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The Multistep Modified Reduced Differential Transform Method (MMRDTM) is 
proposed in this paper. It is implemented to solve the forced nonlinear Korteweg-de 
Vries (fnKdV) equations. There are several advantages of the proposed method. Using 
the suggested approach, a high-speed converging series can be approximated 
analytically. Furthermore, the number of calculated terms is reduced significantly. The 
nonlinear term in fnKdV equations is substituted with corresponding Adomian 
polynomials before applying the multi-step technique. As a result, we provided simpler 
and more effective ways to solve fnKdV equations. On top of that, the solutions can be 
approximated more accurately over a longer period of time. To show the MMRDTM's 
capability and accuracy, we consider several of the fnKdV examples to illustrate the 
proposed method’s potential in analytical approximation. Then, the features of the 
solutions are represented in tabular and graphical forms. In conclusion, the proposed 
method delivers highly accurate and precise solutions for these types of equations. 
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1. Introduction 
 

In a wide range of physics phenomena, the Korteweg-de Vries (KdV) equation is very useful in 
modelling the interaction and evolution of nonlinear waves equations. Russell's [1] experiments in 
1844 led to the start of the work on the KdV equation. It was found by using one-dimensional 
evolution equation that describes how a long-surface gravity wave with a small amplitude moves 
through a shallow water channel. 

Keskin and Oturanç [2] presented a general framework of the Reduced Differential Transform 
Method (RDTM) to solve the generalized equations of KdV equation. Comparison of RDTM with other 
established techniques demonstrating the current method's effectiveness. Abdou and Yildirim [3] 
came up with a way to use RDTM to find numerical solutions to time-fractional nonlinear evolution 
equations with initial conditions. The numerical findings showed the significant characteristics, 
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efficacy and reliability of the suggested technique and graphically showed the impacts of distinct 
values. 

Besides that, Abazari and Abazari [4] solved the generalised Hirota–Satsuma coupled KdV 
equation with Differential Transform Method (DTM) and RDTM. They demonstrated that the RDTM 
is not only incredibly effective but also very convenient and accurate for solving nonlinear equation 
systems. Furthermore, Ebenezer et al., [5] proposed fractional RDTM to obtain analytic solution of 
time-fractional KdV equation. By using numerical examples, the obtained results showed that these 
techniques are accurate, reliable, and efficient. On the other hand, Triki et al., [6] used the sine-cosine 
method and the Kudryashov generalised method to look into the potential KdV equations. The KdV 
equation with linear damping force is taken into consideration by Ali et al., [7] for a large-scale 
problem like the tsunami. 

On the other hand, the fractional RDTM was modified by Ray [8] and used to solve fractional KdV 
equations. In that paper, the nonlinear term was substituted with related Adomian polynomials 
which proposed by Kataria and Vellaisamy [9]. Therefore, the solutions to the nonlinear problem can 
be found more easily by using less calculation steps. El-Zahar [10] further came up with an adaptive 
multistep DTM to solve a singular pertubation initial-value problems. Fast-convergent series are 
generated by the method; therefore, the solution converges over a wide time range. 

Recently, nonlinear KdV equations was solved by Hussin et al., [11] using their proposed Multistep 
Modified Reduced Differential Transform Method (MMRDTM). Based on their finding, high-accuracy 
approximate solutions of the nonlinear KdV were achieved. Besides that, by using the same method, 
Hussin et al., [12] solved the nonlinear Schrodinger equations with power-law nonlinearity. 
Moreover, Hussin et al., [13] also solved the for the nonlinear Dispersive 𝐾(𝑚, 𝑛) equations using 
the MMRDTM. The findings indicated that the MMRDTM is a legitimate and efficient approach for 
obtaining an approximate analytic solution to nonlinear KdV equations with compact support. 

The modification made by Ray [8] and El-Zahar [10] have inspired this study to come up a new 
application of the MMRDTM for solving the forced nonlinear Korteweg-de Vries (fnKdV) equations. 
This method is able to provide an analytical approximation in a fast-convergent sequence with a 
decreased number of calculated terms. 

