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This article looked at the effects of electromagnetic force, chemical radiation, and thermal 
radiation on second-grade fluid passing through an exponentially stretched sheet with a 
heat sink and a porous medium. Using similarity transformations, the governing system 
of nonlinear partial differential equations has been converted into a system of ordinary 
differential equations. The Successive Linearization Method is then used to solve the 
system numerically. The main goal of this paper is to compare the results of solving the 
velocity, concentration and temperature equations in the presence of changes through 
SLM, introducing it as a precise and appropriate method for solving nonlinear differential 
equations. Graphs are used to display the numerical findings for the profiles of velocity, 
temperature, and concentration. The effects of various parameters are looked at and 
evaluated. The numerical values of the local Sherwood number, local Nusselt number, 
porosity, retardation number, and skin friction coefficient are presented and examined. 
The findings show that a wide range of variables significantly affect the fluid flow patterns. 
The reaction rate parameter had a significant impact on the concentration profiles, and 
as the reaction rate parameter grew, the boundary layer's concentration thickness 
reduced. The analysis's findings and the findings of previous studies were compared, and 
it was discovered that they were in excellent agreement. 
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1. Introduction 
 

Many industrial operations, including hot rolling, chemical coating of flat plates, polymer 
extrusion, and heat exchange [1,2], heavily rely on chemical reactions. Since there might be a distant 
mass in the water or the air, pure water or air cannot exist naturally [3]. Because of this, certain 
mixtures may cause chemical changes in the constituent substances. By using a permeable plate and 
slope temperature, Sinha [4] explored the effects of chemical reaction on unsteady MHD free 
convective flow and found that raising the chemical reaction parameter causes the reaction rate to 
increase. The effects of radiation are studied by Chaudhary et al., [5] and Ishak [6] for the MHD flow 
through an exponentially stretched sheet. As the Prandtl number rises, the rate of heat transfer rises 
as well, but it falls as the radiation and magnetic variables rise. As the radiation parameter is raised, 
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the temperature increases. Research that combines the effects of radiation and chemical reactions 
on MHD flow is essential in many industries, including manufacturing [7-10]. The flow of the MHD 
boundary layer over an exponentially stretched sheet under the influence of chemical reaction and 
radiation was explored [11-15], and the concentration of the boundary layer increased when the 
reaction rate parameter was increased. The unsteady energy and mass transport of 
magnetohydrodynamics (MHD) second grade nanofuid via an exponentially extending surface with 
Dufour and Soret effects are investigated by Siddique et al., [16]. The findings show that the 
temperature of the fluid grew in direct proportion to the thermophoresis motion, buoyancy ratio, 
and Brownian motion parameters. The chemical reaction and variable viscosity effects on the flow 
and mass transfer of a non-Newtonian visco-elastic second grade fluid past a stretching surface 
embedded in a porous medium were studied by Mahmoud [17]. He found that the local Sherwood 
number increases with increasing the visco-elastic parameter or the Shemidt number or the viscosity 
parameter or the destructive chemical reaction parameter and decreases as the slip parameter or 
the Darcy parameter or the absolute values of the generative chemical reaction parameter increase. 
The governing equation for the second grade fluid is of fourth order in general. When higher-order 
nonlinearities are neglected, the order of equation in the second grade fluid is reduced [18,19]. Some 
of these problems are solved using traditional numerical approaches such as the finite difference 
method, shooting method, Keller box method [20], Runge-Kutta and artificial neural networks (ANNs) 
[21-26]. A new method called the Successive Linearization Method has just been proposed in various 
papers (SLM). This approach has the following key features, which are justified: It is a strong approach 
to solving these types of problems since it converts the original linear differential equation into a 
system of linear algebraic equations. This method has been applied successfully to a wide range of 
nonlinear problems in science and engineering, including [27-30]. As a result, all of these successful 
applications attest to the SLM's usefulness, validity, accuracy, and flexibility. 

As a result, the goal of this research is to expand ref [11] and ref [31] findings to a broader 
problem, such as the effect of second grade fluid dissipation and chemical reaction on MHD in porous 
medium. The effects of various flow parameters encountered in the governing equations are shown 
visually and tabulated in this work. The problem is numerically addressed using the SLM approach, 
which is more computationally efficient. The pertinent results are displayed graphically and discussed 
quantitatively. 

The rest of the paper is organized as follows. The governing system of nonlinear partial differential 
equations has been converted into a system of ordinary differential equations in Section 2. Section 3 
deals with the application of SLM to solve our problem. Finally, some numerical results along with a 
discussion on them are given in Section 4. 
 
