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In this work, an unsteady incompressible viscous magnetic-hydrodynamic squeezing of 
flow fluid is investigated. By the help of similar variables and appropriate 
transformations which play an important role to convert non-linear partial differential 
system into the non-linear ordinary differential equation. Also, the reduced boundary 
value of problem is resolved analytically by employing a derivatives series algorithm 
(DSA).  The important key for this construction is necessary for the derivatives that 
appear as a coefficient in the power series. The impacts of conspicuous physical 
emerging parameters on the velocity distribution are described using sketched and 
interpreted at boundaries in cases of slip and no slip. 
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1. Introduction 
 

Most physical phenomenon can describe the flow of fluid that is squeezed between two parallel 
objects. In many hydrodynamic machines and tools one of this phenomenon can been observed. In 
the nineteenth century, the modeling of the flow fluid was investigated due to its endless applications 
in various fields, therefore it has gained a lot of attention. The first studies in these flows were 
introduced by Stefan [1] who found an asymptotic solution and worked on Newtonian fluid. There 
are different applications of these flow [2-4] can be described in Figure 1. 

Exceptionally, magneto-hydrodynamics refer to the study of fluids in the electromagnetic field. 
The use of magneto-hydrodynamic fluid as a lubricant is highly increased because of any unexpected 
change in the viscosity of this lubricant can be avoided under certain extreme conditions. Various 
authors have studied the impact of magnetic field on fluid flow [5-19]. In [20] by the presence of a 
magnetic field squeezing flow between two disks together was examined and between the rotating 
disks was investigated in [21,22]. A material which has filled fluid pores is known as a porous medium. 
The Low of Reynolds number results in the viscous force being very robust when compared with 
inertial forces. In such cases, in porous media inertial forces are at times neglected this flow system 
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is known creeping flow or stokes [23-25]. In addition, the properties of a porous medium can be 
shown in Figure 2. 
 

   
Fig. 1. The applications of flow fluid 

 
 

 
Fig. 2. The properties of porous medium 

     
In a porous medium [26], most of the observations about the difficulty of calculating slip are 

based on theoretical analysis and numerical methods. Experimentally, through indirect approaches 
the slip has been confirmed.  In the fluid solid interface, the slip effect is constant under boundary 
condition. The boundary condition offers different implementation in technology and science for 
example material processing, fluid transportation and rheometic measurements. In the microscopic 
level, the boundary condition for fluid is appeared as a non-slip condition, meanwhile, the 
instantaneous velocity will be zero at boundaries Nevertheless, no instantaneous slip conditions due 
to the shear stress have been investigated by the implication of unexpected increase in flow rates or 
decrease in the viscosity [27-34]. The slip condition is identified as an apparent slip in fluid mechanics.  
In the slip and no-slip at boundaries, the semi-analytical solutions of squeezing an unsteady flow fluid 
with porous impacts and magneto-hydrodynamic are discussed in this article. This issue is solved via 
a DSA in order to find analytical approximate solution. The proposed approach is designed to produce 
a new and efficient hybrid algorithm. The main feature of this approach is used to accelerate of 
convergence with less computational process. The results are represented by tables and graphs were 
compared with least squares homotopy perturbation method (LSHPM), homotopy perturbation 
method (HPM), and Runge-Kutta-Fehlberg (RKF5). The remaining sections are organized in the 
following:  section 2 is shown to explain the statement of problem. The basic concept of the proposed 
approach is given in section 3. The application of this approach is illustrated in section 4. The results 
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of the tables and figures are presented in section 5 and section 6, respectively. In addition, the 
conclusion is written in section 7.  
     
2. The Statement of Problem 
 

A porous medium between two infinite parallel plates and an unsteady rectilinear incompressible 
viscous magneto-hydrodynamic squeezing flow fluid are investigated. At any time 𝑡̌, always the 
distance between the plates is  2𝜁(𝑡̌).  In the channel the central-Axis is 𝑥̌-Axis, and the perpendicular 
Axis to the channel is 𝑦̌-axis. The acting of the uniform magnetic field = 𝜂(0, 𝜂0, 0 ) along 𝑦̌-Axis. The 
properties of the magnetic field [5] can be outlined as follows 

 
i. A very small magnetic Reynolds number causes the induced magnetic field to be small so 

it is considered [35-39]. 
ii. To the flow and the fluid direction of the magnetic field is perpendicular. 

iii. Finally,  𝜂0 =  Η0𝛿0, where  𝛿0 is the magnetic permeability. 
 
In addition, the moving of the plate symmetrically from the central axis in the channel leads to 

form the problem that have the modeling as follows 
 

∂𝑢̌1

𝜕𝑥̌
+

𝜕𝑢̌2

𝜕𝑦̌
= 0                                                                                                                                                     (1) 

                                                                                                  

𝜌̌ (
∂𝑢̌1

𝜕𝑡̌
+ 𝑢̌1

𝜕𝑢̌1

𝜕𝑥̌
+ 𝑢̌2

𝜕𝑢̌1

𝜕𝑦̌
) = −

𝜕𝑝̌

𝜕𝑥̌
+ 𝛾 (

𝜕2𝑢̌1

𝜕𝑥̌2
+

𝜕2𝑢̌1

𝜕𝑦̌2
) − 𝜎𝜂0

2𝑢̌1 −
𝛿

𝜅
𝑢̌1                                           (2) 

 

