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In this paper, we present a hybrid method combining the reduced differential transform 
method (RDTM) and a resumption method based on Yang transform and Padé 
approximant to find analytical solutions for three test problems for the unsteady state 
two-dimensional convection-diffusion equation. The proposed method significantly 
improves the approximate solution series and broadens the convergence field of RDTM. 
The numerical results obtained are compared to RDTM and other results from previous 
works. The results show that the proposed method is very efficient and has high accuracy. 
The main advantage of the proposed method is that it is based on a few straightforward 
steps and does not generate secular terms or depend on a perturbation parameter. We 
also provided a powerful and attractive mathematical tool for solving linear and nonlinear 
equations. 
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1. Introduction 
 

This work is interested in two unsteady state two-dimensional initial-boundary value problems, 
which were formulated as follows 
 
Problem-I: Linear transport (convection-diffusion) equation: 
 
∂𝑢

∂𝑡
+ 𝛽𝑥

∂𝑢

∂𝑥
+ 𝛽𝑦

∂𝑢

∂𝑦
− 𝛼𝑥

∂2𝑢

∂𝑥2
− 𝛼𝑦

∂2𝑢

∂𝑦2
= 0, (𝑥, 𝑦, 𝑡) ∈ [0, 𝐿] × [0, 𝐿] × [0, 𝑇]     (1) 

 
with initial condition 
 
𝑢(𝑥, 𝑦, 0) = ∅𝑜(𝑥, 𝑦), 0 ≤ 𝑥, 𝑦 ≤ 𝐿,           (2) 
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and the boundary conditions 
 
𝑢(𝑥, 0, 𝑡) = 𝑓𝑜(𝑥, 𝑡), 𝑢(𝑥, 𝐿, 𝑡) = 𝑓1(𝑥, 𝑡), 0 ≤ 𝑥 ≤ 𝐿, 𝑡 ≥ 0
𝑢(0, 𝑦, 𝑡) = 𝑔𝑜(𝑦, 𝑡), 𝑢(𝐿, 𝑦, 𝑡) = 𝑔1(𝑦, 𝑡),0 ≤ 𝑦 ≤ 𝐿, 𝑡 ≥ 0 

},       (3) 

 
where 𝑢(𝑥, 𝑦, 𝑡) is a transported variable 𝛽𝑥 and 𝛽𝑦, are arbitrary constants which show the speed of 

convection and diffusion coefficients 𝛼𝑥 and 𝛼𝑦 are positive constants and 𝑓0, 𝑓1, 𝑔0, 𝑔1 and ∅𝑜 are 

known functions. 
 
Problem-II: Nonlinear Burgers equation: 
 
∂𝑢

∂𝑡
+ 𝛼𝑢

∂𝑢

∂𝑥
+ 𝛼𝑣

∂𝑢

∂𝑦
−

1

𝑅𝑒
(
∂2𝑢

∂𝑥2
+
∂2𝑢

∂𝑦2
) = 0,          (4) 

 
(𝑥, 𝑦, 𝑡) ∈ [0, 𝐿] × [0, 𝐿] × [0, 𝑇], 
 
∂𝑣

∂𝑡
+ 𝛼𝑢

∂𝑣

∂𝑥
+ 𝛼𝑣

∂𝑣

∂𝑦
−

1

𝑅𝑒
(
∂2𝑣

∂𝑥2
+

∂2𝑣

∂𝑦2
) = 0,          (5) 

 
with initial conditions 
 
𝑢(𝑥, 𝑦, 0) = 𝑎1(𝑥, 𝑦)

𝑣(𝑥, 𝑦, 0) = 𝑎2(𝑥, 𝑦)
} (𝑥, 𝑦) ∈ Ω,  

 
and Dirichlet boundary conditions 
 
𝑢(𝑥, 𝑦, 𝑡) = 𝑏1(𝑥, 𝑦, 𝑡),
𝑣(𝑥, 𝑦, 𝑡) = 𝑏2(𝑥, 𝑦, 𝑡),

} (𝑥, 𝑦) ∈ Ω, 𝑡 > 0, 

 
where Ω = {(𝑥, 𝑦): 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑} is the computational domain and ∂Ω is its boundary, 
𝑢(𝑥, 𝑦, 𝑡) and 𝑣(𝑥, 𝑦, 𝑡) are the velocity components to be determined, 𝑎1, 𝑎2, 𝑏1 and 𝑏2 are the 

known functions, 𝑢𝑡 is unsteady term, 𝑢𝑢𝑥 is the nonlinear convection term, 
1

𝑅𝑒
(𝑢𝑥𝑥 + 𝑢𝑦𝑦) is the 

diffusion term,𝑢𝑡 =
∂𝑢

∂𝑡
, 𝑣𝑡 =

∂𝑣

∂𝑡
, 𝑢𝑥 =

∂𝑢

∂𝑥
, 𝑢𝑦 =

∂𝑢

∂𝑦
, 𝑣𝑥 =

∂𝑣

∂𝑥
, 𝑣𝑦 =

∂𝑣

∂𝑦
, 𝑢𝑥𝑥 =

∂2𝑢

∂𝑥2
, 𝑢𝑦𝑦 =

∂2𝑢

∂𝑦2
, 𝑣𝑥𝑥 =

∂2𝑣

∂𝑥2
, 𝑣𝑦𝑦 =

∂2𝑣

∂𝑦2
 , and 𝑅𝑒 is the Reynolds number. 

These problems are essential examples of partial differential equations that are represent a wide 
range of phenomena such as heat transfer, mass transfer, petroleum reservoir modeling, subsurface 
pollution remediation, continuum mechanics, shock waves, acoustic waves, gas dynamics, elasticity, 
and so on [1-4]. There is a wide body of literature on many forms of transport equations that are 
solved using various numerical and analytical approaches, for example:  Tanaka and Chen [5] studied 
coupling dual reciprocity boundary element method and differential quadrature method for time-
dependent diffusion problems. Bahadır [6] applied fully implicit finite-difference scheme for solving 
two-dimensional Burgers equations. Al-Saif and Al-Kanani [7] suggested alternative direction implicit 
formulation of the differential quadrature method for solving the unsteady state two-dimensional 
convection-diffusion equations.  Abdou and Soliman [8] used variational iteration method for solving 
Burger's and coupled Burger's equations. Djidjeli et al., [9] studied global and compact meshless 
schemes for the unsteady convection-diffusion equation. Sharma and Methi [10] presented 
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homotopy perturbation method approach for the solution of equation to unsteady flow of a 
polytropic gas. You [11] proposed a high-order pade' ADI method for solving unsteady convection-
diffusion equations. There are several, modern analytical methods, for example, reduced differential 
transform method (RDTM), was suggested by the Turkish mathematician Keskin and Oturanc [12] for 
the first time in 2009. It has received much attention since it has been applied to solve a wide variety 
of problems by many authors [13-18]. The Yang transform (YT) is suggested by Yang [19] in 2016, 
which is applied to solve the steady heat transfer problem, and it is used by several researchers in 
[20,21]. Henri Padé (1863-1953) presented an approximation technique in his doctoral thesis in 1892 
which is called Padé approximation. It has received much attention since it has been applied to solve 
a wide variety of problems by many authors [22-25]. 

Therefore, in this study, we present a hybrid method that combines (RDTM, Padé approximation, 
and Yang transform) to find analytical solutions for PDE. The summary of the suggested method is 
that the solution to PDE is obtained in convergent series forms using YRDTM. After that, we create 
its Padé approximate function in order [𝐿/𝑀] to convert the power series solution obtained by 
YRDTM into a meromorphic function. The values for 𝐿 and 𝑀 are selected at random. At this stage, 
the Padé approximant improves the accuracy and convergence of the truncated series solution by 
expanding the domain of that solution. This is a method that we call PYRDTM. Furthermore, unlike 
other semi-analytical methods such as homotopy perturbation method (HPM) and homotopy 
analysis method (HAM), or variational iteration method (VIM), Padé-Yang reduced differential 
transform method (PYRDTM) does not require a perturbation parameter to work and does not 
generate secular terms (noise terms). To solve three test problems, we presented the PYRDTM as a 
handy tool with great potential to solve linear or nonlinear unsteady state two-dimensional 
convection-diffusion equations and compared its efficiency and accuracy with other methods such 
as discrete Adomian decomposition method (DADM) and Bahadir. The numerical results we obtained 
showed the efficiency, activity, and accuracy of PYRDTM for solving the unsteady-state two-
dimensional convection-diffusion equation. 
 
2. Yang Transform 
 

The integral transforms play a significant role in a variety of scientific disciplines and works of 
literature; they are used extensively in mathematical physics, optics, mathematical engineering, and 
other disciplines to solve differential equations such as those Mellin, Hankel, Sumudu, Laplace, and 
Fourier [26,27]. Recently, Yang [19] proposed a new integral transform named the Yang Transform, 
which was first applied to the steady-state heat transfer equation. 
 
Definition 2.1 
A new integral transform called Yang transform of the function 𝑢(𝑡) is denoted by 𝑌{𝑢(𝑡)} or 𝑇(𝑠) 
and is defined as [19] 
 

𝑌[𝑢(𝑡)] = 𝑇(𝑠) = ∫  
∞

0
𝑒
−𝑡

𝑠 𝑢(𝑡)𝑑𝑡, 𝑡 > 0,          (7) 

 
Provided the integral exists for some 𝑠, where 𝑠 ∈ (−𝑡1, 𝑡2). 
 