2. Mathematical Formulation 
 

Consider two-dimensional free convective heat and mass transport down a semi-infinite vertical 
plate embedded in a doubly stratified, electrically conducting second grade fluid that is stable, 
laminar, and incompressible. Select a coordinate system with the x-axis parallel to the vertical plate 
and the y-axis perpendicular to the plate. Figure 1 illustrates the physical model and coordinate 
system. A uniform magnetic field of the same magnitude is applied to the plate in a normal direction. 
Because the magnetic Reynolds number is minimal, the induced magnetic field can be ignored in 
comparison to the applied magnetic field. 
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Fig. 1. Flow geometry 
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Hayat et al., [34] using the Boussinesq and boundary layer approximations as described by Sparrow 
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The temperature, velocity, and concentration profiles have corresponding boundary conditions. 
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The continuity Eq. (1) is satisfied by introducing the stream function   such that 
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2.1 Similarity Conversion  
 

A similarity transformation is used to turn the set of partial differential equations that govern this 
system into ordinary differential equations. The following non-dimensional variables developed by 
Mukhopadhyay [36] are used to simplify the resulting equations. For radiation, we have used the 
Rosseland approximation. 
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Substituting (7) and (8) in (2)–(6), it is found that a similarity exists and hence we obtain 
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Physical Quantities of interest, 

The local skin friction coefficient fC  is defined as 
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The heat and mass transfers from the plate, respectively, are given by 
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3. Numerical analysis 
 

The transformed system of ordinary differential Eq. (9) – (11) is numerically solved using the 
boundary conditions (12) and utilizes the SLM.  

For SLM solution we select the initial guesses functions ( )f  , ( ) and ( ) in the form 

 

( ) ( )
1

0

)(
i

i m

m

f f F  

−

=

= +   ,  ( ) ( )
1

0

)(
i

i m

m

    
−

=

= +   and  ( ) ( )
1

0

).(
i

i m

m

    
−

=

= +                                 (15) 

 

Here the three functions ( )if  ,
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We arrive at  
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Eq. (18) can be written as a system of linear equations 
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4. Results and Discussion 
4.1 Validation of Study 
 

Table 1 illustrates the Nusselt number (0)−  values for various radiation parameters, while the 

remainder of the parameters are set to zero, where 1, 100rP K= = . The table compares the results 

obtained with those of Reddy et al., [31] and Swain et al., [37], and it shows that the results agree 
with each other. Table 2, 3 and 4 show the values of Skin Friction Coefficient, Local Nusselt Number 
and Local Sherwood Number, respectively, for various values of the parameters involved. The table 
compares the results obtained with those of Khalili et al., [32], and it shows that the results are in 
excellent agreement. 

 
Table 1 
Nusselt number − 𝜃′(0) 
M Pr R K 𝛽1 − 𝜃′(0)Ref. [31] − 𝜃′(0)Ref. [37] − 𝜃′(0)𝑃𝑟𝑒𝑠𝑒𝑛𝑡 

0 1 1 100 0 0.5245 0.53119 0.530097611 
0 1 0 100 0 0.947214 0.9547 0.953661340 

 
Table 2 
Values of Skin Friction Coefficient in comparison to the previous study ref. [32] 
M Pr S Sc R 𝛾 K 𝛽1 𝜆 |𝑓′′(0)|Ref.[32] |𝑓′′(0)|𝑝𝑟𝑒𝑠𝑒𝑛𝑡 

0 1 -0.5 0.22 1 1 0 0 0 1.281933 1.281808 

2 5 -0.2 0.22 1 1 0 0 0 1.912633 1.912620 

2 1 -0.5 0.22 1 1 0 0 0 1.912633 1.912620 

2 1 -0.5 0.22 2 1 0 0 0 1.912633 1.912620 

 
Table 3 
Values of Local Nusselt Number in comparison to the previous study ref. [32] 
M Pr S Sc R 𝛾 K 𝛽1 𝜆 − 𝜃′(0)Ref.[32] − 𝜃′(0)𝑝𝑟𝑒𝑠𝑒𝑛𝑡 