𝜌̌  (
∂𝑢̌2

𝜕𝑡̌
+ 𝑢̌1

𝜕𝑢̌2

𝜕𝑥̌
+ 𝑢̌2

𝜕𝑢̌2

𝜕𝑦̌
) = −

𝜕𝑝̌

𝜕𝑦̌
+ 𝛾 (

𝜕2𝑢̌2

𝜕𝑥̌2
+

𝜕2𝑢̌2

𝜕𝑦̌2
) −

𝛿

𝜅
𝑢̌2                                                           (3) 

                          3 
The components of the velocity are 𝑢̌1 along 𝑥̌-Axis and 𝑢̌2 along 𝑦̌-Axis.   𝜌̌,   𝛾, 𝛿,   𝜅 and  𝜎 are 

assigned to the density, kinematic viscosity, dynamic viscosity, constant permeability, and   electric 

conductivity respectively. The generalized pressure  ℎ̌  with the vorticity function 𝜛  and can be define 
as 

  

𝜛 =
𝜕𝑢̌2

𝜕𝑥̌
−

𝜕𝑢̌1

𝜕𝑦̌
                                                                                                                                                   (4) 

                                                                                             

ℎ̌ =
𝜌̌

2
[𝑢̌1

2 + 𝑢̌2
2] + 𝑝̌                                                                                                                                            (5) 

 
Substitution of Eq. (4) and Eq. (5) in Eq. (1) – Eq. (3), the equations of mass and momentum 

transformed become as 
 

∂𝑢̌1

𝜕𝑥̌
+

𝜕𝑢̌2

𝜕𝑦̌
= 0                                                                                                                                                     (6) 
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𝜕ℎ̌

𝜕𝑥̌
+ 𝜌̌ (

𝜕𝑢̌1

𝜕𝑡̌
− 𝑢̌2𝜛) = −𝛾

𝜕𝜛

𝜕𝑦̌
− 𝜎𝜂0

2𝑢̌1 −
𝛿

𝜅
𝑢̌1                                                                                        (7)  

 

𝜕ℎ̌

𝜕𝑦̌
+ 𝜌̌ (

𝜕𝑢̌2

𝜕𝑡̌
− 𝑢̌1𝜛) = −𝛾

𝜕𝜛

𝜕𝑥̌
−

𝛿

𝜅
𝑢̌2                                                                                                          (8) 

                                                           
By using Eq. (7) and Eq. (8) through the elimination of gradient pressure leads to equation as 

follows 
 

𝜌̌ (
𝜕𝜛

𝜕𝑡̌
+ 𝑢̌1

𝜕𝜛

𝜕𝑥̌
− 𝑢̌2

𝜕𝜛

𝜕𝑦̌
) = 𝛾∆2𝜛 − 𝜎𝜂0

2
𝜕𝑢̌1

𝜕𝑦̌
−

𝛿

𝜅
𝜛                                                                               (9) 

                                 
The boundary conditions of the stated problem are given in following forms 
 

𝑢̌1(𝑥̌, 𝑦̌, 𝑡̌) = 0,   𝑢̌2(𝑥̌, 𝑦̌, 𝑡̌) = 𝑢̌2𝑤(𝑡),   𝑎𝑡   𝑦̌ = 𝜁                                                                                    (10) 
 

𝑢̌2(𝑥̌, 𝑦̌, 𝑡̌) = 0,   
𝜕𝑢̌1(𝑥 ̌, 𝑦 ̌, 𝑡 ̌ )

𝜕𝛼
= 0,   𝑎𝑡   𝑦̌ = 0                                                                                       (11) 

 

Here, 𝑢̌2𝑤(𝑡) =
𝑑𝜁

𝑑𝑡̌
 is the velocity of plates and assuming that 𝛼 =  

𝑦̌

𝜁(𝑡̌)
  is dimensionless variable. 

The mathematical form of the Eq. (6) and the Eq. (9) is 
 

∂𝑢̌1

𝜕𝑥̌
+

𝜕𝑢̌2

𝜁(𝑡̌)𝜕𝛼
= 0                                                                                                                                             (12) 

                                                                                           

𝜌̌ (
𝜕𝜛

𝜕𝑡̌
+ 𝑢̌1

𝜕𝜛

𝜕𝑥̌
− 𝑢̌2

𝜕𝜛

𝜁(𝑡̌)𝜕𝛼
) = 𝛾∆2𝜛 − 𝜎𝜂0

2
𝜕𝑢̌1

𝜁(𝑡̌)𝜕𝛼
−

𝛿

𝜅
𝜛                                                               (13) 

                            
The boundary conditions on 𝑢̌1(𝑥̌, 𝛼, 𝑡̌) and  𝑢̌2(𝑥̌, 𝛼, 𝑡̌) are 

 
𝑢̌1(𝑥̌, 𝛼, 𝑡̌) = 0,   𝑢̌2(𝑥̌, 𝛼, 𝑡̌) = 𝑢̌2𝑤(𝑡) , 𝑎𝑡  𝛼 = 1                                                                            (14)  
 

𝑢̌2(𝑥̌, 𝛼, 𝑡̌) = 0,
𝜕𝑢̌1(𝑥̌, 𝛼, 𝑡̌ )

𝜕𝛼
= 0, 𝑎𝑡  𝛼 = 0                                                                               (15) 

 
The definition of the velocity components are 
 

𝑢̌1 =
𝜅 − 𝑥̌

𝜁(𝑡̌)
𝑢̌2𝑤Η′(𝛼),    𝑢̌2 = 𝑢̌2𝑤(𝑡̌)Η(𝛼)                                                                                                (16) 