If we substitute 
−𝑡

𝑠
=  𝑥 then Eq. (7) becomes, 

 

𝑌[𝑢(𝑡)] = 𝑇(𝑠) = 𝑠 ∫  
∞

0
𝑒−𝑥𝑢(𝑠𝑥)𝑑𝑥, 𝑥 > 0.         (8) 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 99, Issue 2 (2022) 67-86 

70 
 

Theorem (1): Yang Transform of Derivatives [19] 
 
If 𝑌[𝑢(𝑡)] = 𝑇(𝑠) then 
 

i. 𝑌 [
∂𝑢(𝑥,𝑡)

∂𝑡
] =

𝑇(𝑥,𝑠)

𝑠
− 𝑢(𝑥, 0), 

ii. 𝑌 [
∂2𝑢(𝑥,𝑡)

∂𝑡2
] =

𝑇(𝑥,𝑠)

𝑠2
−
𝑢(𝑥,0)

𝑠
−
∂𝑢(𝑥,0)

∂𝑡
, 

iii. 𝑌 [
∂𝑛𝑢(𝑥,𝑡)

∂𝑡𝑛
] =

𝑇(𝑥,𝑠)

𝑠𝑛
−∑𝑘=0

𝑛−1 𝑠−𝑛+𝑘+1  
∂(𝑘)𝑢(𝑥,0)

∂𝑡𝑘
 ∀𝑛 = 1,2,3,4, … 

 
2.1 Some Functions' Yang Transform 
 
Yang transform of some useful functions is given below. 
 

i. 𝑌{1} = 𝑠 
ii. 𝑌{𝑡} = 𝑠2 

iii. 𝑌{𝑡𝑛} = 𝑛! ⋅ 𝑠𝑛+1 

iv. 𝑌{𝑒𝑎𝑡} =
𝑠

1−𝑎𝑠
 

v. 𝑌{sin 𝑎𝑡} =
𝑎𝑠2

1+𝑎2𝑠2
 

vi. 𝑌{cos 𝑎𝑡} =
𝑠

1+𝑎2𝑠2
 

vii. 𝑌{sin 𝑎𝑡} =
𝑎𝑠2

1−𝑎2𝑠2
 

viii. 𝑌{cos 𝑎𝑡} =
𝑠

1−𝑎2𝑠2
. 

 
3. Reduced Differential Transform Method  
 

In 2009, the Turkish mathematician Keskin and Oturanc [12] suggested the reduced differential 
transform method (RDTM) to study the analytical solutions of the linear and nonlinear wave 
equation. The basic definitions and operations of two-dimensional reduced differential transform 
method are introduced as follows [14,18]. 
 
Definition 3.1  
If function 𝑢(𝑥, 𝑦, 𝑡) is analytic and differentiated continuously with respect to time and space in the 
domain of interest, then let 
 

𝑈𝑘(𝑥, 𝑦) =
1

𝑘!

.

[
∂𝑘

∂𝑡𝑘
𝑢(𝑥, 𝑦, 𝑡)]

𝑡=0

 ,  

 
where, the t-dimensional spectrum function 𝑈𝑘 (𝑥, 𝑦) is the transformed function. In this paper, the 
lower case 𝑢(𝑥, 𝑦, 𝑡) represents the original function, while the upper case 𝑈𝑘 (𝑥, 𝑦)stand for the 
transformed function. 
 
Definition 3.2 
The differential inverse transform of 𝑈𝑘 (𝑥, 𝑦) is defined as; 
 
𝑢(𝑥, 𝑦, 𝑡) = ∑  ∞

𝑘=0 𝑈𝑘(𝑥, 𝑦)(𝑡 − 𝑡0)
𝑘 ,                    (10)  
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then by combining Eq. (9) and Eq. (10), we obtain 
 

𝑢(𝑥, 𝑦, 𝑡) = ∑  ∞
𝑘=0

1

𝑘!
[
∂𝑘

∂𝑡𝑘
𝑢(𝑥, 𝑦, 𝑡)]

𝑡=0
𝑡𝑘 .                    (11) 

 
Note that the function 𝑢(𝑥, 𝑦, 𝑡) can be written in a finite series as follows: 
 
𝑢𝑛(𝑥, 𝑦, 𝑡) = ∑  ∞

𝑘=0 𝑈𝑘(𝑥, 𝑦)(𝑡 − 𝑡0)
𝑘 + 𝑅𝑛(𝑥, 𝑦, 𝑡).                   (12) 

 
Where the tail function 𝑅𝑛(𝑥, 𝑦, 𝑡), is negligibly small. Therefore, the exact solution of problem is 
given 𝑢(𝑥, 𝑦, 𝑡) = lim𝑛→∞  𝑢𝑛(𝑥, 𝑦, 𝑡). 
 

Table 1 
The fundamental operations of RDTM 
Functional Form Transformed Form 

𝑢(𝑥, 𝑦, 𝑡) 
𝑈𝑘(𝑥, 𝑦) =

1

𝑘!
[
∂𝑘

∂𝑡𝑘
𝑢(𝑥, 𝑦, 𝑡)]

𝑡=0

 

𝑤(𝑥, 𝑦, 𝑡) = 𝛼𝑢(𝑥, 𝑦, 𝑡) ± β𝑣(𝑥, 𝑦, 𝑡) 𝑊𝑘(𝑥, 𝑦) = 𝛼𝑈𝑘(𝑥, 𝑦) ± β𝑉𝑘(𝑥, 𝑦) 
𝑤(𝑥, 𝑦, 𝑡) = 𝑢(𝑥, 𝑦, 𝑡)𝑣(𝑥, 𝑦, 𝑡) 𝑊𝑘(𝑥, 𝑦) = ∑𝑟=0

∞  𝑉𝑟(𝑥, 𝑦)𝑈𝑘−𝑟(𝑥, 𝑦) 
                  = ∑𝑟=0

∞  𝑈𝑟(𝑥, 𝑦)𝑉𝑘−𝑟(𝑥, 𝑦) 

𝑤(𝑥, 𝑦, 𝑡) =
∂𝑟

∂𝑡𝑟
𝑢(𝑥, 𝑦, 𝑡) 𝑊𝑘(𝑥, 𝑦) =

(𝑘 + 𝑟)!

𝑘!
𝑈𝑘+𝑟(𝑥, 𝑦) 

𝑤(𝑥, 𝑦, 𝑡) =
∂2

∂𝑦2
𝑢(𝑥, 𝑦, 𝑡) 𝑊𝑘(𝑥, 𝑦) =

∂2

∂𝑦2
𝑈𝑘(𝑥, 𝑦) 

𝑤(𝑥, 𝑦, 𝑡) =
∂2

∂𝑥2
𝑢(𝑥, 𝑦, 𝑡) 𝑊𝑘(𝑥, 𝑦) =

∂2

∂𝑥2
𝑈𝑘(𝑥, 𝑦) 

 
4. The Padé Approximants 
 

Suppose that, we are given a power series ∑𝑖=0
∞  𝑐𝑖𝑥

𝑖, representing a function 𝑓(𝑥), so that 
 

𝑓(𝑥) = ∑  ∞
𝑖=0 𝑐𝑖𝑥

𝑖 ,                       (13) 
 
The Padé approximant is a rational fraction and the notation for such the Padé approximant is [22] 
 

[𝐿/𝑀] =
𝐴𝐿(𝜒)

𝐵𝑀(𝑥)
,                       (14) 

 
where 𝐴𝐿(𝑥) is a polynomial of degree at most 𝐿 and 𝐵𝑀(𝑥) is a polynomial of degree at most 𝑀. 
We have 
 
𝑓(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥

2 + 𝑐3𝑥
3 + 𝑐4𝑥

4 +⋯ ,

𝐴𝐿(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 +⋯+ 𝑎𝐿𝑥
𝐿 ,

𝐵𝑀(𝑥) = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥
2 + 𝑏3𝑥

3 +⋯+ 𝑏𝑀𝑥
𝑀

                   (15) 

 
Notice that in Eq. (14) there are 𝐿 + 1 numerator coefficients and 𝑀 + 1 denominator 

coefficients. Since we can clearly multiply the numerator and denominator by a constant and leave 
[𝐿,𝑀] unchanged, we impose the normalization condition 
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𝐵𝑀(0) = 1 = 𝑏0.                       (16) 
 

So, there are 𝐿 + 1 independent numerator coefficients and 𝑀 independent denominator 
coefficients, making 𝐿 +𝑀 + 1 unknown coefficients in all. This number suggests that normally the 
[𝐿,𝑀]  ought to fit the power series (13) through the orders 1, 𝑥, 𝑥2, … , 𝑥𝐿+𝑀. By using the conclusion 
given by Baker and Graves-Morris [22], we know that the [𝐿,𝑀] approximant.is. uniquely 
determined. 
 
In the notation of formal power series, 
 

∑  ∞
𝑖=0 𝑐𝑖𝑥

𝑖 =
𝑎0+𝑎1𝑥+𝑎2𝑥

2+⋯+𝑎𝐿𝑥
𝐿

1+𝑏1𝑥+𝑏2𝑥2+⋯+𝑏𝑀𝑥𝑀
+ o(𝑥𝐿+𝑀+1).                   (17) 

 
By cross-multiplying Eq. (17), we find that 
 
(1 + 𝑏1𝑥 + 𝑏2𝑥

2 +⋯+ 𝑏𝑀𝑥
𝑀)(𝑐0 + 𝑐1𝑥 + 𝑐2𝑥

2 + 𝑐3𝑥
3 + 𝑐4𝑥

4 +⋯) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+

𝑎𝐿𝑥
𝐿 + o(𝑥𝐿+𝑀+1) .                       (18) 

 
From Eq. (18), the set of equations can be found. 
 

{
 
 

 
 
𝑐0 = 𝑎0,
𝑐1 + 𝑐0𝑏1 = 𝑎1,
𝑐2 + 𝑐1𝑏1 + 𝑐0𝑏2 = 𝑎2,
⋮
𝑐𝐿 + 𝑎𝐿−1𝑏1 +⋯+ 𝑐0𝑏𝐿 = 𝑎𝐿 ,

                     (19) 

 
and 
 

{

𝑐𝐿+1 + 𝑐𝐿𝑏1 +⋯+ 𝑐𝐿−𝑀+1𝑏𝑀 = 0,
𝑐𝐿+2 + 𝑐𝐿+1𝑏1 +⋯+ 𝑐𝐿−𝑀+2𝑏𝑀 = 0,
⋮
𝑐𝐿+𝑀 + 𝑐𝐿+𝑀−1𝑏1 +⋯+ 𝑐𝐿𝑏𝑀 = 0,

                    (20) 

 
where 𝑐𝑛 = 0 for 𝑛 < 0 and 𝑏𝑗 = 0 for 𝑗 > 𝑀. 