0 1 -0.2 0.22 1 1 0 0 0 0.753584 0.753562 

2 5 -0.2 0.22 1 1 0 0 0 1.555244 1.555223 

2 1 -0.5 0.22 1 1 0 0 0 0.690717 0.690708 

2 1 -0.5 0.22 2 1 0 0 0 0.526667 0.526591 

 
Table 4  
Values of Local Sherwood Number in comparison to the previous study ref [32] 
M Pr S Sc R 𝛾 K 𝛽1 𝜆 − 𝜙′(0)Ref.[32] − 𝜙′(0)𝑝𝑟𝑒𝑠𝑒𝑛𝑡 

0 1 -0.2 0.22 1 1 0 0 0 0.621791 0.621762 

2 5 -0.2 0.22 1 1 0 0 0 0.586786 0.586776 

2 1 -0.5 0.22 1 1 0 0 0 0.586786 0.586776 

2 1 -0.5 0.22 2 1 0 0 0 0.586786 0.586776 
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4.2 Results 
 

In the current study, thermal radiation in the presence of an even source and sink of heat is 
considered along with the chemical reaction flow of a second-grade incompressible electrically 
conducting fluid past an exponentially extending sheet via a porous medium. The examination of 
mass transfer has also been discussed in this paper. The purpose of the discussion that follows is to 
emphasize the effects of thermal radiation, medium permeability, and plate temperature on flow 
phenomena. In addition, the values of Skin Friction Coefficient, Local Nusselt Number and Local 
Sherwood Number for various values of parameters are shown in Table 5. 
 

Table 5 
Skin Friction Coefficient, Local Nusselt Number and Local Sherwood Number for various values of 
parameters involved using SLM 
M Pr S Sc R 𝛾 K 𝛽1 𝜆 |𝑓′′(0)| − 𝜃′(0) − 𝜙′(0) 

0 1 - 0.5 0.22 1 1 100 0.01 0.01 1.264956945 0.754579457 0.622333352 

1         1.605792119 0.716510911 0.600823469 
2         1.884181763 0.691956181 0.587442083 

4         2.342832412 0.660223811 0.570534662 

2 1 -0.2 0.22 1 1 100 0.01 0.01 1.888265436   0.555210203 0.587084622 
 2        1.888265436 0.874525710 0.587084622 

 3        1.888265436 1.133692117 0.587084622 
 5        1.888265436 1.557433310 0.587084622 

2 1 -0.3 0.22 1 1 100 0.01 0.01 1.888265436 0.606432814 0.587084622 
  -0.5       1.888265436 0.691301659 0.587084622 

  -1.0       1.888265436 0.854929536 0.587084622 
  -1.2       1.888265436 0.909781830 0.587084622 

2 1 -0.5 0.22 1 1 100 0.01 0.01 1.888265437 0.691301659 0.587084622 

   0.30      1.888062921 0.691382439 0.699296434 
   0.40      1.887862156 0.691455896 0.822440793 

   0.62      1.887536560 0.691561733 1.052340488   

2 1 -0.5 0.22 0 1 100 0.01 0.01 1.888265437 1.145572765 0.587084622 
    1     1.888265436 0.691301659 0.587084622 

    2     1.888265436 0.526966053 0.587084622 
    3     1.888265436 0.437539299 0.587084622 

2 1 -0.5 0.22 1 1 100 0.01 0.01 1.888265437 0.691301659 0.587084622 
     2    1.887930535 0.691434558 0.766708072 
     3    1.887709884 0.691510878 0.906858526 
     5    1.887410673 0.691601443 1.131928276 

2 1 -0.5 0.22 1  1  0.5 0.01 0.01 2.344189279 0.659866944 0.570344227 
      1.0   2.127432437 0.673688693 0.577661254 
      10   1.911259318 0.689485423 0.586107108 
      100   1.888265436 0.691301659 0.587084622 

2 1 -0.5 0.22 1 1 100 0.00 0.01 1.919420462           0.689843511 0.586305402           
       0.02  1.858377579           0.692742546 0.587855372           
       0.04  1.802097024           0.695573767 0.589372068           
       0.06  1.750025311           0.698339566 0.590856655           

2 1 -0.5 0.22 1  1 100 0.01 0.01 1.888265437           0.691301659 0.587084622           
        0.09 1.918279896        0.712462615 0.553327940           
        0.12 1.917794719           0.816848863 0.494409757           
        0.15 1.918243796           0.917665744 0.487628890           
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The relationship between velocity and significant magnetic field levels is shown in Figure 2(a). It 
has been shown that boosting M lowers the velocity profile. As M  rises, a resistive force known as 
the Lorentz force, which is akin to a drag force, is produced. The velocity intensity slows down as a 
result of the Lorentz force. Figure 2(b) illustrates how the magnetic field affects temperature profiles. 
Figure 2(b) depicts the formation of a magnetic field on the temperature profile. Due to the Lorentz 
force's connection to this magnetic field, an increase in temperature results from the Lorentz force's 
involvement in the characteristics of this most expansive magnet field. Dimensionless concentration 
is shown to be impacted by the magnetic field M  in Figure 2(c). It is believed that the concentration 
profile will rise as M  levels rise. 
 