 
Offset of Eq. (14) in Eq. (12) and Eq. (13), yields the following 
  

𝑑4Η

𝑑𝛼4
−

𝜁𝑢̌2𝑤

𝛾
  [Η 

𝑑3Η

𝑑𝛼3
−

𝑑Η

𝑑𝛼
 
𝑑2Η

𝑑𝛼2
− 𝛼 

𝑑3Η

𝑑𝛼3
− 2

𝑑2Η

𝑑𝛼2
] −

𝜁2

𝛾𝑢̌2𝑤

𝑑𝑢̌2𝑤

𝑑𝑡

𝑑2Η

𝑑𝛼2
− 𝑀𝑔

𝑑2𝛨

𝑑𝛼2
− 𝑀𝑝  

𝑑2𝛨

𝑑𝛼2

= 0                                                                                                                                             (17) 
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M𝑔 is the MHD parameter and 𝑀𝑝 is porous parameter. The boundary condition can be defined 
by the Eq. (14) and Eq. (15) 

 

Η(1) = 1,        
𝑑Η(1)

𝑑𝛼
= 0,     Η(0) = 0,    

𝑑2Η(0)

𝑑𝛼2
= 0                                                                           (18) 

                                   
Subsequently, similar solution, led to define the following 
 

𝜁𝑢̌2𝑤

𝛾
 = 𝑅𝑛,

𝜁2

𝛾𝑢̌2𝑤

𝑑𝑢̌2𝑤

𝑑𝑡
= 𝑅𝑛 𝑄𝑛                                                                                                        (19) 

 
𝑅𝑛  and 𝑄𝑛 can be introduced as the functions for  𝑡̌  and  these functions are fixs for the similar 

solutions. By integrating  
𝜁𝑢2𝑤

𝛾
 = 𝑅𝑛, thus we yield 

 

𝜁(𝑡̌) = (2𝛾𝑅𝑛 𝑡̌ + 𝜁0
2)1/2                                                                                                                                 (20) 

 
Eq. (13) and Eq. (14) given that 𝑄𝑛 = −1. The final from of the resulting equation with 𝑅𝑛 

represents Reynolds number as 
 

𝑑4Η

𝑑𝛼4
− 𝑅𝑛  [Η 

𝑑3Η

𝑑𝛼3
−

𝑑Η

𝑑𝛼
 
𝑑2Η

𝑑𝛼2
− 𝛼 

𝑑3Η

𝑑𝛼3
− 3

𝑑2Η

𝑑𝛼2
] − Mg

𝑑2Η

𝑑𝛼2
− 𝑀𝑝 

𝑑2Η

𝑑𝛼2
= 0                                (21) 

 
Two cases for the boundary conditions are provided as the following: follows 
 

iv. The boundary condition has no slip parameter 
 

Η(1) = 1,        
𝑑Η(1)

𝑑𝛼
= 0,     Η(0) = 0,    

𝑑2Η(0)

𝑑𝛼2
= 0                                                                           (22) 

 
v. The boundary condition has slip parameter 

 

Η(1) = 1,        
𝑑Η(1)

𝑑𝛼
= Λ 

𝑑2Η(1)

𝑑𝛼2
 ,     Η(0) = 0,    

𝑑2Η(0)

𝑑𝛼2
= 0                                                         (23) 

 
3. The Basic Steps of the DSA 
   

The assuming solution for the coefficient of power series   is an important base to construct the 
approximate analytical solution formula. So, these coefficients can be computed differential method.  
We summarize the details of a derivatives of the series scheme in the following steps [22-25] 
 
 
Considering the ordinary differential equation, we can write 

 

𝐺 (Η(𝛼),
𝑑Η(𝛼)

𝑑𝛼
,
𝑑2Η(𝛼)

𝑑𝛼2
,
𝑑3Η(𝛼)

𝑑𝛼3
, … ,

𝑑(𝑛−1)Η(𝛼)

𝑑𝛼(𝑛−1)
 ,

𝑑(𝑛)Η(𝛼)

𝑑𝛼(𝑛)
)                                                         (24) 

                              



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 100, Issue 1 (2022) 11-29 

 

16 
 

Rewriting of the Eq. (24) becomes 
 

𝑑(𝑛)Η(𝛼)

𝑑𝜉(𝑛)
= 𝐺 (Η(𝛼),

𝑑Η(𝛼)

𝑑𝛼
,
𝑑2Η(𝛼)

𝑑𝛼2
,
𝑑3Η(𝛼)

𝑑𝛼3
, … ,

𝑑(𝑛−1)Η(𝛼)

𝑑𝛼(𝑛−1)
 )                                                     (25) 

                       
𝐺 is a function for Η(𝛼) and its derivatives, Η(𝛼) is an unknown function, and 𝛼 is independent 

variable. Integration Eq. (25) with respect to 𝛼   n-times on interval  [0, 𝛼],  become  the following 
 

Η(𝛼) =  ∑
𝛼𝑗−1

(𝑗 − 1)!

