter of ZnO/GO nanostructured samples decreased 
after coating with GO at concentrations of 0.2 to 0.5 mg/ml and the diameter increased 
again when ZnO nanostructures were coated with GO at above 0.5 mg/ml. The highest 
transmission spectrum was obtained for the ZnO/GO sample coated with GO at a 
concentration of 0.5 mg/ml. In conclusion, the effect of GO coating on ZnO 
nanostructured can be changed at different concentrations of GO. The optimal properties 
of ZnO/GO may be suitable as a photoanode in DSSC applications. 
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1. Introduction 
 

The world's energy consumption is increasing in tandem with population growth. On the other 
hand, conventional energy resources are rapidly depleting, raising serious concerns about energy 
crises. To overcome the current issue, attempts are being explored to use renewable energy 
resources [1]. The dye-sensitized solar cells (DSSC) are the most popular third-generation solar cells 
that were developed by Grätzel and co-workers in 1991 [2-4]. Nowadays, DSSC has received a lot of 
attention because of its potential for low-cost solar energy conversion applications. 

The DSSC is also known as photovoltaic and exhibits the capability to convert sunlight to 
electricity. This DSSC has emerged as a promising candidate to harvest energy due to its low-cost 
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production, environmentally friendly, high-power conversion efficiency, good performance in diverse 
light conditions, higher indoor efficiency than silicon solar cells, long-term stability, and stable 
performance with light intensity [5,6]. 

The DSSC consists of a semiconductor photoanode, a light-absorbing sensitizer attached to the 
photoanode's surface, the redox electrolyte, and the counter electrode (CE). Tin oxide (SnO2), zinc 
oxide (ZnO), and titanium oxide (TiO2) are common metal oxides used in the formation of DSSC due 
to their physical and chemical properties [7]. Commonly, ZnO metal oxide was chosen as a 
photoanode material over all other metal oxide materials because it has a wide bandgap energy 
(3.37eV), strong electron mobility (115-155 cm2V-1s-1), high excitation binding energy of 60 meV at 
ambient temperature, better stability against photo corrosion, and huge surface area [8,9]. The 
properties of ZnO such as structure, particle size, porosity, and pore size distribution will be affected 
the electronic device applications. Other than that, ZnO offers several intrinsic advantages, such as a 
greater electron migration rate, a lower process temperature, and structure can be easily created by 
varying the parameters process. 

However, slow electron injection at the ZnO/dye interface has been reported to be the major 
limitation of overall photogenerated current in ZnO-based solar cells [10]. Researchers are currently 
looking at a variety of ways to improve electron transportation in photoelectrodes and reduce charge 
recombination to enhance the cell performance of ZnO-based DSSC, such as the introduction of 
materials with high electronic transport and charge carrier mobility. Carbon nanotubes and graphene 
both have high electrical conductivity and have been introduced into the photoanode of DSSC to 
improve cell performance by lowering charge recombination [11,12]. Recently, graphene has been 
identified as a potential candidate for improving dye absorption and carrier transport properties of 
DSSC [13]. According to Song and Wang [10], the photoelectric conversion efficiency (PCE) of the 
device could be enhanced by introducing reduced graphene oxide (rGO) into ZnO. The use of 
graphene increases the porosity of anode films and provides a huge surface area for more dye 
adsorption sites. Thus, it can increase dye loading and light harvesting efficiency. 