Basically, the shallow groundwater model defines the governing equations for the basic 
hydrodynamic model of tsunami generation explained in [14,15]. This evolution is based on the most 
basic theory of water waves that adequately describes the behaviour of the real ocean, as well as the 
system of partial differential equations discussed in the studies by Guyenne and Grilli [16], Layton 
and Panne [17] and Pelinobvs et al., [18]. Although many researchers doubt the application of soliton 
theory to tsunami modeling by Constantin and Johnson [19], the approach to the solitary wave model 
nevertheless gives an idea of the impressive scales involved in deep water waves in a study by Li and 
Sattinger [20]. As a result, a numerical study of this equation is being carried out to investigate the 
solitary wave dynamics in shallow water. 

In many cases, the source of the tsunami moves at varying speeds and directions. The fnKdV 
equation has been shown to describe the resonant mechanism of tsunami wave generation by 
atmospheric disturbances moving at near critical speed in the ocean in the study by Shen [21]. In a 
series of articles, Shen [22,23] outlined that there are two supercritical solitary waves and one 
subcritical downstream cnoidal wave. Solitary waves emerge at the variable topographic effects on 
the evolution of the internal undular bores of depression [24]. Hoe et al., [25] also investigated the 
effect of rapidly varying topography by using mathematical model of the variable-coefficient 
extended KdV. Hayytov et al., [26] investigate computational performance of multistep schemes in 
solving hyperbolic model based on one-dimensional linear wave equation. Francesca et al., [27] 
developed new scheme to solve non-linear wave equation for acoustical modelling. 
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The dynamical system may be simplified considering the resonant character of tsunami 
generation. It is shown that it is possible to derive simpler nonlinear, dispersive wave models, which 
can be used for our potential initial numerical investigation, by making further simplifying 
assumptions. If waves are believed to travel in only the positive 𝑥-direction then it can be shown that 
the waves have a steady form at a first approximation. For the detailed derivations of the fnKdV 
equations, see in the study by Yaacob et al., [28]. 
 
2. Methodology 
2.1 The Development of Multistep Modified Reduced Differential Transform Method 
 

The fnKdV equation to be considered in this paper is as follows 
 

 
𝜕𝑢

𝜕𝑡
+ 𝛼𝑢

𝜕𝑢

𝜕𝑥
+ 𝛽

𝜕3𝑢

𝜕𝑥3
=

𝜕𝑓

𝜕𝑥
            (1) 

 
Eq. (1) represents a different approach to describing the governing equations for the basic 

hydrodynamic model of tsunami generation caused, for example, by atmospheric disturbances 
[14,28]. The term 𝜕𝑓/𝜕𝑥 is called forcing term. The appropriate evolution equation, which 
approximates the Boussinesq equation asymptotically, leads to this Eq. (1) of fnKdV. It can be 
assumed that the forcing term in the fnKdV can be derived from atmospheric disturbances. Different 
forms of this equation have been investigated widely and numerical results indicate that the solution 
contains a set of solitary waves [18,29]. Obviously, the behaviour of tsunami waves on the 
open ocean is much more complex than the solitary wave model; however, this fnKdV equation was 
used in Yaacob et al., [28] as a simple mathematical model that could describe the modelling of 
tsunami waves. 

Now simulate the solitary wave evolution with the force in motion of the KdV equation. In order 
to demonstrate the roles of solitons in the forced dynamics, it has been assumed in the scheme that 
the forcing term being added is sufficiently weak in Pelinovsky et al., [18], so that it remains in shape 
during the phase of interaction. 

By applying the MMRDTM to Eq. (1) and utilising its fundamental properties, we obtain 
 

𝑈𝑘+1,𝑖(𝑥) = (
1

𝑘+1
) (−𝛼 ∑ 𝑈𝑘−𝑟,𝑖(𝑥)

𝜕

𝜕𝑥
𝑈𝑟,𝑖(𝑥)𝑘

𝑟=0 − 𝛽
𝜕3

𝜕𝑥3 𝑈𝑘(𝑥) +
𝜕𝑓

𝜕𝑥
)      (2) 

 
with transformed initial condition 
 
𝑈0(𝑥) = 𝑓(𝑥)              (3) 
 
Now, write the nonlinear term 
 
𝑁(𝑢, 𝑡) = ∑ 𝐴𝑛(𝑈0(𝑥), 𝑈1(𝑥), … , 𝑈𝑛(𝑥))𝑡𝑛,∞

𝑛=0          (4) 
 
where 𝐴𝑛 is the appropriate Adomian's polynomials. A recent novel method which was proposed by 
Kataria and Vellaisamy [9] for calculating the Adomian polynomials such as 
 