 
If Eq. (19) and Eq. (20) are non-singular, then we can solve them directly 
 

[𝐿/𝑀] =

|

𝑐𝐿−𝑀+1 𝑐𝐿−𝑀+2 ⋯ 𝑐𝐿+1
⋮ ⋮ ⋱ ⋮

∑𝑗=𝑀
𝐿  𝑐𝑗−𝑀𝜒

𝑗 ∑𝑗=𝑀−1
𝐿  𝑐𝑗−𝑀+1𝑥

𝑗 ⋯ ∑𝑗=0
𝐿  𝑐𝑗𝑥

𝑗
|

|

𝑐𝐿−𝑚+1 𝑐𝐿−𝑚+2 ⋯ 𝑐𝐿+1
⋮ ⋮ ⋱ ⋮

𝑐𝐿+1 𝑐𝐿+1 ⋯ 𝑐𝐿+𝑀
𝑥𝑀 𝑥𝑀−1 ⋯ 1

|

. 

 
If the lower index on a sum exceeds the upper, the sum is replaced by zero. Alternate forms are 
 

[𝐿/𝑀] = ∑  𝐿−𝑀
𝑗=0 𝑐𝑗𝑥

𝑗 + 𝑥𝐿−𝑀+1𝑤𝐿/𝑀
𝑇 𝑊𝐿/𝑀

−1 𝑤𝐿/𝑀 = ∑  𝐿+𝑛
𝑗=0 𝑐𝑗𝑥

𝑗 + 𝑥𝐿+𝑛+1𝑤(𝐿+𝑀)/𝑀
𝑇 𝑊𝐿/𝑀

−1 𝑤(𝐿+𝑛)/𝑀 , 

 
for 
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𝑊𝐿/𝑀  = [

𝑐𝐿−𝑀+1 − 𝑥𝑐𝐿−𝑀+2 ⋯ 𝑐𝐿 − 𝑥𝑐𝐿+1
⋮ ⋱ ⋮

𝑐𝐿 − 𝑥𝑐𝐿+1 ⋯ 𝑐𝐿+𝑀+1 − 𝑥𝑐𝐿+𝑀
] ,

𝑊𝐿/𝑀  = [

𝑐𝐿−𝑀+1
𝑐𝐿−𝑀+2
⋮
𝑐𝐿

] .

 

 
The construction[𝐿/𝑀] of approximants can be made only by algebraic operations [22]. Each 

choice of 𝐿 degree of the numerator and 𝑀 degree of the denominator, leads to an approximant. 
The significant difficulty in applying the technique is how to direct the choice to obtain the best 
approximant. This needs the use of a criterion for the choice depending on the shape of the solution. 
A criterion that has worked well here is the choice of [𝐿/𝑀] approximant. 
 
5. The Hybrid Method Algorithm 
 

Consider a general nonlinear non-homogenous partial differential equation with initial conditions 
of the form: 
 
ℒ𝑢(𝑥, y, 𝑡) + ℛ𝑢(𝑥, y, 𝑡) +𝒩𝑢(𝑥, y, 𝑡) = 𝑔(𝑥, y, 𝑡),                   (21) 
 
with initial condition 
 
𝑢(𝑥, 𝑦, 0) = ℎ(𝑥, 𝑦),                       (22) 
 

where ℒ =
∂

∂𝑡
, ℛ is a linear differential operator which has partial derivatives, 𝒩 is 

nonlinear operator and 𝑔(𝑥, 𝑦, 𝑡) is source term. 
 
Taking the Yang transform on both sides to Eq. (21), to get: 
 
𝑌[ ℒ𝑢(𝑥, y, 𝑡)] + 𝑌[ℛ 𝑢(𝑥, y, 𝑡)] + 𝑌[𝒩𝑢(𝑥, y, 𝑡)] = 𝑌[𝑔(𝑥, y, 𝑡)].                 (23) 
 

Using the differentiation property of the Yang transform to Eq. (23) and above the initial 
conditions, we have: 

 
𝑌[𝑢(𝑥, y, 𝑡)] = 𝑠𝑌[𝑔(𝑥, y, 𝑡)] + 𝑠ℎ(𝑥, 𝑦) − 𝑠𝑌[ℛ 𝑢(𝑥, y, 𝑡) +𝒩𝑢(𝑥, y, 𝑡)],                (24) 
 
applying the inverse Yang transform on both sides to Eq. (24) to find 
 
𝑢(𝑥, y, 𝑡) = 𝐺(𝑥, y, 𝑡) − 𝑌−1{𝑠𝑌[ℛ𝑢(𝑥, 𝑦, 𝑡) +𝒩𝑢(𝑥, 𝑦, 𝑡)]},                 (25) 
 
where 𝐺(𝑥, y, 𝑡) represents the term arising from the source term and the prescribed initial 
conditions. Now, we apply the reduced differential transform method: 
 
𝑈(𝑥, 𝑦, 0) = 𝐺(𝑥, y, 𝑡),                      (26) 
 
𝑈(𝑥, 𝑦, 𝑘 + 1) = −𝑌−1{𝑠𝑌[ℛ𝑈(𝑥, 𝑦, 𝑘) +𝒩𝑈(𝑥, 𝑦, 𝑘)]},                  (27) 
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where ℛ𝑈(𝑥, 𝑦, 𝑘),𝒩𝑈(𝑥, 𝑦, 𝑘).are.the.transformations.of.the.functions ℛ𝑢(𝑥, 𝑦, 𝑡),𝒩𝑢(𝑥, 𝑦, 𝑡),  
respectively. 

This is coupling of the Yang transform and the reduced differential transform method, then by 
YRDTM, we have the solution of Eq. (21), with initial condition (22) in the form of infinite series as 
follows: 
 
𝑢(𝑥, 𝑦, 𝑡) = ∑  ∞

𝑘=0 𝑈(𝑥, y, 𝑘).                                                                                                                      
 

After that, we applied its Padé approximant of an order [𝐿/𝑀] on the power series solution by 
following the same steps mentioned earlier in Eq. (4). The values 𝐿 and 𝑀 are arbitrarily selected. At 
this stage, the Padé approximant improves the accuracy, and convergence of the truncated series 
solution by expanding the domain of that solution. 
 
6. Application 
 

In this part, we will illustrate the efficiency and accuracy of the PYRDTM discussed in previous 
sections using three test problems for the unsteady state two-dimensional convection-diffusion 
equation. 
 
Problem I (The unsteady state two-dimensional convection - diffusion equation) [28] 
 
Consider Eq. (1) with 𝛽𝑥 = 𝛽𝑦 = −1 , 𝑎𝑛𝑑 𝐿 = 1.Then Eq. (1) can be written as: 

 
∂𝑢

∂𝑡
(𝑥, 𝑦, 𝑡) −

∂𝑢

∂𝑥
(𝑥, 𝑦, 𝑡) −

∂𝑢

∂𝑦
(𝑥, 𝑦, 𝑡) − α𝑥  

∂2𝑢

∂𝑥2
(𝑥, 𝑦, 𝑡) − α𝑦

∂2𝑢

∂𝑦2
(𝑥, 𝑦, 𝑡) = 0,               (28) 

 
with initial condition 𝑢(𝑥, 𝑦, 0) = 𝑎(𝑒−𝑐𝑥⋅𝑥 + 𝑒−𝑐𝑦⋅𝑦), 0 ≤ 𝑥, 𝑦 ≤ 1, 𝑡 > 0,                (29) 
 

where, 𝑐𝑥 =
1±√1+4𝑏𝛼𝑥

2𝛼𝑥
> 0, 𝑐𝑦 =

1±√1+4𝑏𝛼𝑦

2𝛼𝑦
> 0. 

 
By taking the Yang transform on both sides to Eq. (28) subject to initial condition (29), we have 
 

𝑌[𝑢(𝑥, 𝑦, 𝑡)] = 𝑆𝑢(0) + 𝑆𝑌 [
∂𝑢

∂𝑥
+
∂𝑢

∂𝑦
+ α𝑥  

∂2𝑢

∂𝑥2
+ α𝑦

∂2𝑢

∂𝑦2
],                  (30) 

 
by applying the inverse Yang transform to Eq. (30), we have 
 

𝑢(𝑥, 𝑦, 𝑡) = 𝑢(0) + 𝑌−1 (𝑆𝑌 [
∂𝑢

∂𝑥
+
∂𝑢

∂𝑦
+ α𝑥  

∂2𝑢

∂𝑥2
+ α𝑦

∂2𝑢

∂𝑦2
]),                  (31) 

 
applying the reduced differential transform method to Eq. (31), we have 
 

𝑈(𝑥, 𝑦, 𝑘 + 1) = 𝑌−1 (𝑆 𝑌 [
∂

∂𝑥
𝑈(𝑥, 𝑦, 𝑘) +

∂

∂𝑦
𝑈(𝑥, 𝑦, 𝑘) + 𝛼𝑥

∂

∂𝑥2
𝑈(𝑥, 𝑦, 𝑘) +  𝛼𝑦

∂

∂𝑦2
𝑈(𝑥, 𝑦, 𝑘)]),                (32) 

 
with 𝑈(𝑥, 𝑦, 0) = 𝑎𝑒𝑏𝑡(𝑒−𝑐𝑥𝑥 + 𝑒−𝑐𝑦𝑦).                    (33) 
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From relationships (32) and (33), we obtain 
 

𝑈(𝑥, 𝑦, 1) = 𝑌−1 (𝑆 𝑌 [
∂

∂𝑥
𝑈(𝑥, 𝑦, 0) +

∂

∂𝑦
𝑈(𝑥, 𝑦, 0) + 𝛼𝑥

∂

∂𝑥2
𝑈(𝑥, 𝑦, 0) + 𝛼𝑦

∂

∂𝑦2
𝑈(𝑥, 𝑦, 0)]), 

                   = 𝑎 𝑡 (𝑐𝑥 𝛽 𝑒
−𝑐𝑥⋅𝑥 + 𝑐𝑦 ξ 𝑒

−𝑐𝑦⋅𝑦),                    (34) 