Adding graphene oxide (GO) which is one of the graphene derivatives into ZnO will increase the 
efficiency of DSSC [14-16]. GO is a well-known carbon material that has been the subject of numerous 
research studies in recent years due to its multifunctional character based on its large surface area, 
amphiphilicity, and tuneable electronic properties through surface modification [16]. GO is made by 
oxidizing and exfoliating graphite and consists of a single graphene sheet with conjugated sp2 
domains and sp3-like regions. GO contains oxygen functional groups covalently bonded to carbon 
atoms in the basal plane and on the edges. The chemically active surface of GO allows other organic 
molecules or metal oxides to attach to it, changing its electrical characteristics. Víctor-Román et al., 
[17] developed the ZnO-GO hybrids for the degradation of methylene blue under UV-light irradiation. 
The set of ZnO-GO hybrids has been synthesized in an ultrasonication process involving ZnO 
nanoparticles [17]. Boukhoubza et al., [18] used the simple hydrothermal process to improve the ZnO 
NR/GO nanocomposites with different GO amounts. Sha et al., [19] improved the PCE of DSSC by 
constructing ZnO/rGO photoanode by using one step electrodeposition method. 

ZnO nanostructures are commonly synthesized via solvothermal, hydrothermal and sol-gel 
immersion methods [20]. In the fabrication of nanostructured material, a low- temperature method 
of preparation is gaining popularity to allow deposition on thermally adjustable substrates. ZnO 
nanostructured produced by immersion method are well known to be dependent on preparation 
parameters such as material concentration, deposition temperature, and time. The morphologies 
and sizes of a ZnO nanostructure are mostly controlled by concentration [21]. The immersion method 
is one of the processes that operates at low temperature, simple production process, and can 
produced in large-scale nanostructured on substrates with low energy process. 
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In our recent work, we used a new approach to prepare ZnO/GO nanostructured using a double 
solution immersion method. At first, ZnO nanostructured were grown on a glass substrate coated 
with ZnO seeds layer and followed by GO coating on top of ZnO nanostructured. The structural, 
morphological and optical properties of ZnO/GO nanostructured were investigated as photoanode in 
DSSC applications. 
 
2. Methodology 
2.1 Growth Process 
 

The preparation of the ZnO doped seeded layer was explained in detail by Mohamed et al., [22]. 
ZnO/GO nanorod arrays were grown on ZnO seeded layer-coated substrate using the aqueous 
solution immersion method. Zinc nitrate hexahydrate (Zn(NO3)2).6H2O, 98.5%, Riendemann Schmidt) 
and hexamethylenetetramine (C6H12N4, 99.5%, HMTA) was used as a precursor and stabilizer, 
respectively [22]. A measured amount of Zn(NO3)2.6H2O was dissolved in deionized water (DI) to form 
aqueous solution, and then HMTA was added to the solution. The mixed solution was sonicated 
under an ultrasonic water bath for 30 min at 50°C. Then, the solution was continuously stirred for 3 
hours at room temperature and then poured into a container with an Al: ZnO seed coated glass 
substrate inserted into the container. The immersion process was done by immersing sealed vessels 
inside the water bath for 60 minutes at 95°C for nanorod growth [23]. For the second immersion 
process, GO solution with different concentrations (0, 0.2, 0.3, 0.4, 0.5, and 0.6mg/ml GO) was 
poured into each vessel onto the ZnO nanorods. The vessels were then immersed again for 20 
minutes at 95 °C. DI water was used to rinse the ZnO nanorods and finally, the thin films were 
annealed at 500°C for 30 minutes in ambient conditions. The as-synthesized ZnO/GO with 0, 0.2, 0.3, 
0.4, 0.5 and 0.6mg/ml of GO were labeled as ZnO, ZnO/GO-1, ZnO/GO-2, ZnO/GO-3, ZnO/GO-4, and 
ZnO/GO-5 respectively. The ZnO/GO nanostructured structure properties were then characterized 
using x-ray diffraction (XRD) UV-VIS spectroscopy, field emission scanning electron microscope 
(FESEM), and fourier-transform infrared (FTIR) spectroscopy. 
 