𝐴0 = 𝑁(𝑈0(𝑥)),

𝐴𝑛(𝑈0(𝑥), 𝑈1(𝑥), … , 𝑈𝑛(𝑥)) =
1

2𝜋
∫ 𝑁(∑ 𝑈𝑘(𝑥)𝑒𝑖𝑘𝑥𝑛

𝑘=0 )
𝜋

−𝜋
𝑒−𝑖𝑛𝜆 𝑑𝜆,     𝑛 ≥ 1

     (5) 
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The 𝑈𝑘(𝑥) values can be computed by substituting Eq. (3) into Eq. (2) and performing iterative 
calculations on the resultant data. Then, the 𝑛-terms approximation solution is given by the set of 
values {𝑈𝑘(𝑥)}𝑘=0

𝑛  of the inverse transformation as follows: 
 
𝑢(𝑥, 𝑡) = ∑ 𝑈𝑘(𝑥)𝑡𝑘𝐾

𝑘=0 ,                      𝑡 ∈ [0, 𝑇]  
 

Suppose that we use the nodes 𝑡𝑖 = 𝑖ℎ to divide the interval [0, 𝑇] into 𝑀 subintervals [𝑡𝑖−1, 𝑡𝑖], 

where 𝑖 = 1,2, . . . , 𝑀, and each step is ℎ =
𝑇

𝑀
. The MMRDTM's fundamental concepts are as follows. 

Firstly, modified RDTM (MRDTM) is applied to the initial value problem of interval [0, 𝑡1]. Then, use 
the initial conditions 𝑢(𝑥, 0) = 𝑓0(𝑥), and 𝑢1(𝑥, 0) =  𝑓1(𝑥) to get the following approximate result, 
 
𝑢1(𝑥, 𝑡) = ∑ 𝑈𝑘,1(𝑥)𝑡𝑘 ,                𝐾

𝑘=0 𝑡 ∈ [0, 𝑡1]  

 
At each subinterval [𝑡𝑖−1, 𝑡𝑖], the initial conditions 𝑢𝑖(𝑥, 𝑡𝑖−1) = 𝑢𝑖−1(𝑥, 𝑡𝑖−1), (𝜕 𝜕𝑡⁄ )𝑢𝑖(𝑥, 𝑡𝑖−1) 

are used for 𝑖 ≥ 2 and the implementation of multistep RDTM to the initial value problem on 
[𝑡𝑖−1, 𝑡𝑖], where 𝑡𝑖−1 replaces 𝑡0. Next multistep scheme for repeating process  
𝑢(𝑥, 0) = 𝑓0(𝑥), 𝑢1(𝑥, 0) =  𝑎. In order to generate a series of approximations 𝑢𝑖(𝑥, 𝑡), 𝑖 =
1,2, … , 𝑀, for the solution 𝑢(𝑥, 𝑡), the following steps must be performed repeatedly: 
 
𝑢𝑖(𝑥, 𝑡) = ∑ 𝑈𝑘,𝑖(𝑥)(𝑡 − 𝑡𝑖−1)𝑘,                𝐾

𝑘=0 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖]  

 
In fact, the MMRDTM yields the following solutions: 
 

𝑢(𝑥, 𝑡) = {

𝑢1(𝑥, 𝑡), 𝑡 ∈ [0, 𝑡1]

𝑢2(𝑥, 𝑡),
⋮   

𝑡 ∈ [𝑡1, 𝑡2]
⋮

𝑢𝑀(𝑥, 𝑡), 𝑡 ∈ [𝑡𝑀−1, 𝑡𝑀]

  

 
Obviously, the algorithm of MMRDTM is simple and offers improved computing performance 

across the board regardless of the value of ℎ. It is crucial to note that after the step size ℎ = 𝑇, the 
MMRDTM is reduced to the MRDTM. 
 
3. Results 
3.1 Example 1 
 

We consider the fnKdV by using different forcing terms in this paper. Forcing Term, 𝜕𝑓/𝜕𝑥 = 𝑥2. 
Consider the fnKdV equation with the quadratic term 𝑥2 as the forcing term. Let 𝛼 =  −6 and 
𝛽 =  1, then Eq. (1) is simplified as introduced by David et al., [31]: 
 

 
𝜕𝑢

𝜕𝑡
− 6𝑢

𝜕𝑢

𝜕𝑥
+

𝜕3𝑢

𝜕𝑥3 = 𝑥2            (6) 

 
with initial condition 
 

𝑢0(𝑥, 𝑡) =
−2𝑒𝑥

(1+𝑒𝑥)2  

 
and exact solution 
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𝑢(𝑥, 𝑡) =
−2𝑒𝑥−𝑡