𝑛

𝑗=1

Η(𝑗−1)(0) + 𝐿−1𝐾[Η(𝛼)]                                                                                          (26) 

                                                           
where 
 

𝐾[Η(𝛼)] = 𝐺 (Η(𝛼),
𝑑Η(𝛼)

𝑑𝛼
,
𝑑2Η(𝛼)

𝑑𝛼2
,
𝑑3Η(𝛼)

𝑑𝛼3
, … ,

𝑑(𝑛−1)Η(𝛼)

𝑑𝛼(𝑛−1)
 ) ,   𝐿−1(. ) = ∫ … ∫ (. )(𝑑𝛼)𝑛

𝛼

0

𝛼

0

  

                     
Assuming that 
  

[𝐾(𝛼)] = ∑
𝑑(𝑚−1)𝐾[Η0(𝛼)]

𝑑𝛼(𝑚−1)

∞

𝑚=1

                                                                                                                    (27) 

                                                                    
Rewriting the Eq. (26) 
 

𝐾[Η(𝛼)] = 𝐾[Η0(𝛼)] + 𝐾[Η0(𝛼)] + 𝐾′′[Η0(𝛼)] + 𝐾′′′[Η0(𝛼)] + ⋯                                               (28) 
 

Offset of Eq. (28) in Eq. (26), we acquire 
 

Η(𝛼) = Η0(𝛼) +  Η1(𝛼) + Η2(𝛼) + Η3(𝛼) + ⋯                                                                                     (29) 
                                         
where 
        

Η(0) =  ∑
𝛼𝑗−1

(𝑗 − 1)!

𝑛

𝑗=1

Η(𝑗−1)(0),   Η1(𝛼) = 𝐿−1𝐾[Η0(𝛼)],   Η2(𝛼) = 𝐿−1𝐾[Η0(𝛼)], 

                                           
Η3(𝛼) =   𝐿−1𝐾′′′[Η0(𝛼)], Η4(𝛼) = 𝐿−1𝐾′′′′[Η0(𝛼)], ….                                                               (30) 
                       

The derivative of 𝐾 with respect to  𝛼  which is considered as a crucial part of the NA. By starting 
to calculate  𝐾[Η(𝛼)], 𝐾′[Η(𝛼)], 𝐾′′[Η(𝛼)], …, we can write 

 

𝐾[Η(𝛼)] = 𝐺 (Η(𝛼),
𝑑Η(𝛼)

𝑑𝛼
,
𝑑2Η(𝛼)

𝑑𝛼2
,
𝑑3Η(𝛼)

𝑑𝛼3
, … ,

𝑑(𝑛−1)Η(𝛼)

𝑑𝛼(𝑛−1)
 )                                                      (31) 
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𝐾′[Η(𝛼)] = ∑ 𝐾Η(𝑡1−1) .(Η𝛼)(𝑡1−1)

𝑛

𝑡1=1

                                                                                                           (32) 

                                                      

𝐾′′[Η(𝛼)] = ∑ ∑ 𝐾Η(𝑡1−1)Η(𝑡2−1) .
(Η𝛼)(𝑡1−1). (Η𝛼)(𝑡2−1)

𝑛

𝑡1=1

𝑛

𝑡2=1

+ ∑ 𝐾𝛨(𝑡1−1) .(𝛨𝛼𝛼)(𝑡1−1)

𝑛

𝑡1=1

              (33) 

    

𝐾′′[𝑔(𝜉)] = ∑ ∑ 𝐾Η(𝑡1−1)Η(𝑡2−1) .
(Η𝛼)(𝑡1−1). (Η𝛼𝛼)(𝑡2−1),

𝑛

𝑡1=1

𝑛

𝑡2=1

+ ∑ 𝐾Η(𝑡1−1) .
(Η𝛼𝛼𝛼)(𝑡1−1)

𝑛

𝑡1=1

+ ∑  ∑ ∑ 𝐾𝛨(𝑡1−1)𝛨(𝑡2−1)𝛨(𝑡3−1)    (𝛨𝛼)(𝑡1−1). (𝛨𝛼)(𝑡2−1)

𝑛

𝑡1=1

𝑛

𝑡2=1

. (𝛨𝛼)(𝑡3−1) 

𝑛

𝑡3=1

              (34) 

⋮ 
 
The presumption of the solution Η and the operator 𝐾 are analytic functions, so the mixed of the 

derivatives are equivalence. We note that the derivative function of Η is unknown, and we can 
propose the following hypothesis 

 
Η𝛼 =  Η1 =  𝐿−1𝐾[Η0(𝛼)],      Η𝛼𝛼 =  Η2 =  𝐿−1𝐾′[Η0(𝛼)], 

(35) 

Η𝛼𝛼𝛼 =  Η3 =  𝐿−1𝐾′′[Η0(𝛼)],         Η𝛼𝛼𝛼𝛼 =  Η4 =  𝐿−1𝐾′′′[Η0(𝛼)], … , 
 

Wherefore, Eq. (31)-Eq. (34) determined by: 
  

𝐾[Η0(𝛼)] = 𝐺 (Η0(𝛼),
𝑑Η0(𝜉)

𝑑𝛼
,
𝑑2Η0(𝜉)

𝑑𝛼2
,
𝑑3Η0(𝜉)

𝑑𝛼3
, … ,

𝑑(𝑛−1)Η0(𝜉)

𝑑𝛼(𝑛−1)
 ) 

       

𝐾′[Η0(𝛼)] = ∑ 𝐾Η0
(𝑡1−1) .(Η1)(𝑡1−1)

𝑛

𝑡1=1

                                                                                                        (36) 

                                                      

𝐾′′[Η0(𝛼)] = ∑ ∑ 𝐾
Η0

(𝑡1−1)Η0
(𝑡2−1) .

(Η1)(𝑡1−1). (Η1)(𝑡2−1)

𝑛

𝑡1=1

𝑛

𝑡2=1

+ ∑ 𝐾𝛨0
(𝑡1−1) .(𝛨2)(𝑡1−1)

𝑛

𝑡1=1

           (37) 

                                                                              

𝐾′′[Η0(𝛼)] = 3. ∑ ∑ 𝐾
Η0

(𝑡1−1)Η0
(𝑡2−1) .