3. Result 
3.1 X-ray Diffraction Analysis 
 

The XRD analysis was used to determine the structure and diffraction peaks of samples. XRD 
patterns of ZnO and ZnO/GO nanostructured at different GO concentrations were presented in Figure 
1. The obtained peaks confirm the hexagonal-wurtzite structure for all samples is in good agreement 
with JCPDS-ICDD card no. 36-1451 [18]. Based on Figure 1, there are three peaks observed for all 
samples which correspond to (100), (002), and (101) diffraction peaks in the range of 5°–90°. These 
thin films show a polycrystalline structure that displayed the highest peak intensity at the (002) plane, 
suggesting the structure was primarily grown along the c-axis or in the direction perpendicular to the 
substrate on the seed layer [24,25]. The relative peak intensity of the nanostructured was calculated 
using Eq. (1) [26]. 
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Fig. 1. XRD pattern for ZnO and ZnO/GO nanostructured at 
different GO concentrations 

 

𝑃(ℎ𝑘𝑙) =
𝐼(ℎ𝑘𝑙)

Σ𝐼(ℎ𝑘𝑙)
              (1) 

 
where I(hkl) is the measured relative intensity for (002) plane and ΣI(hkl) is the intensity of all the 
diffraction peaks in all plane. The relative peak intensities of the (002) planes are shown in Table 1. 
 

Table 1 
The 2ϴ peak, FWHM, crystallite size and peak intensity related to the samples 
Samples FWHM 

(degree) 
Crystallite size 
(nm) 

Peak 
Intensity 

Dislocation 
density, δ 

(
𝑳𝒊𝒏𝒆𝒔

𝒎𝟐 ) 

Interplanar 
distance, d 

(Å) 

ZnO 0.19 46.00 0.48 4.77x1014 2.63 

ZnO/GO-1 0.19 44.00 0.51 5.21x1014 2.63 

ZnO/GO-2 0.21 42.00 0.60 5.80x1014 2.63 

ZnO/GO-3 0.23 38.00 0.64 6.96x1014 2.64 

ZnO/GO-4 0.24 36.00 0.67 7.59x1014 2.64 

ZnO/GO-5 0.18 47.00 0.41 4.52x1014 2.64 

 
According to the estimated values, the relative peak intensity of the (002) peak increases as the 

concentration of GO coated on ZnO nanorods increases. The relative peak intensity of ZnO/GO 
nanostructured improves from 0.2- 0.5 mg/ml of GO concentration. This implies that the ZnO/GO-4 
nanostructured sample has the highest relative peak intensity along the c-axis and better crystallinity 
than other samples. Thus, it is this sample nanostructured might be suitable for ZnO-based 
photoanode. The higher relative peak intensity along the c-axis presents good crystallographic planes 
and nanostructured formation at minimum surface energy. However, the intensity of the peak 
ZnO/GO nanostructured decreased with further addition of at 0.6 mg/ml of GO concentration. This 
reduction behavior in the crystallinity of ZnO/GO structure might be due to the uniformity structure 
and increase of grain boundary of nanostructured when coated with GO over 0.5 mg/ml 
concentration. The full-width half-maximum (FWHM) values of the nanostructured are around 0.24 
and 0.18 respectively. Diffraction peaks of GO were not found due to its small amount. The absence 
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of typical diffraction peaks of GO stacking layers could be attributed to the fact that introducing ZnO 
into the sheets of GO destroys the regular stacking of GO layers [27]. 

The average crystallite size of nanostructured samples can be estimated from Debye-Scherer’s 
Eq. (2). 
 

𝐷 =
0.94𝜆

𝛽𝑐𝑜𝑠𝜃
              (2) 

 
The crystallite size of ZnO/GO nanostructured decreases when concentration of GO coated on 

ZnO nanorods increases. The smallest crystallite size was shown by ZnO/GO-4. Chava and Kang [28] 
reported that, as the crystal size decreases, smaller particle sizes can be obtained. Therefore, in 
electronic applications such as DSSC, a smaller particle size of samples is good to be used for the 
absorption of dyes due to a large surface area [28]. It obviously indicates that ZnO/GO-4 has a large 
internal surface area for more dye loading. In general, a more dye-loaded photoanode harvests more 
photons from incident light, resulting in a higher Jsc [29]. Dislocation density, 𝛿 of the nanostructured 
is estimated from crystalline size using Eq. (3). 
 