(1+𝑒𝑥−𝑡)2
  

 
Using basic properties of MMRDTM and then applying MMRDTM to Eq. (6), will obtain 
 

𝑈𝑘+1,𝑖(𝑥) = (
1

𝑘+1
) (6 ∑ 𝑈𝑘−𝑟,𝑖(𝑥)

𝜕

𝜕𝑥
𝑈𝑟,𝑖(𝑥)𝑘

𝑟=0 −
𝜕3

𝜕𝑥3
𝑈𝑘(𝑥) + 𝛿(𝑘 − 2))      (7) 

 
with transformed initial condition 
 

𝑈0(𝑥) =
−2𝑒𝑥

(1+𝑒𝑥)2
.             (8) 

 
Now write first four examples of the nonlinear term as 
 
𝐴0 = 𝑈0

2(𝑥),

𝐴1 = 2𝑈0(𝑥)𝑈1(𝑥),

𝐴2 = 2𝑈0(𝑥)𝑈2(𝑥) + 𝑈1
2(𝑥),

𝐴3 = 2𝑈0(𝑥)𝑈3(𝑥) + 2𝑈1(𝑥)𝑈2(𝑥).

  

 
These nonlinear terms, we use general form of formula  𝐴𝑛 Adomian polynomials as Eq. (5). We 

calculate these Adomian polynomials formula by using Maple 2021. The 𝑈𝑘(𝑥) values can be 
computed by substituting Eq. (8) into Eq. (7) and performing iterative calculations on the resultant 
data. Then, the 𝑛-terms approximation solution is given by the set of values {𝑈𝑘(𝑥)}𝑘=0

𝑛  of the inverse 
transformation as follows: 
 
𝑢(𝑥, 𝑡) = ∑ 𝑈𝑘(𝑥)𝑡𝑘𝐾

𝑘=0 ,                𝑡 ∈ [0, 𝑇]  
 

Figure 1(a) shows graph of the exact solution, Figure 1(b) shows graph of approximate solution 
MMRDTM for 𝑡 ∈ [0,2] and 𝑥 ∈ [−5,5] while Figure 1(c) shows graph of approximate solution 
MRDTM for 𝑡 ∈ [0,2] and 𝑥 ∈ [−5,5]. Observe that, the graphs of the solutions which obtained by 
the MMRDTM look similar to the graphs of the corresponding exact solutions. That means, the 
MMRDTM yielded solutions close to the exact solution of fnKdV equations. The performance error 
analyses obtained by MMRDTM are summarized in Table 1 for 𝑥 = 1. 
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Table 1 
Comparison error of MMRDTM and MRDTM for Example 1 
t Exact Solution Absolute Error 

MMRDTM 
Absolute Error MRDTM 

0.1 −0.4110006146 4.000 × 10−10 3.420 × 10−4 
0.2 −0.4278193930 4.300 × 10−9 2.797 × 10−3 
0.3 −0.4434257466 7.110 × 10−8 9.605 × 10−3 
0.4 −0.4575684810 5.680 × 10−7 2.304 × 10−2 
0.5 −0.4700074244 2.893 × 10−6 4.527 × 10−2 
0.6 −0.4805214914 1.102 × 10−5 7.814 × 10−2 
0.7 −0.4889166234 3.431 × 10−5 1.229 × 10−1 
0.8 −0.4950331454 9.197 × 10−5 1.800 ×  10−1 
0.9 −0.4987520804 2.198 × 10−4 2.487 × 10−1 
1.0 −0.5000000000 4.794 × 10−4 3.266 ×  10−1 
1.1 −0.4987520804 9.703 × 10−4 4.094 × 10−1 
1.2 −0.4950331454 1.846 × 10−3 4.902 × 10−1 
1.3 −0.4889166232 3.330 × 10−3 5.593 × 10−1 
1.4 −0.4805214914 5.742 × 10−3 6.030 × 10−1 
1.5 −0.4700074242 9.517 × 10−3 6.037 × 10−1 
1.6 −0.4575684810 1.524 × 10−2 5.391 × 10−1 
1.7 −0.4434257464 2.366 × 10−2 3.807 × 10−1 
1.8 −0.4278193930 3.575 × 10−2 9.416 ×  10−2 
1.9 −0.4110006146 5.270 × 10−2 3.622 × 10−1 
2.0 −0.3932238666 7.599 × 10−2 1.038 