(Η1)(𝑡1−1). (Η2)(𝑡2−1),

𝑛

𝑡1=1

𝑛

𝑡2=1

+ ∑ 𝐾
Η0

(𝑡1−1) .
(Η3)(𝑡1−1)

𝑛

𝑡1=1

+ ∑  ∑ ∑ 𝐾𝛨0
(𝑡1−1)𝛨0

(𝑡2−1)𝛨0
(𝑡3−1)    (𝛨1)(𝑡1−1). (𝛨1)(𝑡2−1)

𝑛

𝑡1=1

𝑛

𝑡2=1

. (𝛨1)(𝑡3−1) 

𝑛

𝑡3=1

          (38) 

⋮          
 

Plugging of Eq. (35)- Eq. (38) in Eq. (29), through employing the above steps can obtained the 
required analytical solution for the Eq. (24). 
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4. The Implementation of the Derivatives Series Algorithm for Squeezing Flow Fluid  
      

The DSA is implemented to solve the ordinary differential system of equations. 9 -11 in order 
which described in the previous section to find the analytical approximate solution  Η(𝛼) as it can be 
acquired from the required information as follows:  

From the first step, and by integrating the Eq. (9) 4 times with respect to 𝛼 on [0, 𝛼], we will have 
  

Η(𝛼) = 𝐽11 + 𝐽12𝛼 + 𝐽13

𝛼2

2!
+ 𝐽14

𝛼3

3!
+ 𝑅𝑛  [Η 

𝑑3Η

𝑑𝛼3
−

𝑑Η

𝑑𝛼
 
𝑑2Η

𝑑𝛼2
− 𝛼 

𝑑3Η

𝑑𝛼3
− 3

𝑑2Η

𝑑𝛼2
] + Mg

𝑑2Η

𝑑𝛼2

+ 𝑀𝑝 
𝑑2Η

𝑑𝛼2
                                                                                                                               (39) 

 
Rewrite the equations as follows 
 

Η(𝛼) = 𝐽11 + 𝐽12𝛼 + 𝐽13

𝛼2

2!
+ 𝐽14

𝛼3

3!
+ 𝐿−1𝐾[Η(𝛼)]                                       

                                 
Which 
 

𝐽11 = Η(0),   𝐽12 = Η′(0),    𝐽13 = Η′′(0)
,   𝐽14 = Η′′′(0)

, 𝑎𝑛𝑑 𝐿−1 = ∫ ∫ ∫ ∫ (. )(𝑑𝛼)4
𝛼

0

𝛼

0

𝛼

0

𝛼

0

  

 

𝐾[Η(𝛼)] = 𝑅𝑛  [Η 
𝑑3Η

𝑑𝛼3
−

𝑑Η

𝑑𝛼
 
𝑑2Η

𝑑𝛼2
− 𝛼 

𝑑3Η

𝑑𝛼3
− 3

𝑑2Η

𝑑𝛼2
] + Mg

𝑑2Η

𝑑𝛼2
+ 𝑀𝑝 

𝑑2Η

𝑑𝛼2
                              (40) 

                                                                                        
From the boundary conditions Eq. (10) and Eq. (11) the equation becomes 

 

Η(𝛼) = 𝐽12𝛼 + 𝐽14

𝛼3

3!
+ 𝐿−1𝐾[Η(𝛼)]                                                                                                           (41) 

                                                                    
where  
 

Η0 = 𝐽12𝛼 + 𝐽14

𝛼3

3!
, 𝛨1 = 𝐿−1𝐾[𝛨0(𝛼)], 𝛨2 = 𝐿−1𝐾′[𝛨0(𝛼)], …                                        (42) 

   
From the above step, we can write 

 

K[Η(𝛼)] = 𝑅𝑛  [Η 
𝑑3Η

𝑑𝛼3
−

𝑑Η

𝑑𝛼
 
𝑑2Η

𝑑𝛼2
− 𝛼 

𝑑3Η

𝑑𝛼3
− 3

𝑑2Η

𝑑𝛼2
] + Mg

𝑑2Η

𝑑𝛼2
+ 𝑀𝑝 

𝑑2Η

𝑑𝛼2
                               (43) 

     

𝐾′[Η(𝛼)] = ∑ 𝐾Η(𝑡1−1) .
(Η𝛼)(𝑡1−1)

4

𝑡1=1

                                                                                                            (44) 

⋮ 
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The following hypothesis can be suggested as 
 

Η𝛼 =  Η1 =  𝐿−1𝐾[Η0(𝛼)],                Η𝛼𝛼 =  Η2 =  𝐿−1𝐾′[Η0(𝛼)]                                                        (45) 
                 
Now, we need to extract the first derivatives of 𝐾 as follows 

 
𝑘Η0

= Rn Η0
′′′, 𝑘Η0Η0

= 𝑘Η0Η0
′ = 0, 𝑘Η0Η0

′′′ = 𝑅𝑛, 

𝑘Η0Η0Η0
= 𝑘Η0Η0Η0

′ = 𝑘Η0Η0
′ Η0

′ = 𝑘1Η0Η0
′ Η0

′ = 𝑘1Η0Η0
′′Η0

′′ = 𝑘1Η0Η0
′′′Η0

′′′ = 0, 

𝑘Η0
′ = −Rn Η0

′′, 𝑘Η0
′ Η0

= 𝑘Η0
′ Η0

′′′ = 0, 𝑘Η0
′ Η0

′′ = −𝑅𝑛, 

𝑘Η0Η0Η0
′ = 𝑘Η0Η0

′ Η0
′ = 𝑘Η0

′ Η0
′ Η0

′ = 𝑘Η0
′ Η0

′′′Η0
′ = 𝑘Η0

′ Η0
′′Η0

′′ = 𝑘Η0
′ Η0

′′′Η0
′′′ = 0,                                      (46) 