 

𝑈(𝑥, 𝑦, 2) = 𝑌−1 (𝑆 𝑌 [
∂

∂𝑥
𝑈(𝑥, 𝑦, 1) +

∂

∂𝑦
𝑈(𝑥, 𝑦, 1) + 𝛼𝑥

∂

∂𝑥2
𝑈(𝑥, 𝑦, 1) + 𝛼𝑦

∂

∂𝑦2
𝑈(𝑥, 𝑦, 1)]), 

                   =
𝑡2

2
𝑎(𝑐𝑥

2 𝛽2𝑒−𝑐𝑥⋅𝑥 + 𝑐𝑦 
2 ξ2𝑒−𝑐𝑦⋅𝑦),                   (35) 

 

𝑈(𝑥, 𝑦, 3) = 𝑌−1 (𝑆 𝑌 [
∂

∂𝑥
𝑈(𝑥, 𝑦, 2) +

∂

∂𝑦
𝑈(𝑥, 𝑦, 2) + 𝛼𝑥

∂

∂𝑥2
𝑈(𝑥, 𝑦, 2) + 𝛼𝑦

∂

∂𝑦2
𝑈(𝑥, 𝑦, 2)]), 

                   =
𝑡3

6
𝑎(𝑐𝑥

3 𝛽3𝑒−𝑐𝑥⋅𝑥 + 𝑐𝑦 
3 ξ3𝑒−𝑐𝑦⋅𝑦) ,                   (36) 

 
the solutions series obtained by YRDTM is 
 
𝑢(𝑥, 𝑦, 𝑡) = ∑ 𝑈∞

𝑘=0 (𝑥, 𝑦, 𝑘)                                                                     

                  = 𝑎(𝑒𝑐𝑥.𝑥 + 𝑒−𝑐𝑦.𝑦) + 𝑎 𝑡 (𝑐𝑥  𝛽 𝑒
𝑐𝑥𝑥 + 𝑐𝑦 ξ 𝑒

−𝑐𝑦,𝑦)+ 𝑎
𝑡2

2
(𝑐𝑥
2𝛽2𝑒−𝑐𝑥𝑥 +  𝑐𝑦

2 ξ2𝑒−𝑐𝑦,𝑦)+.⋯           (37) 

 
The [𝐿/𝑀]𝑡-Padé approximant of (37), with 𝐿 = 1,𝑀 = 2 
 

[
𝐿

𝑀
]
𝑢
(𝑥, 𝑦, 𝑡) = (2a (((−4𝛼𝑥

3𝑐𝑥
6 + 12𝛼𝑥

2𝑐𝑥
5 + (12𝛼𝑥

2 𝛼𝑦𝑐𝑦
2 − 12𝛼𝑥

2𝑐𝑦 − 12𝛼𝑥)𝑐𝑥
4 + (−24𝛼𝑥𝛼𝑦𝑐𝑦

2 +

                             24𝛼𝑥𝑐𝑦 + 4)𝑐𝑥
3 − 6𝑐𝑦ξ (𝛼𝑥𝛼𝑦𝑐𝑦

2 − 𝛼𝑥𝑐𝑦 − 2)𝑐𝑥
2  + 6𝑐𝑦

2𝑐𝑥ξ
2 +  𝑐𝑦

3ξ3)𝑡 +

                              12𝑐𝑦ξ (𝛼𝑥𝑐𝑥
2 −

1

4
𝛼𝑦𝑐𝑦

2 − 𝑐𝑥 + 
1

4
𝑐𝑦)) 𝑒

−2𝑐𝑥𝑥 + ((𝛼𝑥
3𝑐𝑥
6 − 3𝛼𝑥

2𝑐𝑥
5 + (−6𝛼𝑥

2𝛼𝑦𝑐𝑦
2  +

                             6𝛼𝑥
2𝑐𝑦 + 3𝛼𝑥)𝑐𝑥

4 + (12𝛼𝑥𝛼𝑦𝑐𝑦
2 − 12𝛼𝑥𝑐𝑦 − 1)𝑐𝑥

3 + 12𝑐𝑦 (𝑐𝑦
2𝛼𝑦 − 𝛼𝑥𝑐𝑦

1

2
) ξ 𝑐𝑥

2 −

                           12𝑐𝑦
2𝑐𝑥ξ

2𝑐𝑥 − 4𝑐𝑦
3ξ3) 𝑡 −3𝑐𝑥β (𝛼𝑥𝑐𝑥

2 − 4𝛼𝑦𝑐𝑦
2 − 𝑐𝑥 + 4𝑐𝑦)) 𝑒

−𝑐𝑥𝑥𝑒−2𝑐𝑦,𝑦 +

                            β2𝑐𝑥
4(3 + (𝛼𝑥𝑐𝑥

2 − 𝑐𝑥)𝑡)(𝑒
−3𝑐𝑥.𝑥 + 𝑒−𝑐𝑦.𝑦) +  𝑐𝑦

2ξ2(3 + (𝛼𝑦𝑐𝑦
2  − 𝑐𝑦)𝑡))) /

                            ((−2(𝑐𝑥
4𝛼𝑥

2 − 2𝛼𝑥𝑐𝑥
3 + ((−3𝛼𝑥𝛼𝑦𝑐𝑦

2 + 3𝛼𝑥𝑐𝑦 + 1)𝑐𝑥
2 + (3𝛼𝑦𝑐𝑦

2 − 3𝑐𝑦)𝑐𝑥 +

                          ξ2) ξ2𝑡2  + 2(𝛼𝑥𝑐𝑥
2 + 𝛼𝑦𝑐𝑦

2 − 𝑐𝑥 − 𝑐𝑦)(𝛼𝑥
2𝑐𝑥
4 − 2𝛼𝑥𝑐𝑥

3 + (−4𝛼𝑥𝛼𝑦𝑐𝑦
2 +

                          4𝛼𝑥𝑐𝑦 + 1)𝑐𝑥
2 + (4𝛼𝑦𝑐𝑦

2 − 4𝑐𝑦)𝑐𝑥 + 𝑐𝑦
2)𝑡 − 6𝛼𝑥

2𝑐𝑥
4 +  12𝛼𝑥𝑐𝑥

2 + (24𝛼𝑥𝑐𝑦𝑐𝑦
2 −

                         24𝛼𝑥𝑐𝑦 − 6)𝑐𝑥
2 + (−24𝛼𝑦𝑐𝑦

2 + 24𝑐𝑦)𝑐𝑥 − ( 6𝑐𝑦
2ξ2 ) 𝑒−𝑐𝑦⋅𝑦−𝑐𝑥⋅𝑥 + 𝑐𝑥

2(6 + 𝑐𝑥
2β2𝑡2 +

                          β2(−4𝛼𝑥𝑐𝑥
2 + 4𝑐𝑥)𝑡)𝑒

−2𝑐𝑥⋅𝑥 +  𝑐𝑦
2 (6 +  𝑐𝑦

2ξ2𝑡2 + ξ2 (−4𝛼𝑦𝑐𝑦
2 + 4𝑐𝑦)𝑡) 𝑒

−2𝑐𝑦⋅𝑦)),            (38) 
 

where ξ= (𝛼𝑦𝑐𝑦 − 1), and 𝛽 = (𝛼𝑥𝑐𝑥 − 1). 

 
Problem (II) (System of two-dimensional Burgers’ equations) [29] 
 
Consider the Eq. (4) and Eq. (5), with 𝛼 = 1. Then these equations become 
 
∂𝑢

∂𝑡
+ 𝑢

∂𝑢

∂𝑥
+ 𝑣

∂𝑢

∂𝑦
=

1

𝑅𝑒
(
∂2𝑢

∂𝑥2
+
∂2𝑢

∂𝑦2
) ,

∂𝑣

∂𝑡
+ 𝑢

∂𝑣

∂𝑥
+ 𝑣

∂𝑣

∂𝑦
=

1

𝑅𝑒
(
∂2𝑣

∂𝑥2
+

∂2𝑣

∂𝑦2
) ,

                     (39) 
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with initial conditions 
 

PII-1: 𝑢(𝑥, 𝑦, 0) =
3

4
−

1

4[1+exp(𝜔(𝑥,𝑦))]
, 𝑣(𝑥, 𝑦, 0)  =

3

4
+

1

4[1+exp(𝜔(𝑥,𝑦))]
  ,                (40) 

 
by taking the Yang transform on both sides to Eq. (39) subject to initial condition (40), we have 
 

𝑌[𝑢(𝑥, 𝑦, 𝑡)] = 𝑆𝑢(0) + 𝑆𝑌 [−𝑢
∂𝑢

∂𝑥
− 𝑣

∂𝑢

∂𝑦
+

1

𝑅𝑒
(
∂2𝑢

∂𝑥2
+
∂2𝑢

∂𝑦2
)],                 (41) 

 

𝑌[𝑢(𝑥, 𝑦, 𝑡)] = 𝑆𝑢(0) + 𝑆𝑌 [−𝑢
∂𝑢

∂𝑥
− 𝑣

∂𝑢

∂𝑦
+

1

𝑅𝑒
(
∂2𝑢

∂𝑥2
+
∂2𝑢

∂𝑦2
)],                 (42) 

 
by applying the inverse Yang transform to Eq. (41) and Eq. (42), we have 
 

𝑢(𝑥, 𝑦, 𝑡) = 𝑢(0) + 𝑌−1 (𝑆 𝑌 [−𝑢
∂𝑢

∂𝑥
− 𝑣

∂𝑢

∂𝑦
+

1

𝑅𝑒
(
∂2𝑢

∂𝑥2
+
∂2𝑢

∂𝑦2
)]),                 (43) 

 

𝑣(𝑥, 𝑦, 𝑡) = 𝑣(0) + 𝑌−1 (𝑆 𝑌 [−𝑢
∂𝑣

∂𝑥
− 𝑣

∂𝑣

∂𝑦
+

1

𝑅𝑒
(
∂2𝑣

∂𝑥2
+

∂2𝑣

∂𝑦2
)]),                 (44) 

 
applying the reduced differential transform method to Eq. (43) and Eq. (44), we obtain 
 