 

 

 

(a) Exact Solution (b) MMRDTM 

 
(c) MRDTM 

Fig. 1. Results of the fnKdV with 𝒙𝟐 as the forcing term 
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3.2 Example 2 
 

Forcing Term, 𝜕𝑓/𝜕𝑥 = sin(𝑥). Consider the fnKdV equation with the trigonometric function 
sin(𝑥) as the forcing term by David et al., [31] 
 
𝜕𝑢

𝜕𝑡
− 6𝑢

𝜕𝑢

𝜕𝑥
+

𝜕3𝑢

𝜕𝑥3 =  sin(𝑥)            (9) 

 
Using basic properties of MMRDTM and then applying MMRDTM to Eq. (9), we can obtain 
 

𝑈𝑘+1,𝑖(𝑥) = (
1

(𝑘+1)
) (6 ∑ 𝑈𝑘−𝑟,𝑖(𝑥)

𝜕

𝜕𝑥
𝑈𝑟,𝑖(𝑥)𝑘

𝑟=0 −
𝜕3

𝜕𝑥3 𝑈𝑘(𝑥) +  sin(𝑥)),  

 
with transformed initial condition Eq. (8). 
 

Figure 2(a) shows graph of the exact solution, Figure 2(b) shows graph of approximate solution 
MMRDTM for 𝑡 ∈ [0,1] and 𝑥 ∈ [−5,5] while Figure 2(c) shows graph of approximate solution 
MRDTM for 𝑡 ∈ [0,1] and 𝑥 ∈ [−5,5]. The graph of MMRDTM is far better than MRDTM which 
depicts a good agreement with the exact solution. Therefore, it is shown that MMRDTM has high 
accuracy for solving this type of fnKdV equations. 
 

 
 

(a) Exact Solution (b) MMRDTM 

 
(c) MRDTM 

Fig. 2. Results of the fnKdV with 𝑠𝑖𝑛(𝑥) as the forcing term 
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3.2 Example 3 
 

Forcing Term, 𝜕𝑓/𝜕𝑥 = 𝑒𝑥 . Consider the fnKdV equation with the exponential term 𝑒𝑥 as the 
forcing term by David et al., [31], 
 
𝜕𝑢

𝜕𝑡
− 6𝑢

𝜕𝑢

𝜕𝑥
+

𝜕3𝑢

𝜕𝑥3 =  𝑒𝑥.                      (10) 

 
Using basic properties of MMRDTM and then applying MMRDTM to Eq. (10), we can obtain 
 

𝑈𝑘+1,𝑖(𝑥) = (
1

(𝑘+1)
) (6 ∑ 𝑈𝑘−𝑟,𝑖(𝑥)

𝜕

𝜕𝑥
𝑈𝑟,𝑖(𝑥)𝑘

𝑟=0 −
𝜕3

𝜕𝑥3 𝑈𝑘(𝑥) +  𝑒𝑥),  

 
with transformed initial condition Eq. (8). 

Figure 3(a) shows graph of the exact solution, Figure 3(b) shows graph of approximate solution 
MMRDTM for 𝑡 ∈ [0,1] and 𝑥 ∈ [−5,5] while Figure 3(c) shows graph of approximate solution 
MRDTM for 𝑡 ∈ [0,1] and 𝑥 ∈ [−5,5]. Graph of MMRDTM shows a good agreement with the exact 
solution. Therefore, it is shown that MMRDTM has high accuracy for solving this type of fnKdV 
equations. 
 

  
(a) Exact Solution (b) MMRDTM 

 
(c) MRDTM 

Fig. 3. Results of the fnKdV with 𝑒𝑥 as the forcing term 
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4. Conclusions 
 

In this study, a new approximate analytical method known as MMRDTM is developed and 
implemented to obtain solitary wave solutions for forced nonlinear KDV equation. The technique was 
modified to replace the nonlinear term with its Adomian polynomials in this novel technique. Then 
multistep approach was adopted to get accuracy solution. According to the findings and the graphical 
representation of the results, the estimated fnKdV solutions were attained with high precision. 
Finally, we can state that the analytic approximation solution obtained to this type of equation using 
the MMRDTM outperforms the MRDTM in terms of effectiveness, consistency, and accuracy. The 
Maple 2021 software was used to perform all computations in this paper. 
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