𝑘Η0
′′ = 𝑅𝑛 Η0

′ − 3𝑅𝑛 + 𝑀𝑔 + 𝑀𝑝, 𝑘Η0
′′Η0

′′′ = 0, 𝑘Η0
′′Η0

′ = 𝑅𝑛, 

𝑘1𝑔0
′′𝑔0𝑔0

′ = 𝑘1𝑔0
′′𝑔0

′ 𝑔0
′ = 𝑘1𝑔0

′′𝑔0
′ 𝑔0

′ = 𝑘1𝑔0
′′𝑔0

′′′𝑔0
′ = 𝑘1𝑔0

′′𝑔0
′′𝑔0

′′ = 𝑘1𝑔0
′′𝑔0

′′′𝑔0
′′′ = 0, 

𝑘Η0
′′′ = Rn(Η0 − 𝛼),  𝑘Η0

′′′Η0
′′ = 0, 𝑘Η0

′′′Η0
= 𝑅𝑛, 

𝑘Η0
′′′Η0Η0

′ = 𝑘1Η0
′′′Η0

′ Η0
′ = 𝑘Η0

′′′Η0
′ Η0

′ = 𝑘Η0
′′′Η0

′′′Η0
′ = 𝑘Η0

′′′Η0
′′Η0

′′ = 𝑘Η0
′′′Η0

′′′Η0
′′′ = 0, 

 
Substitution of Eq. (43) – Eq. (46) in Eq. (41), we obtain 

  

Η0 = 𝐽12𝛼 +
1

6
𝐽14𝛼3                                                                                                                                         (47) 

                                                                                         

Η1 =  
1

5
[−

1

6
 𝑅𝑛 𝐽14 +

1

24
(𝑀𝑔 + 𝑀𝑝) 𝐽14] 𝛼5 −

1

2520
𝑅𝑛 𝐽14

2 𝛼7                                                      (48) 

                 

Η2 = (−
1

630 
𝐽12 𝐽14 𝑅𝑛2 +

1

2520
𝐽12 𝐽14𝑅𝑛 𝑀𝑔 +

1

2520
𝐽12 𝐽14𝑅𝑛 𝑀𝑝 +

1

210
𝐽14𝑅𝑛2

−
1

504
𝐽14𝑅𝑛 𝑀𝑔 −

1

504
𝐽14𝑅𝑛 𝑀𝑝 +

1

5040
𝐽14𝑀𝑔2 +

1

2520
𝐽14𝑀𝑔 𝑀𝑝

+
1

2520
𝐽14𝑀𝑔 𝑀𝑝 +

1

5040
𝐽14𝑀𝑝2) 𝛼7

+ (
1

11340
𝐽14

2𝑅𝑛2 −
1

45360
𝐽12𝐽14

2𝑅𝑛2 −
1

60480
𝐽14

2𝑅𝑛 𝑀𝑔

−
1

60480
𝐽14

2𝑅𝑛 𝑀𝑝) 𝛼9 −
1

2494800
𝑅𝑛2𝐽14

3𝛼11                                                        (49) 

                                           
Substitution of Equations .47-49 in Eq. (41), we get the following 

 

Η(𝛼) = 𝐽12𝛼 +
1

6
𝐽14𝛼3 +

1

5
[−

1

6
 𝑅𝑛 𝐽14 +

1

24
(𝑀𝑔 + 𝑀𝑝) 𝐽14] 𝛼5

+ [−
1

2520
𝑅𝑛 𝐽14

2  −
1

630 
𝐽12 𝐽14 𝑅𝑛2 +

1

2520
𝐽12 𝐽14𝑅𝑛 𝑀𝑔 +

1

2520
𝐽12 𝐽14𝑅𝑛 𝑀𝑝

+
1

210
𝐽14𝑅𝑛2 −

1

504
𝐽14𝑅𝑛 𝑀𝑔 −

1

504
𝐽14𝑅𝑛 𝑀𝑝 +

1

5040
𝐽14𝑀𝑔2 +

1

2520
𝐽14𝑀𝑔 𝑀𝑝

+
1

2520
𝐽14𝑀𝑔 𝑀𝑝 +

1

5040
𝐽14𝑀𝑝2] 𝛼7 + ⋯                                                                  (50) 
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5. The Discussion of Tables 
 

Table 1 shows the convergence values of Η′(0)  and  Η′′(0). The schemed tables are listed to see 
the influences of emerging physical parameters Reynolds number 𝑅𝑛, magneto-hydrodynamic 
parameter 𝑀𝑔, porous parameter 𝑀𝑝, slip parameter Λ on the axial velocity Η(𝛼), and the radial 
velocity Η′(𝛼). The comparisons of the solutions by the new approach with Fehlberg RK, LSHPM, and 
HP are investigated as can be seen in Tables 2-5. these tables show that the solutions are fully 
compatible. From fixed point theorems [15-18], the convergence condition can be addressed as 
follows 

 

𝜖𝑘 = {

‖Η𝑘+1‖

‖Η1‖
, ‖Η1‖ ≠  0

0,          ‖Η1‖  = 0

       𝑓𝑜𝑟    𝑘 = 1,2, ….                                                                                  (51) 

                            
As shown in Table 6, the application of the convergence condition leads to find values  𝜖𝑘. This 

table proved that the values for  𝜖𝑘 was between 0 and 1, therefore the solutions of the new 
approach is converged. 
 