𝑈(𝑥, 𝑦, 𝑘 + 1) = 𝑌−1 (𝑆 𝑌 [−∑  𝑘
𝑟=0 𝑈(𝑥, 𝑦, 𝑟)

∂

∂𝑥
𝑈(𝑥, 𝑦, 𝑘 − 𝑟) − ∑  𝑘

𝑟=0 𝑉(𝑥, 𝑦, 𝑟)
∂

∂𝑦
𝑈(𝑥, 𝑦, 𝑘 −

𝑟) +                                 
1

𝑅𝑒
(
∂2

∂𝑥2
𝑈(𝑥, 𝑦, 𝑘) + 

∂2

∂𝑦2
𝑈(𝑥, 𝑦, 𝑘))]),                 (45) 

 

𝑉(𝑥, 𝑦, 𝑘 + 1) = 𝑌−1 (𝑆 𝑌 [−∑  𝑘
𝑟=0 𝑈(𝑥, 𝑦, 𝑟)

∂

∂𝑥
𝑉(𝑥, 𝑦, 𝑘 − 𝑟) − ∑  𝑘

𝑟=0 𝑉(𝑥, 𝑦, 𝑟)
∂

∂𝑦
𝑉(𝑥, 𝑦, 𝑘 −

𝑟) +                                 
1

𝑅𝑒
(
∂2

∂𝑥2
𝑉(𝑥, 𝑦, 𝑘) + 

∂2

 ∂𝑦2
𝑉(𝑥, 𝑦, 𝑘))]),                 (46) 

 
with 
 

𝑈(𝑥, 𝑦, 0) = 𝑢(𝑥, 𝑦, 0) =
3

4
−

1

4𝜔+
 ,                     (47) 

 

𝑉(𝑥, 𝑦, 0) = 𝑣(𝑥, 𝑦, 0) =
3

4
+

1

4𝜔+
 ,                     (48) 

 
from relationships (45), (46), (47), and (48) give us the values of 𝑈(𝑥, 𝑦, 𝑘) and 𝑉(𝑥, 𝑦, 𝑘) as follows: 
 

𝑈(𝑥, 𝑦, 0) =
3

4
−

1

4𝜔+
 ,                       (49) 

 

𝑈(𝑥, 𝑦, 1) = −𝑅𝑒 𝑒ω(𝑥,𝑦)/128(𝜔+)2𝑡 ,                    (50) 
 

𝑈(𝑥, 𝑦, 2) = −𝑅𝑒2𝑒ω(𝑥,𝑦)(−𝜔−)/8192(𝜔+)3𝑡2,                   (51) 
 
and 
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𝑉(𝑥, 𝑦, 0) =
3

4
+

1

4𝜔+
,                       (52) 

 

𝑉(𝑥, 𝑦, 1) =  𝑅𝑒 𝑒𝜔(𝑥,𝑦)/128(𝜔+)2𝑡,                    (53) 
 

𝑉(𝑥, 𝑦, 2) = 𝑅𝑒2𝑒𝜔(𝑥,𝑦)(−𝜔−)/8192(𝜔+)3 𝑡2,                   (54) 
 
the solution obtained by YRDTM is 
 

𝑢(𝑥, 𝑦, 𝑡) = ∑𝑘=0
∞  𝑈(𝑥, 𝑦, 𝑘) =

3

4
−

1

4𝜔+
+
−𝑅𝑒𝜔(𝑥,𝑦)

128(𝜔+)2
𝑡 −

𝑅𝑒2𝑒𝜔(𝑥,𝑦)(−𝜔−)

8192(𝜔+)3
𝑡2+...  

                   =
 3

4
− 1/4[1 + exp(𝜔(𝑥, 𝑦) − (𝑅𝑒/32)𝑡)].                  (55)                                

 

𝑣(𝑥, 𝑦, 𝑡) = ∑𝑘=0
∞  𝑉(𝑥, 𝑦, 𝑘) =

3

4
+

1

4𝜔+
+
𝑅𝑒 𝑒𝜔(𝑥,𝑦)

128(𝜔+)2
𝑡 +

𝑅𝑒2𝑒𝜔(𝑥,𝑦)(−𝜔−)

8192(𝜔+)3
𝑡2+…  

                   =
 3

4
+ 1/4[1 + exp(𝜔(𝑥, 𝑦) − (𝑅𝑒/32)𝑡)].                  (56) 

 
All of the [𝐿/𝑀]𝑡-Padé approximant of (55) and (56), with 𝐿 = 3,𝑀 = 2 yield 
 

[
𝐿

𝑀
]
𝑢
(𝑥, 𝑦, 𝑡)=

 (288𝑅𝑒2𝑡2−73728𝑅𝑒𝑡+5898240)𝑒2𝜔(𝑥,𝑦)+(−𝑅𝑒3𝑡3+1440𝑅𝑒2𝑡2−36864𝑅𝑒𝑡+9830400) 𝑒𝜔(𝑥,𝑦)+192𝑅𝑒2𝑡2+ 49152𝑅𝑒 𝑡+3932160

((384𝑅𝑒2𝑡2−98304𝑅𝑒𝑡+7864320)𝑒2𝜔(𝑥,𝑦)+(2304𝑅𝑒2𝑡2+15728640)𝑒𝜔(𝑥,𝑦)+ 384𝑅𝑒2𝑡2+98304𝑅𝑒𝑡+7864320
, 

 

[
𝐿

𝑀
]
𝑣
(𝑥, 𝑦, 𝑡) =

 (288𝑅𝑒2𝑡2−73728𝑅𝑒𝑡+5898240)𝑒2𝜔(𝑥,𝑦)+(𝑅𝑒3𝑡3+2016𝑅𝑒2𝑡2+36864𝑅𝑒𝑡+ 13762560) 𝑒𝜔(𝑥,𝑦)+384𝑅𝑒2𝑡2+ 98304𝑅𝑒𝑡+7864320

((384𝑅𝑒2𝑡2−98304𝑅𝑒𝑡+7864320)𝑒2𝜔(𝑥,𝑦)+(2304𝑅𝑒2𝑡2+15728640)𝑒𝜔(𝑥,𝑦)+ 384𝑅𝑒2𝑡2+98304𝑅𝑒 𝑡+7864320
,  

 

where 𝜔(𝑥, 𝑦) =
𝑅𝑒(𝑦−𝑥)

8
, 𝜔− = 1 − exp (𝜔(𝑥, 𝑦)) and 𝜔+ = 1 + exp (𝜔(𝑥, 𝑦)). 

 
Problem (II) (System of two-dimensional Burgers’ equations) 
 
Consider the same system that is given in Eq. (39) with initial conditions: 
 
PII-2: 𝑢(𝑥, 𝑦, 0) = 𝑆𝑥𝑆𝑦, 𝑣(𝑥, 𝑦, 0) = (𝑆𝑥 + 2𝑆𝑥𝐶𝑥)(𝑆𝑦 + 2𝑆𝑦𝐶𝑦),                (57) 
 
Where 𝑆𝑥 = sin(𝜋𝑥) , 𝑆𝑦 = sin(𝜋𝑦) , 𝐶𝑥 = cos (𝜋𝑥),  𝐶𝑦 = cos (𝜋𝑦).                (58)  
 
By taking the Yang transform on both sides to Eq. (39) subject to the initial condition (57), we have 
 

𝑌[𝑢(𝑥, 𝑦, 𝑡)] = 𝑆𝑢(0) + 𝑆𝑌 [−𝑢
∂𝑢

∂𝑥
− 𝑣

∂𝑢

∂𝑦
+

1

𝑅𝑒
(
∂2𝑢

∂𝑥2
+
∂2𝑢

∂𝑦2
)],                 (59) 

 

𝑌[𝑣(𝑥, 𝑦, 𝑡)] = 𝑆𝑣(0) + 𝑆𝑌 [−𝑢
∂𝑣

∂𝑥
− 𝑣

∂𝑣

∂𝑦
+

1

𝑅𝑒
(
∂2𝑣

∂𝑥2
+

∂2𝑣

∂𝑦2
)],                 (60) 

 
by applying the inverse Yang transform to Eq. (59) and Eq. (60), we have 
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𝑢(𝑥, 𝑦, 𝑡) = 𝑢(0) + 𝑌−1 (𝑆 𝑌 [−𝑢
∂𝑢

∂𝑥
− 𝑣

∂𝑢

∂𝑦
+

1

𝑅𝑒
(
∂2𝑢

∂𝑥2
+
∂2𝑢

∂𝑦2
)]),                 (61) 

 

𝑣(𝑥, 𝑦, 𝑡) = 𝑣(0) + 𝑌−1 (𝑆 𝑌 [−𝑢
∂𝑣

∂𝑥
− 𝑣

∂𝑣

∂𝑦
+

1

𝑅𝑒
(
∂2𝑣

∂𝑥2
+

∂2𝑣

∂𝑦2
)]),                 (62) 

 
applying the reduced differential transform method to Eq. (61) and Eq. (62), we have 
 

𝑈(𝑥, 𝑦, 𝑘 + 1) = 𝑌−1 (𝑆 𝑌 [−∑  𝑘
𝑟=0 𝑈(𝑥, 𝑦, 𝑟)

∂

∂𝑥
𝑈(𝑥, 𝑦, 𝑘 − 𝑟) − ∑  𝑘

𝑟=0 𝑉(𝑥, 𝑦, 𝑟)
∂

∂𝑦
𝑈(𝑥, 𝑦, 𝑘 − 𝑟) +

                                
1

𝑅𝑒
(
∂2

∂𝑥2
𝑈(𝑥, 𝑦, 𝑘) +

∂2

∂𝑦2
𝑈(𝑥, 𝑦, 𝑘))]),                 (63) 

 

𝑉(𝑥, 𝑦, 𝑘 + 1) = 𝑌−1 (𝑆 𝑌 [−∑  𝑘
𝑟=0 𝑈(𝑥, 𝑦, 𝑟)