𝛿 =
1

𝐷2               (3) 

 
where D(002) is the crystallite size. The dislocation density of ZnO and ZnO/GO nanostructured 
increase by GO coating concentration from 0 to 0.5 mg/ml. Because of the introduction of defects 
such as oxygen vacancies and zinc interstitials, stress and strain have a significant impact on the film 
properties. According to Bragg's equation, the inter-planar distances of the diffracting planes d and 
the lattice constants a and c of wurtzite structure films were determined using Eq. (4) [26]: 
 
2𝑑ℎ𝑘𝑙  sin 𝜃 = 𝑛𝜆             (4) 
 
where dhkl is the distance between lattice planes of Miller indices (h, k, and l), n is the order of 
diffraction (usually n=1), λ is the X-ray wavelength of CuKα radiation (1.54 Å) and θ is Bragg's angle 
(half of the peak position angle).  
 
3.2 Field Emission Scanning Electron Microscope (FESEM) 
 

The FESEM images in Figure 2 show that all the samples were grown vertically aligned hexagonal 
structures on the glass substrate ZnO seed layer. The coating of GO at different concentration from 
0 - 0.5 mg/ml indeed influences the ZnO nanorods growth by reducing the size of nanorods from 104 
to 56 nm, respectively (Table 2). The size of ZnO nanorods decrease when concentration of GO 
coating increase over 0.5 mg/ml. It was found that ZnO/GO-4 sample has the smallest size with better 
distribution of nanostructured. Atanacio-Sánchez et al., [7] discovered that a sample with greater 
distribution of particles has the highest efficiency of DSSC. The decrease in the diameter of the 
nanorods could be attributed to the cleavage of some larger nanorods and the surface area of the 
thin film can increase [18]. A larger surface area will cause more dye molecules to be absorbed onto 
the surface of the nanostructure. Thus, it will produce more current and might be suitable to increase 
power conversion efficiency for DSSC [18,30]. 
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Fig. 2. FESEM micrograph of (a) ZnO, (b) ZnO/GO-1, (c) ZnO/GO-2, (d) 
ZnO/GO-3, (e) ZnO/GO-4 and (f) ZnO/GO-5 thin films 

 
Table 2 
The average diameter of all the thin films 
Samples Average Diameter (nm) 

ZnO 104 

ZnO/GO-1 74 

ZnO/GO-2 69 

ZnO/GO-3 67 

ZnO/GO-4 56 

ZnO/GO-5 113 

 
3.3 Fourier-Transform Infrared (FTIR) Spectroscopy 
 

The surface functional groups in ZnO and ZnO/GO nanostructured were studied using FTIR 
spectroscopy as shown in Figure 3. The oxygen functional group peaks in the ZnO/GO sample are 
found at 1071, 1178, and 1730 cm-1 which correspond to C–O stretching vibrations, C–OH stretching, 
and sp2-hybridized C=C groups, respectively. The appearance of new peaks between 600 and 1180 
cm-1 can be attributed to Zn-C stretching bonding. Any shift or change in the position and intensity 
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of peaks in the FTIR spectra of samples indicates the contribution of functional groups of GO with 
ZnO nanorods [31]. Broadband in 1080 cm-1 is observed as part of the nature of the C– O–C stretching 
vibration of some residual chemical agent in the ZnO and ZnO–GO, which is why the stretching 
vibration is more pronounced in the ZnO–OH. Furthermore, as can be seen, the ZnO/GO samples 
exhibit a stronger downward disturbance than the ZnO. This disturbance is caused by more energy 
being absorbed, which may be due to particle size [7,32]. 
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Fig. 3. FTIR spectra of ZnO, and ZnO/GO thin films 