  
Fig. 2(a). Different values of M  on the 
velocity profile 

Fig. 2(b). Different values of M  on the 
temperature profile 

 

 
Fig. 2(c). Different values of M  on the 
concentration profile 

 
According to the graph in Figure 3(a), the fluid flow resistive force decreases as the porosity 

parameter increases, meaning that the fluid flow velocity rises as well. The impact of the porosity 
parameter pK  on temperature profiles is depicted in Figure 3(b). The temperature profile is shown 

to be decreasing in Figure 3(b) as a result of an increase in the porosity parameter. Figure 3(c) displays 
how the porosity parameter pK  affects dimensionless concentration. It is demonstrated that as the 

porosity parameter pK  increases, the concentration profile declines.  
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Fig. 3(a). Different values of permeability pK   

on the velocity profile  

Fig. 3(b). Different values of permeability pK   

on the temperature profile 
 

 
Fig. 3(c). Different values of permeability pK   

on the concentration profile  

 
Figure 4(a) depicts how radiation R  affects the temperature profile. As the radiation R  

increases, the temperature rises. This happens as a result of a decrease in the rate of heat 
transmission over the surface area. Figure 4(b) illustrates how the Prandtl number affects the 
temperature profile. It's important to keep in mind that decreasing the Prandtl number results in a 
thinner thermal boundary layer. 
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Fig. 4(a). Different values of thermal radiation 

R  on the temperature profile 
Fig. 4(b). Different values of Prandtl number 

rP  on the temperature profile 
 

In Figure 5, the impact of the Schmidt number cS  on dimensionless concentration is depicted. A 

decrease in concentration is seen when the Schmidt number cS  rises. 

 

 
Fig. 5. Different values of Schmidt number cS  

on the concentration profile  
 

Figure 6 shows the effect of the chemical reaction   on the concentration profile. The 

concentration decreases with an increase in the chemical reaction's  . 
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Fig. 6. Different values of chemical reaction   

on the concentration profile 

 
Figure 7 illustrates how the source parameter (sink) S  affects the temperature profile. The 

temperature profile seems to be improving when source parameter S  is increased. 
 

 
Fig. 7. Different values of source parameter 

(sink) S  on the temperature profile 

 

The effects of the retardation time constant 1  on the velocity function f   are seen in Figure 8a. 

When 1  is increased, the fluid flow and the thickness of the boundary layer are both improved. The 

effects of 1  on   and   are depicted in Figure 8b and Figure 8c, respectively. The temperature and 

concentration profiles are observed to decline as 1  increases. When various values of the 

parameters involved are studied, Table 2 displays the absolute values of the skin friction coefficient 
(0)f  , the values of the local Nusselt number (0)− , and the local Sherwood number (0)− . 

 



 Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 99, Issue 2 (2022) 1-16 

13 
 

  
Fig. 8(a). Different values of 1  on the velocity 

profile  

Fig. 8(b). Different values of 1  on the 

temperature profile 
 

 
Fig. 8(c). Different values of 1  on the 

concentration profile  
 
5. Concluding Remarks 

 
This study investigates the impact of chemical processes on the radiative MHD flow of Oldroyd-B 

fluid across a stretching sheet in porous material in the presence of viscous dissipation. The formulae 
for the velocity, temperature, and concentration distributions, which are the equations governing 
the flow, are numerically solved using the SLM method. Tables show how the Sherwood number, the 
Nusselt number, and skin friction are impacted by various governing parameters. Temperature and 
nanoparticle concentration rise as magnetic field levels rise, but dimensionless velocity decreases. 

When the porosity parameter pK  rises, indicating an increase in velocity profile, while concentration 

and temperature fields show the opposite trend. When the Prandtl number increases, the 
temperature and thickness of the thermal boundary layer decrease. The Nusselt number increases 

as 1  and rP  increase, and the Schmidt number and the chemical reaction parameter with higher 

values reduce the nanoparticle concentration. 
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