∂

∂𝑥
𝑉(𝑥, 𝑦, 𝑘 − 𝑟) − ∑  𝑘

𝑟=0 𝑉(𝑥, 𝑦, 𝑟)
∂

∂𝑦
𝑉(𝑥, 𝑦, 𝑘 − 𝑟) +

                                
1

𝑅𝑒
(
∂2

∂𝑥2
𝑉(𝑥, 𝑦, 𝑘) + 

∂2

∂𝑦2
𝑉(𝑥, 𝑦, 𝑘))]),                  (64) 

 
with 
 
𝑈(𝑥, 𝑦, 0) = 𝑆𝑥𝑆𝑦,                       (65) 
 
𝑉(𝑥, 𝑦, 0) = (𝑆𝑥 + 2𝑆𝑥𝐶𝑥)(𝑆𝑦 + 2𝑆𝑦𝐶𝑦),                    (66) 
 
from relationships (63), (64), (65) and (66), give us the values of 𝑈(𝑥, 𝑦, 𝑘) and 𝑉(𝑥, 𝑦, 𝑘) as follows: 
 
𝑈(𝑥, 𝑦, 0) = 𝑆𝑥𝑆𝑦,                       (67) 
 
𝑈(𝑥, 𝑦, 1) = −𝑡 𝜋𝑆𝑥[2𝑅𝑒𝐶𝑦𝑆𝑥𝐶𝑥(𝑆𝑦 + 2𝑆𝑦𝐶𝑦) + 2𝑅𝑒𝑆𝑥𝑆𝑦(𝐶𝑦)2 − 𝑅𝑒𝑆𝑦(𝐶𝑦)2 + 𝑅𝑒𝑆𝑥𝑆𝑦𝐶𝑦 +
                        𝑅𝑒𝐶𝑦 + 2𝜋𝑆𝑦]/𝑅𝑒                     (68) 
 
and 
 
𝑉(𝑥, 𝑦, 0) = (𝑆𝑥 + 2𝑆𝑥𝐶𝑥)(𝑆𝑦 + 2𝑆𝑦𝐶𝑦),                    (69) 
 

𝑉(𝑥, 𝑦, 0) = −𝑡/𝑅𝑒 [4𝜋 ((𝑅𝑒 (2(𝑆𝑥)2𝐶𝑥 + 1 − (
1

4
) (𝐶𝑥)2((𝐶𝑥)2 − (𝑆𝑥)2)2) ((𝐶𝑦)2 − (𝑆𝑦)2) 

                      − (
1

4
) 𝑅𝑒𝐶𝑦((𝐶𝑥)2 − (𝑆𝑥)2)2 + (

1

2
) 𝑅𝑒𝑆𝑥𝑆𝑦((𝐶𝑥)2 − (𝑆𝑥)2) + ((

1

2
) 𝑅𝑒𝑆𝑥𝐶𝑦 +

                        2𝜋) 2𝑆𝑥𝐶𝑥  + ((
1

4
) 𝑅𝑒𝑆𝑦𝐶𝑥 + (

5

4
) 𝜋)𝐶𝑥 −(

1

4
) 𝑅𝑒𝐶𝑦(𝐶𝑥)2 − 2)) 2𝑆𝑦𝐶𝑦      

                      +𝑅𝑒𝑆𝑦 (2(𝑆𝑥)2𝐶𝑥 + 1 − (
1

2
) (𝐶𝑥)2 − (

1

2
) ((𝐶𝑥)2 − (𝑆𝑥)2)2) ((𝐶𝑦)2 − (𝑆𝑦)2 −

                       (
1

4
)𝑅𝑒𝑆𝑦𝐶𝑦((𝐶𝑥)2 − (𝑆𝑥)2 − (

1

2
)𝑅𝑒𝑆𝑥(𝐶𝑦 − 1)(𝐶𝑦 + 1)((𝐶𝑥)2 − (𝑆𝑥)2) 

                      +2 (
1

2
(𝑅𝑒𝑆𝑥𝐶𝑦 + (

5

2
) 𝜋)) (𝑆𝑥)2𝐶𝑥 + ((

1

2
) 𝜋𝑆𝑦 − (

1

4
) 𝑅𝑒𝐶𝑥(𝐶𝑦 − 1)(𝐶𝑦 + 1)) 𝑆𝑥 

                    − (
1

4
) 𝑅𝑒𝑆𝑦𝐶𝑦((𝐶𝑥)2 − 2))].                    (70) 
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The solution obtained by YRDTM is 
 
𝑢1(𝑥, 𝑦, 𝑡) = ∑𝑘=0

1  𝑈(𝑥, 𝑦, 𝑘).                      (71) 
 
𝑣1(𝑥, 𝑦, 𝑡) = ∑𝑘=0

1  𝑉(𝑥, 𝑦, 𝑘).                      (72) 
 
All of the [𝐿/𝑀]𝑡-Padé approximant of (71) and (72), with 𝐿 = 0,𝑀 = 1 
 

[
𝐿

𝑀
] 𝑢(𝑥, 𝑦, 𝑡) = (𝑅𝑒𝑆𝑥(𝑆𝑦)2)/(𝑅𝑒𝑆𝑦 + 𝜋𝑅𝑒(𝐶𝑦𝑆𝑥𝑆𝑦) + 2𝜋𝑅𝑒 𝑆𝑥𝑆𝑦(𝐶𝑦)2 + 2𝜋𝑅𝑒 𝑆𝑦𝑆𝑥𝐶𝑥𝐶𝑦 −

                             𝜋𝑅𝑒 𝐶𝑥(𝐶𝑦)2+4𝜋𝑅𝑒 𝑆𝑥𝐶𝑥𝑆𝑦(𝐶𝑦)2 + 2𝜋2𝑆𝑦 + 𝑅𝑒 𝜋𝐶𝑥)𝑡),               (73) 
 

[
𝐿

𝑀
] 𝑣(𝑥, 𝑦, 𝑡) = ((𝑆𝑥)2(𝑆𝑦)2𝑅𝑒 + 4𝑅𝑒(𝑆𝑥)2𝐶𝑦(𝑆𝑦)2 + 4𝑅𝑒(𝑆𝑥)2(𝑆𝑦)2(𝐶𝑦)2

+ 4𝑅𝑒(𝑆𝑦)2(𝑆𝑥)2𝐶𝑥 +  16𝑅𝑒 (𝑆𝑥)2(𝑆𝑦)2𝐶𝑥𝐶𝑦 + 16𝑅𝑒 𝐶𝑥(𝑆𝑥)2(𝐶𝑦)2(𝑆𝑦)2

+ 2𝑅𝑒 (𝑆𝑦)2𝑆𝑥𝐶𝑥 +  16𝑅𝑒 (𝑆𝑥)2(𝑆𝑦)2𝐶𝑦(𝐶𝑥)2 + 16𝑅𝑒 (𝑆𝑥)2(𝑆𝑦)2(𝐶𝑦)2(𝐶𝑥)2)
/(𝑅𝑒 𝑆𝑥𝑆𝑦 + 2𝑅𝑒 𝑆𝑦𝑆𝑥𝐶𝑦  + 2𝑅𝑒 𝑆𝑦𝑆𝑥𝐶𝑥 + 4𝑅𝑒 𝑆𝑥𝐶𝑥𝑆𝑦𝐶𝑦 + 2𝜋𝑅𝑒 ((𝐶𝑥)2

− (𝑆𝑥)2)𝑆𝑥𝜋 + 4𝜋𝑅𝑒 ((𝐶𝑥)2 − (𝑆𝑥)2)𝑆𝑦 + 8𝜋𝑅𝑒((𝐶𝑦)2 − (𝑆𝑦)2))𝑆𝑦𝐶𝑦

+ 𝜋𝑅𝑒 𝑆𝑥𝐶𝑥 + 2𝜋𝑅𝑒𝑆𝑦𝐶𝑦 + 2𝜋𝑅e 𝑆𝑦(𝐶𝑦)2 − 8𝜋𝑅𝑒𝑆𝑦(𝑆𝑥)2(𝐶𝑥)2((𝐶𝑦)2 − (𝑆𝑦)2) 
                         −2𝜋𝑅𝑒 𝑆𝑦𝐶𝑦((𝐶𝑥)2 − (𝑆𝑥)2)2((𝐶𝑦)2 − (𝑆𝑦)2)  − 𝜋𝑅𝑒 𝑆𝑦𝐶𝑦((𝐶𝑥)2 − (𝑆𝑥)2)2 − 

4𝜋𝑅𝑒((𝐶𝑥)2 − (𝑆𝑥)2)2𝑆𝑦(𝐶𝑦)2 − 2𝜋𝑅𝑒 𝐶𝑥(𝑆𝑥)2(𝐶𝑦)2 − 2𝜋𝑅𝑒((𝐶𝑦)2 −
(𝑆𝑦)2)𝑆𝑦((𝐶𝑥)2 − (𝑆𝑥)2)  − 4𝜋𝑅𝑒 (𝐶𝑥)2𝑆𝑦𝐶𝑦((𝐶𝑦)2 − (𝑆𝑦)2)(𝐶𝑥)2 −
𝜋𝑅𝑒𝑆𝑥𝐶𝑥(𝐶𝑦)2 − 2𝜋𝑆𝑦𝑅𝑒(𝐶𝑥)2(𝐶𝑦)2 + 2𝜋2𝑆𝑥𝑆𝑦 + 10𝜋2𝑆𝑥𝑆𝑦𝐶𝑦 +
10𝜋2𝑆𝑦𝑆𝑥𝐶𝑥 + 32𝜋2𝑆𝑦𝑆𝑥𝐶𝑥𝑆𝑦𝐶𝑦  + 4𝜋𝑅𝑒𝑆𝑥𝐶𝑦(𝑆𝑦)2((𝐶𝑥)2 − (𝑆𝑥)2) +
8𝜋𝑅𝑒 𝑆𝑦𝐶𝑥((𝐶𝑦)2 − (𝑆𝑦)2)(𝑆𝑥)2 + 8𝜋𝑅𝑒 ((𝐶𝑦)2 −  4𝑅𝑒 𝑆𝑦𝐶𝑦𝐶𝑥(𝑆𝑦)2)(𝑆𝑥)2𝐶𝑥 +
2𝜋𝑅𝑒𝑆𝑥𝐶𝑥𝐶𝑦(𝑆𝑦)2 +  2𝜋𝑅𝑒 𝐶𝑥(𝑆𝑥)2(𝑆𝑦)2 + 8𝜋𝑅𝑒 𝐶𝑥𝑆𝑦(𝑆𝑥)2(𝐶𝑦)2)𝑡).                 (74) 

 
7. Results and Discussions 
 

The proposed PYRDTM is a powerful new method to find the analytical solutions for three test 
problems for the unsteady state two-dimensional convection-diffusion equations. All calculations are 
run by Maple 2016 software. 