Table 1 
The convergence values of   Η′(0) and Η′′′(0) for 𝑅𝑛 = 0.5, 𝑀𝑔 = 1 
Λ = 0, 𝑀𝑝 = 0.7           Λ = 0.9, 𝑀𝑝 = 0.7                Λ = 0.9, 𝑀𝑝 = 0.8                         

Approximation Η′(0)     Η′′′(0) Η′(0)   Η′′′(0) Η′(0) Η′′′(0) 

Order 1 1.5039341      -3.058345        0.6847            1.9248               0.6902           1.8816 

Order 2 1.5040116      3.059038        0.6856            1.9188               0.6907           1.8781   

Order 3 1.5040116      0.6856            0.6856             1.9188                -0.6907            1.8781 

 
Table 2 
The compared solutions between Fehlberg KR, HPM, LSHPM, and 
the present solutions 
 Λ = 0,     𝑅𝑛 = 0,5,          𝑀𝑔 = 1,         𝑀𝑝 = 0.7 

𝛼               Fehlberg RK5    HPM5              LSHPM5             Present Solutions 

0.0            0.000000           0.000000        0.000000          0.000000 
0.1            0.149891           0.149891        0.149891          0.149891 
0.2            0.296726           0.296726        0.296726          0.296726 
0.3            0.347456           0.347456        0.347456          0.437456 
0.4            0.569050           0.569050        0.569050          0.569050 
0.5            0.688501           0.688500        0.688501          0.688501 
0.6            0.792825           0.792825        0.792825          0.792825 
0.7            0.879069           0.879068        0.879068          0.879068 
0.8            0.944296           0.944296        0.944296          0.944296 
0.9            0.985583           0.985583        0.985583          0.985583 
1.0            1.000000           1.000000        1.000000          1.000000 
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Table 3 
The compared solutions between Fehlberg KR, HPM, LSHPM, and 
present solutions   
Λ = 0,      𝑅𝑛 = 1,                𝑀𝑔 = 1,      𝑀𝑝 = 0.3 

𝛼               Fehlberg RK5       HPM5            LSHPM5           Present Solutions 

0.0            0.000000             0.000000     0.000000         0.000000 
0.1            0.156416             0.156262     0.156416         0.156420 
0.2            0.308960             0.308676     0.308960         0.308968  
0.3            0.453866             0.4538494   0.453866         0.453877 
0.4            0.587568             0.587161     0.587568         0.587582 
0.5            0.706796             0.706409     0.706796         0.706811 
0.6            0.808646             0.808327     0.808646         0.808661 
0.7            0.890646             0.890426     0.890626         0.890658 
0.8            0.950797             0.950682     0.950797         0.950803 
0.9            0.987588             0.987555     0.987588         0.987579 
1.0            1.000000             1.000000     1.000000         1.000000 

 
Table 4  
The compared solutions between Fehlberg KR, HPM, LSHPM, and 
present solution   
Λ = 0.9  𝑅𝑛 = 0,5,             𝑀𝑔 = 1,       𝑀𝑝 = 0.8 

𝛼              Fehlberg RK5       HPM5            LSHPM5             Present Solutions 

0.0           0.000000             0.000000      0.0000000        0.000000 
0.1           0.069388             0.069393      0.069388          0.069388 
0.2           0.140654             0.140663      0.140654          0.140654 
0.3           0.215670             0.215683      0.215670          0.215670 
0.4           0.296303             0.296317      0.296303          0.296302 
0.5           0.384403             0.384419      0.384403          0.384402 
0.6           0.481805             0.481821      0.481805          0.481804 
0.7           0.590316             0.590331      0.590316          0.590316 
0.8           0.711710             0.711721      0.711710          0.711710 
0.9           0.847715             0.847721      0.847715          0.847715 
1.0          1.000000              1.000000      1.000000          1.000000   

 
Table 5  
The compared solutions between Fehlberg KR, HPM, LSHPM, and 
present solution   
Λ = 0.9 𝑅𝑛 = 0.3,             𝑀𝑔 = 0.9,    𝑀𝑝 = 0.9 

𝛼            Fehlberg RK5        HPM5             LSHPM5              Present Solutions 

0.0         0.000000              0.000000       0.000000           0.000000 
0.1         0.073128              0.073117       0.073128           0.073128 
0.2         0.147841              0.147820       0.147841           0.147841 
0.3         0.225732              0.225703       0.225732           0.225732 
0.4         0.308414              0.308379       0.309414           0.308413 
0.5         0.397527              0.397490       0.397527           0.397526 
0.6         0.494748              0.494712       0.494748           0.494748 
0.7         0.601801              0.601770       0.601801           0.601800 
0.8         0.720459              0.720436       0.720459           0.720459 
0.9         0.852559              0.852546       0.852559           0.852559 
1.0         1.000000              1.000000       1.000000           1.000000 
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Table 6  