 
3.4 UV-visible Analysis 
3.4.1 Transmittance 
 

The transmittance spectrum of ZnO and ZnO/GO samples are presented in Figure 4. The 
transmittance spectrum increases with increasing of GO coating concentration from 0 to 0.5 mg/ml 
that presented by ZnO to ZnO/GO-4, respectively. Decrease of transmittance for ZnO/GO-5 
nanostructured occurred at higher GO coating concentration which is over than 0.5 mg/ml. The 
increase in transmission spectrum may be related to the increase in carrier concentration in ZnO/GO 
nanostructured due to the high degree of vertical alignment, low surface roughness, and uniformity 
of ZnO/GO nanostructured [22]. The transmission dropped dramatically near the visible region, which 
corresponded to the intrinsic bandgap energy of ZnO [33]. The reduction of transmittance is 
attributed to the structural properties and film thickness [34]. Previous research suggests that ZnO 
film transmittance decreases as the nanostructured size decreases [35]. The porosity of the ZnO thin 
films can be calculated using the following Eq. (5) [28]: 
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Fig. 4. Comparison of the optical transmittance of ZnO thin films 
for various GO concentrations 

 

Porosity= 1 −  
(

𝑛𝑓
2−1

𝑛𝑓
2+2

)

(
𝑛𝑠

2−1

𝑛𝑠
2+2

)
             (5) 

 
where nf is the refractive index of the porous ZnO films and ns is the widely accepted refractive index 
of the ZnO skeleton, which is 2. The following equations are used to calculate the refractive index, nf, 
in the transmittance region where the absorption coefficient, 0. 
 

nf = [N + (N2 +S2)1/2 ]
1/2            

(6) 
 

𝑁 =
2𝑆

𝑇𝑚
−

(𝑆2+1)

2
             (7) 

 
Tm is the envelope function of the maximum and minimum transmittance values, and S is the 

substrate's refractive index, which in this case is 1.52 for the transparent glass substrate. The Tm 
value can be calculated by averaging the transmittance data from the transparent region between 
400 and 800nm wavelength or where the value is close to 0. ZnO/GO-4 shows the highest porosity 
state that may be attributed to good transmissibility for dye adsorption and can improve electrolyte 
ion exchange rates, reducing recombination losses and increasing conversion efficiencies (Table 3) 
[36]. As mentioned by Ghann et al., [37], the porous surface of the material of photoanode suggests 
an enhancement in the adsorption of dye into the ZnO structure. 
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Table 3 
The average transmittance and porosity of ZnO thin 
films with different GO concentrations 
Samples Average Transmittance Porosity (%) 

ZnO 70.4921 1.3045 

ZnO/GO-1 76.2186 1.3054 

ZnO/GO-2 77.4929 1.3055 

ZnO/GO-3 81.7557 1.3058 

ZnO/GO-4 82.6607 1.3060 

ZnO/GO-5 68.4822 1.3042 

 
4. Conclusions 
 

In summary, we have successfully prepared the ZnO/GO nanostructured thin films via double step 
solution immersion method. The XRD pattern indicates that ZnO and ZnO/GO thin films present a 
hexagonal wurtzite structure, which preferentially grows along the (002) orientation. The ZnO/GO-4 
thin film gives the smallest crystallite size which is around and diameter. The FESEM images indicated 
the hexagonal shape of all samples with the smallest diameter (56 nm) shown by ZnO/GO-4 sample. 
The highest transmittance spectrum is shown by ZnO/GO-4 which might be due to the increase in 
carrier concentration in ZnO/GO nanostructured due to the high degree of vertical alignment, low 
surface roughness, and uniformity of ZnO/GO nanostructured. These findings demonstrate that the 
coating ZnO with GO improves the properties of ZnO nanostructured and the optimal sample might 
be suitable to be used as a photoanode in DSSC. 
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