Figure 1 to Figure 3 show the exact solution, PYRDTM solution and absolute errors at 

(𝑡 = 0.1, 𝛼𝑥 = 𝛼𝑦 = 0.1)and (𝑡 = 0.5, 𝑅 = 100) respectively for problems (I) and (II); it should be 

note that all figures calculated at Padé [1/2] for problem (I) at three iteration and at Padé [3/2] for 
problem (II) at five iterations. 

Figure 4 show the PYRDTM [0/1] of 𝑢 and PYRDTM [0/2] of 𝑣 at (𝑡 = 0.01, 𝑅 = 1) for problems 
(II) with second initial condition PII-2. 
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Fig. 1. (A) Exact solution, (B) PYRDTM solution [1 2],⁄ (C) Absolute error at 𝑡 = 0.1 and 𝛼𝑥 =
𝛼𝑦 = 0.1, Problem (I) 

 
             

 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

   

 
Fig. 2. (A) Exact solution (B) PYRDTM [3 2]⁄  solution (C) Absolute error at 𝑡 = 0.5 and 𝑅 = 100, 
problem (II) 

   

 

Fig. 3. (A) Exact solution (B) PYRDTM [3 2]⁄  solution (C) Absolute error at 𝑡 = 0.5 and 𝑅 = 100,  
problem (II) 
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Fig. 4. (A) PYRDTM [0 1]⁄  solution of 𝑢 , (B) PYRDTM [0 2]⁄  solution of 𝑣 at 𝑡 =
0.01 and 𝑅 = 1, Problem (II) 

 
Table 1 show the comparison of numerical results in terms of the largest errors and CPU time 

between PYRDTM [1/2], RDTM, MDQM [3] and LDQM [3] at (𝑡 = 0.1, 𝛼𝑥 = 𝛼𝑦 = 0.1) for different 

values of ℎ. The results confirm that the three-iteration PYRDTM is more accurate and has a lower 
CPU time than other methods. 
 

Table 1 
Comparison of errors and CPU time between LDQM, BDQM, RDTM and PYRDTM [1 2]⁄  at 𝑡 = 0.1 and 
𝛼𝑥 = 𝛼𝑦 = 0.1, Problem (I) 

 
Table 2 to Table 5 show the comparison of absolute errors between PYRDTM, RDTM, Bahadır [6], 

ELMFS [30] and.DADM [31]. Therefore, the absolute error results confirm that the four-iteration 
PYRDTM is performs better than RDTM, Bahadır [6], ELMFS [30], and DADM [31]. 

Table 2 
Comparison of absolute errors among different methods and PYRDTM [3 2] ⁄ for 𝑢(𝑥, 𝑦, 𝑡) at 𝑅 =
100 𝑎𝑛𝑑 𝑡 = 0.01, Problem (II) 
(𝑥, 𝑦) PYRDTM RDTM ELMFS [30] DADM [31] Bahadır [6] 

(0.1 ,0.1) 1.80𝐸 − 17  1.53𝐸 − 15 7.58𝐸 − 04 5.91𝐸 − 05 7.24𝐸 − 05 
(0.5 ,0.1) 2.07𝐸 − 16  1.31𝐸 − 15 8.37𝐸 − 05 4.84𝐸 − 06 2.43𝐸 − 05 
(0.9 ,0.1) 1.43𝐸 − 18  1.46𝐸 − 17 6.01𝐸 − 05 3.41𝐸 − 08 8.39𝐸 − 06 
(0.3,0.3) 1.80𝐸 − 17  1.53𝐸 − 15 2.98𝐸 − 05 5.91𝐸 − 05 8.25𝐸 − 05 
(0.7 ,0.3) 2.07𝐸 − 16 1.31𝐸 − 15 2.17𝐸 − 05 4.84𝐸 − 06 3.43𝐸 − 05 
(0.1 ,0.5) 2.18𝐸 − 16 1.31𝐸 − 15 1.27𝐸 − 05 1.64𝐸 − 06 5.62𝐸 − 05 
(0.5 ,0.5) 1.80𝐸 − 17  1.53𝐸 − 15 2.68𝐸 − 05 5.91𝐸 − 05 7.33𝐸 − 05 
(0.9,0.5) 2.07𝐸 − 16  1.31𝐸 − 15 3.68𝐸 − 05 ---- ---- 
(0.3,0.7) 2.18𝐸 − 16 1.31𝐸 − 15 7.19𝐸 − 05 ---- ---- 
(0.7,0.7) 1.80𝐸 − 17  1.53𝐸 − 15 3.53𝐸 − 05 ---- ---- 
(0.1,0.9) 1.51𝐸 − 18 1.47𝐸 − 17 6.74𝐸 − 05 ---- ---- 
(0.5,0.9) 2.18𝐸 − 16  1.31𝐸 − 15 1.29𝐸 − 05 ---- ---- 
(0.9,0.9) 1.80𝐸 − 17  1.53𝐸 − 15 3.62𝐸 − 04 ---- ---- 

 

h LDQM [3] BDQM [3] PYRDTM RDTM 

L∞ CPU L∞ CPU L∞ CPU L∞ CPU 
0.25 2.57E − 06 0.509 4.16E − 07 0.509 1.04E − 09 0.016 1.03E − 02 0.031 
0.17 1.38E − 05 0.619 5.64E − 06 0.619 1.04E − 09 0.016 1.05E − 02 0.031 
0.125 3.22E − 05 0.772 7.95E − 06 0.772 1.04E − 09 0.016 1.08E − 02 0.031 
0.1 5.35E − 05 1.047 9.18E − 06 1.047 1.04E − 09 0.031 1.13E − 02 0.047 
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Table 3 
Comparison of absolute errors among different methods and PYRDTM [3 2]⁄  for 𝑢(𝑥, 𝑦, 𝑡) at 𝑅 =
100 𝑎𝑛𝑑 𝑡 = 0.5, Proplem (II) 
(𝑥, 𝑦) PYRDTM RDTM ELMFS [30] DADM [31] Bahadır [6] 

(0.1 ,0.1) 8.87𝐸 − 06 9.61𝐸 − 04 9.12𝐸 − 04 2.78𝐸 − 4 5.13𝐸 − 4 
(0.5 ,0.1) 1.02𝐸 − 06  1.83𝐸 − 05 1.17𝐸 − 04 4.52𝐸 − 4 8.86𝐸 − 4 
(0.9 ,0.1) 6.97𝐸 − 09  1.86𝐸 − 07 7.65𝐸 − 06 3.37𝐸 − 6 6.53𝐸 − 5 
(0.3,0.3)  8.87𝐸 − 06  9.61𝐸 − 04 9.48𝐸 − 04 2.78𝐸 − 4 7.32𝐸 − 4 
(0.7 ,0.3) 1.02𝐸 − 06  1.83𝐸 − 05 5.40𝐸 − 05 4.52𝐸 − 4 6.27𝐸 − 4 
(0.1 ,0.5) 1.29𝐸 − 05 2.09𝐸 − 05 4.84𝐸 − 06 2.87𝐸 − 4 4.02𝐸 − 4 
(0.5 ,0.5) 8.87𝐸 − 06 9.61𝐸 − 04 3.39𝐸 − 04 2.78𝐸 − 4 3.47𝐸 − 4 
(0.9,0.5) 1.02𝐸 − 06  1.83𝐸 − 05 5.60𝐸 − 05 ---- ----- 
(0.3,0.7) 1.29𝐸 − 05 2.09𝐸 − 05 1.51𝐸 − 05 ---- ---- 
(0.7,0.7) 8.87𝐸 − 06 9.61𝐸 − 04 3.45𝐸 − 04 ----- ---- 
(0.1,0.9) 9.36𝐸 − 08 2.92𝐸 − 07 3.92𝐸 − 05 ---- ---- 
(0.5,0.9) 1.29𝐸 − 05  2.09𝐸 − 05 8.93𝐸 − 05 ---- ---- 
(0.9,0.9) 8.87𝐸 − 06 9.61𝐸 − 04 4.44𝐸 − 04 ---- ---- 

 
Table 4 
Comparison of absolute errors among different methods and PYRDTM [3 2]⁄  for 𝑣(𝑥, 𝑦, 𝑡) at 𝑅 =
100 𝑎𝑛𝑑 𝑡 = 0.01, Problem (II) 
(𝑥, 𝑦) PYRDTM RDTM ELMFS [30] DADM [31] Bahadır [6] 