The values of  𝜖‖.‖2

𝑘  for convergence tests 

         No slip at boundaries         Slip at boundaries  

𝑘      𝑅𝑛 = 0.5, 𝑀𝑔 = 1, 𝑀𝑝 = 1, Λ = 0.9 
1       0.01387130116                   0.008366782491      
2       0.00019861339                   0.000072298680 
3       0.00037886151                   0.000227907622 
⋮        ⋮                                              ⋮        
𝑘      𝑅𝑛 = 1, 𝑀𝑔 = 1,   𝑀𝑝 = 0.7,   Λ = 0.7  
1       0.02856764588                   0.09732209781 
2       0.00056762514                   0.00791379491 
3       0.00249023541                   0.00848829477 
⋮        ⋮                                              ⋮        

 
6. The Discussion of Figures 
 

In this section, the study of influence of different physical parameters for the axial velocity  Η(𝛼) 
and radial velocity profile Η′(𝛼) by using the graphical curves is introduced. The results of 
approximate solutions that pass through a porous medium for an unsteady squeezing of MHD flow 
fluid at the boundaries in the cases of slip and no slip employing NHM are also discussed. For these 
cases, we can appoint the following. 
 
6.1 The Boundary Conditions with No Slip Parameter 
 

Figure 3 - 8 indicate the effect of 𝑅𝑛, 𝑀𝑔 and 𝑀𝑝 on the axial velocity and radial velocity.    In 
fluid,  𝑅𝑛  can be defined as the relationship between inertial forces and viscous forces as well as it 
has the potential scale for the effective measurement appeared in fluid behavior with a larger scale. 
As a result from Figure 3 and 4, it seems that the increasing of  𝑅𝑛 leads to increase the axial velocity 
while decreasing the radial velocity near the central axis with increasing this velocity near wall when 
increment 𝑅𝑛.  𝑀𝑔 plays a vital role in the resistance contribution that generated by Lorentz force of 
the magnetic pressure field. As a result from Figure 5 and 6, it can be seen that the increase of  𝑀𝑔  
pointed to decrease the axial velocity with increasing in the radial velocity occurred near the central 
axis and decreasing near wall of the channel. Whereas, the behavior of   𝑀𝑝 increment is similar to 
𝑀𝑔 as shown in Figure 7 and 8. 
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Fig. 3. The impact of 𝑅𝑛 on Η(𝛼) for  𝑀𝑔 =
𝑀𝑝 = 1 

Fig. 4. The impact of 𝑅𝑛 on Η′(𝛼) for  𝑀𝑔 =
𝑀𝑝 = 1 

 

  
Fig. 5. The impact of 𝑀𝑔 on Η(𝛼) for  𝑅𝑛 =
𝑀𝑝 = 1 

Fig. 6. The impact of 𝑀𝑔 on Η′(𝛼) for  𝑅𝑛 =
𝑀𝑝 = 1 
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Fig. 7. The behavior of 𝑀𝑝 on Η(𝛼) for  𝑅𝑛 =
𝑀𝑔 = 1 

Fig. 8. The behavior of 𝑀𝑝 on Η′(𝛼) for  𝑅𝑛 =
𝑀𝑔 = 1 

 
6.2 The Boundary Conditions with Slip Parameter 
 

From Figure 9–16, it can be seen the effect of 𝑅𝑛, 𝑀𝑔, 𝑀𝑝, and Λ on the axial velocity and radial 
velocity.  Figure 9-14 prove that the effect of 𝑅𝑛, 𝑀𝑔, and Mp for the slip condition is opposite in 
the no-slip condition.  Moreover, the  behavior of the curves Λ on the axial velocity increases when 
the slip parameter is visited. While, we observed the decreasing of the radial velocity near the center 
axis with increasing near the wall for channel.   
 

  
Fig. 9. The impact of 𝑅𝑛 on Η(𝛼) for  𝑀𝑔 =
𝑀𝑝 = 1, Λ = 1 

Fig. 10. The impact of 𝑅𝑛 on Η′(𝛼) for  𝑀𝑔 =
𝑀𝑝 = 1, 𝛬 = 1 
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Fig. 11. The impact of 𝑀𝑔 on Η(𝛼) for  𝑅𝑛 =
𝛬 = 1, 𝑀𝑝 = 0.1 

Fig. 12. The impact of 𝑀𝑔 on Η′(𝛼) for  𝑅𝑛 =
𝛬 = 1, 𝑀𝑝 = 0.1 

 

  
Fig. 13. The behavior of 𝑀𝑝 on Η(𝛼) for  𝑅𝑛 =
𝛬 = 1, 𝑀𝑔 = 0.1 

Fig. 14. The behavior of 𝑀𝑝 on Η′(𝛼) for 𝑅𝑛 =
𝛬 = 1, 𝑀𝑔 = 0.1 
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Fig. 15. The behavior of 𝛬 on Η(𝛼) for  𝑅𝑛 =
𝑀𝑝 = 0.5, 𝑀𝑔 = 1 

Fig. 16. The behavior of 𝛬 on Η′(𝛼) for  𝑅𝑛 =
𝑀𝑝 = 0.5, 𝑀𝑔 = 1 

 
7. Conclusion 
 

In this work, the cases of no slip and slip at boundary condition of unsteady squeezing flow during 
a porous medium among  two parallel plates  infinite are analyzed by using a derivatives series 
algorithm. The obtained results proved that the effectiveness of this approach for obtaining the 
solution with a clear manner. Also, these results demonstrated that this approach is less 
computational cost with more consistent algorithm in terms of accuracy as compared to homotpy 
analysis scheme. This approach applied in various fields of engineering and science. The behavior of 
the curves axial velocity can be grouped as Figure 17 and 18. 
 

 
Fig. 17. The behavior of physical parameter in no slip case 
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Fig. 18. The behavior of physical parameter in the slip case 
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