(0.1 ,0.1) 1.80𝐸 − 17  1.53𝐸 − 15 5.51𝐸 − 04 5.91𝐸 − 05 8.36𝐸 − 05 
(0.5 ,0.1) 2.07𝐸 − 16  1.31𝐸 − 15 1.84𝐸 − 05 4.84𝐸 − 06 5.14𝐸 − 05 
(0.9 ,0.1) 1.43𝐸 − 18  1.46𝐸 − 17 1.06𝐸 − 04 3.41𝐸 − 08 7.03𝐸 − 06 
(0.3,0.3) 1.80𝐸 − 17  1.53𝐸 − 15 1.65𝐸 − 05 5.91𝐸 − 05 6.15𝐸 − 05 
(0.7 ,0.3) 2.07𝐸 − 16 1.31𝐸 − 15 5.37𝐸 − 06 4.84𝐸 − 06 5.41𝐸 − 05 
(0.1 ,0.5) 2.18𝐸 − 16 1.31𝐸 − 15 8.13𝐸 − 05 1.64𝐸 − 06 7.35𝐸 − 05 
(0.5 ,0.5) 1.80𝐸 − 17  1.53𝐸 − 15 2.92𝐸 − 05 5.91𝐸 − 05 8.51𝐸 − 05 
(0.9,0.5) 2.07𝐸 − 16  1.31𝐸 − 15 1.46𝐸 − 05 ---- ---- 
(0.3,0.7) 2.18𝐸 − 16 1.31𝐸 − 15 2.46𝐸 − 05 ----- ---- 
(0.7,0.7) 1.80𝐸 − 17  1.53𝐸 − 15 1.52𝐸 − 05 ---- ---- 
(0.1,0.9) 1.51𝐸 − 18 1.47𝐸 − 17 7.84𝐸 − 05 ---- ---- 
(0.5,0.9) 2.18𝐸 − 16  1.31𝐸 − 15 2.97𝐸 − 05 ---- ---- 
(0.9,0.9) 1.80𝐸 − 17  1.53𝐸 − 15 2.74𝐸 − 04 ---- ---- 

 
Table 5 
Comparison of absolute errors among different methods and PYRDTM [3 2]⁄  for 𝑣(𝑥, 𝑦, 𝑡) at 𝑅 =
100 𝑎𝑛𝑑 𝑡 = 0.5, Problem (II) 
(𝑥, 𝑦) PYRDTM RDTM ELMFS [30] DADM [31] Bahadır [6] 

(0.1 ,0.1) 8.87𝐸 − 06 9.61𝐸 − 04 4.93𝐸 − 04 2.78𝐸 − 04 6.17𝐸 − 04 
(0.5 ,0.1) 1.02𝐸 − 06  1.83𝐸 − 05 1.24𝐸 − 04 4.52𝐸 − 04 4.67𝐸 − 04 
(0.9 ,0.1) 6.97𝐸 − 09  1.86𝐸 − 07 2.60𝐸 − 04 3.37𝐸 − 06 1.70𝐸 − 05 
(0.3,0.3) 8.87𝐸 − 06  9.61𝐸 − 04 1.16𝐸 − 03 2.78𝐸 − 04 6.25𝐸 − 04 
(0.7 ,0.3) 1.02𝐸 − 06  1.83𝐸 − 05 1.23𝐸 − 04 4.52𝐸 − 04 4.66𝐸 − 04 
(0.1 ,0.5) 1.29𝐸 − 05 2.09𝐸 − 05 3.01𝐸 − 04 2.87𝐸 − 04 8.72𝐸 − 04 
(0.5 ,0.5) 8.87𝐸 − 06 9.61𝐸 − 04 4.73𝐸 − 04 2.78𝐸 − 04 6.23𝐸 − 04 
(0.9,0.5) 1.02𝐸 − 06  1.83𝐸 − 05 8.09𝐸 − 05 ---- ---- 
(0.3,0.7) 1.29𝐸 − 05 2.09𝐸 − 05 1.86𝐸 − 04 ---- ---- 
(0.7,0.7) 8.87𝐸 − 06 9.61𝐸 − 04 3.58𝐸 − 04 ---- ---- 
(0.1,0.9) 9.36𝐸 − 08 2.92𝐸 − 07 2.15𝐸 − 04 ---- ---- 
(0.5,0.9) 1.29𝐸 − 05  2.09𝐸 − 05 9.33𝐸 − 05 ---- ---- 
(0.9,0.9) 8.87𝐸 − 06 9.61𝐸 − 04 3.79𝐸 − 04 ---- ---- 
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Table 6 shows a comparison between PYRDTM [3/2] and RDTM with ADM [32] for five iterations. 
Therefore, the absolute error results confirm that the five-iteration PYRDTM is performs better than 
RDTM and ADM. 

Table 7 and Table 8 show 𝐿2 and 𝐿∞ of 𝑢 and 𝑣 respectively, of problem (II) at Padé [3/2] and 
(𝑅 = 100, 𝑡 = 1). The result confirms that the PYRDTM more accurate compared to other methods. 
 

Table 6 
Comparison of absolute errors between PYRDTM [3 2]⁄  , RDTM and ADM at 𝑅 = 100 and 𝑡 = 0.5, 
Problem (II) 
(𝑥, 𝑦) 5 − 𝑡ℎ 𝑢 5 − 𝑡ℎ 𝑣  

PYRDTM RDTM ADM [32] PYRDTM RDTM  ADM [32] 
(0.1,1) 2.68𝐸 − 08 8.38𝐸 − 08 1.82𝐸 − 05 2.68𝐸 − 08 8.38𝐸 − 08 1.82𝐸 − 05 
(0.2,1) 9.36𝐸 − 08 2.92𝐸 − 07 6.36𝐸 − 05 9.36𝐸 − 08 2.92𝐸 − 07 6.37𝐸 − 05 
(0.3,1) 3.26𝐸 − 07 1.01𝐸 − 06 2.22𝐸 − 04 3.26𝐸 − 07 1.01𝐸 − 06 2.22𝐸 − 04 
(0.4,1) 1.13𝐸 − 06  3.40𝐸 − 06 7.72𝐸 − 04 1.13𝐸 − 06  3.40𝐸 − 06 7.75𝐸 − 04 
(0.5,1) 3.89𝐸 − 06 1.04𝐸 − 05 2.67𝐸 − 03 3.89𝐸 − 06 1.04𝐸 − 05 1.82𝐸 − 05 

 
Table 7 
Comparison of errors between PYRDTM [3 2],⁄  RDTM and EXP-FDE at 𝑅 = 100 and 𝑡 = 1, Problem (II), 
for 𝑢 
PYRDTM 𝑢 RDTM 𝑢 Exp-FDE 𝑢 [33] 
𝐺𝑟𝑖𝑑 𝐿2 𝐿∞ 𝐿2  𝐿∞ 𝐿2 𝐿∞ 
4×4 3.24𝐸 − 03 6.39𝐸 − 03 4.48𝐸 − 02 7.81𝐸 − 02 8.57𝐸 − 02 9.70𝐸 − 02 
8×8 2.60𝐸 − 03 6.39𝐸 − 03 3.56𝐸 − 02 7.81𝐸 − 02 4.94𝐸 − 02 4.69𝐸 − 02 
16×16 2.50𝐸 − 03 6.39𝐸 − 03 3.68𝐸 − 02 8.98𝐸 − 02 1.92𝐸 − 02 2.05𝐸 − 02 
32×32 2.45𝐸 − 03 6.39𝐸 − 03 3.62𝐸 − 02 1.12𝐸 − 01 8.68𝐸 − 03 9.07𝐸 − 03 

 
Table 8 
Comparison of errors between PYRDTM [3 2],⁄  RDTM and EXP-FDE at 𝑅 = 100 and 𝑡 = 1, Problem (II), 
for 𝑣 
PYRDTM 𝑣 RDTM 𝑣 Exp-FDE 𝑣 [33] 
𝐺𝑟𝑖𝑑 𝐿2 𝐿∞ 𝐿2 𝐿∞ 𝐿2 𝐿∞ 
4×4 3.24𝐸 − 03 6.39𝐸 − 03 4.48𝐸 − 02 7.81𝐸 − 02 8.57𝐸 − 02 9.70𝐸 − 02 
8×8 2.60𝐸 − 03 6.39𝐸 − 03 3.56𝐸 − 02 7.81𝐸 − 02 4.94𝐸 − 02 4.69𝐸 − 02 
16×16 2.50𝐸 − 03 6.39𝐸 − 03 3.68𝐸 − 02 8.98𝐸 − 02 1.92𝐸 − 02 2.05𝐸 − 02 
32×32 2.45𝐸 − 03 6.39𝐸 − 03 3.62𝐸 − 02 1.12𝐸 − 01 8.69𝐸 − 03 9.08𝐸 − 03 

 
Table 9 shows the values of 𝑢 and 𝑣 that obtained by using PYRDTM [1/2] are identical with those 

are given by using RDTM and MQ [32] at least two digits of problem (II) with second initial condition 
PII-2. According to the calculations shown in the tables and figures, the PYRDTM procedures are very 
effective in resolving linear and nonlinear unsteady state two-dimensional convection-diffusion 
equations; they are also the most efficient; they also provide high-precision solutions since they 
produce good results with few iterations of solutions and smaller errors with little CPU time. 
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Table 9 
Comparison of the values of 𝑢 and 𝑣 between PYRDTM [1 2],⁄  RDTM and MQ at 𝑅 = 1 and 𝑡 =
0.01, Problem (II) 
𝑢 𝑣 
(𝑥, 𝑦) PYRDTM RDTM MQ [34] PYRDTM RDTM MQ [34] 

(0.1,0.1) 0.71971 0.07346  0.07251 0.43781 0.43295 0.43085 
(0.2,0.8) 0.27969 0.27574  0.27778 −0.14893 −0.10644 −0.12409 
(0.4,0.4) 0.72242 0.72437  0.72174 1.59935 1.68179 1.65244 
(0.7,0.1) 0.20515 0.20741  0.20484 0.56924 0.07022 0.06702 
(0.9,0.9) 0.79363 0.79369  0.07945 0.15746 0.01013 0.01334 

 
8. Conclusion 
 

In this work, the PYRDTM has been successfully applied to find analytical solutions for the 
unsteady state two-dimensional convection-diffusion equation. This technique, which we name 
PYRDTM, considerably improves the convergence rate of the RDTM truncated series solution. The 
efficiency and accuracy of the suggested method are illustrated by three test problems. When 
compared to the most well-known methodologies such as the discrete Adomian decomposition 
method (DADM) and the Adomian decomposition method (ADM). The results show that PYRDTM is 
more efficient and accurate. Also, the suggested method's advantage is that it provides a high-
accuracy solution with fewer iterations and fewer errors with little CPU time. The suggested method 
significantly improved the results of the classical RDTM method in error and CPU time. The most 
important part of this study is that the suggested method is suitable for solving both linear and 
nonlinear problems. 
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