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This research aims to examine the effects of a heat source or sink and viscous dissipation 
on an MHD unsteady three-dimensional Casson fluid flow across a stretched sheet. Using 
similarity transformations, the governing partial differential equations are transformed 
into coupled ordinary differential equations, which are then solved numerically in Matlab. 
The numerical findings for several physical parameters that impact velocity and 
temperature profiles are described in tables and graphs. The interesting finding are 
recorded as follows: When the Magnetic parameter increases, the skin friction coefficient 
increases along x and z directions, but when the Casson parameter lowers, it decreases. 
The Nusselt number increases with the enhancement of viscous dissipation parameter 
and heat source or sink parameter. Understanding the behavior of non-Newtonian fluids 
in the presence of heat transfer is crucial in a number of domains, including chemical 
engineering, biomechanics, and material processing. These applications might benefit 
from this kind of study. 
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1. Introduction 
 

Research on boundary layer problems on a stretched surface has flourished over the last several 
decades due to the wide range of practical applications it has in the engineering and industrial 
production sectors. In physics and fluid mechanics, the boundary layer is a relevant term because it 
describes the layer of fluid inside a restricted region where viscosity effects are strong. In addition, 
it's a part of the flow field where relative velocity causes the fluid to deform. Each primary fluid has 
defining characteristics that shape its behaviour in unique ways. The effectiveness of the finished 
product depends on both the stretching and cooling speeds used during production. It is crucial to 
keep the stretching rate constant since a rapid shift in stretching affects the final product by causing 
an abrupt solidification. Crane [1], and Pop and Na [2] first characterized the two dimensional flow 
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of an incompressible liquid along the stretching surface within the boundary layer. A stretched sheet 
with varying surface heat flux was the subject of Elbashbeshy's [3] investigation on heat transfer. 
Salleh et al., [4] investigated the analysis of boundary flow and heat transfer across stretched surfaces 
with Newtonian heating. Different impacts of the flow via stretching sheet have been explored by 
many researchers [5-8]. 

MHD is an acronym for magneto hydrodynamics, which combines the terms magneto for the 
magnetic field, hydro for water and dynamics for motion. Analysing the magnetic characteristics of 
an electrically conducting fluid is what the hydro magnetic flow is doing in the meanwhile. Magneto 
fluids include plasmas, liquid metals, seawater and electrolytes. A broad variety of technical 
equipment, including blood pumping machines, heat exchanger designs, and MHD electric power 
generators, use MHD flow. The primary function of the magnetic parameter in the flow field is to 
provide a resistive force that keeps the flow going and prevents the boundary layer from separating. 
Many scholars looked at the flow models that included hydro magnetic phenomena. Furthermore, 
the MHD flow of Casson fluid along a stretched sheet was studied by Reddy et al., [9]. Faraz et al., 
[10] shown that MHD effects do have an impact on the axisymmetric flow of the Casson nanofluid. 
The radiation effect was examined by Sarma et al., [11], whereas the magneto hydrodynamic flow 
under slip conditions was researched by Hayat et al., [12]. The characteristics of magnetic dipole for 
shear thinning Williamson nanofluid was studied by Khan et al., [13]. Tabrez and Khan [14] were 
explored the physical significance of viscous dissipation and magnetic dipole for ferromagnetic 
nanofluids. MHD Casson nanofluid flow through an inclined stretching sheet with different effects 
were examined by Sreedhar Sarma et al., [15]. 

Unsteady flow is defined as a flow that varies with time. It's important to consider unsteady flow 
effects in engineering design to ensure the system can handle transient conditions and prevent 
undesirable consequences like pressure surges, cavitation or structural damage. Naganthran and 
Nazar [16] investigated the time dependent boundary layer flow of a Casson fluid through a 
stretching sheet. The effect of radiative heat transfer of an unsteady Casson liquid was investigated 
by Krishanan et al., [17]. Hafidzuddin et al., [18] considered the generalized slip velocity. Numerous 
researchers have also looked at how an induced magnetic field affects the time-dependent MHD flow 
in the boundary layer [19-22]. Radiation is caused by a difference in temperature between the 
surrounding environment and the ambient fluid. The time-dependent natural convection flow of a 
Casson fluid with thermal radiative flux under various wall constraints was studied by Anwar et al., 
[23]. The influence of thermal solutal stratifications and activation energy on time dependent 
polymer nanofluid was explored by Hussain and Khan [24]. Khan [25] was also analysed the effect of 
time dependent heat and mass transfer for magnetized Sutter by nanofluid flow. 

Non-Newtonian fluids are distinguished by their complex stress-strain behaviour. As a result of 
its usefulness in a variety of technical and industrial contexts, non-Newtonian fluids have garnered 
an abundance of interest in recent years. The Casson fluid is utilised extensively in many industries, 
including metalworking, food processing, and many others. The characteristics of yield stresses are 
seen in Casson fluid. The fluid becomes more like a liquid when the shear stress is greater than the 
yield stress. For similar reasons, fluids behave like solids when shear stress are smaller than yield 
stresses. Casson fluids include such common items as jelly, shampoo, ketchup, honey, soup and juice. 
Any analysis of complex structured fluids must include a study of yield stress. Ashraf et al., [26] 
examined the Casson fluid within the porous medium with magnetic effect through a non-linear 
stretching sheet. Later the study of time dependent Casson fluid flow using finite element method 
was done by Khader et al., [27]. Later, a number of studies investigated the effects of unsteady Casson 
fluid flow in porous media [28-30]. Maleque [31] looked at the MHD movement of Casson liquid along 
a revolving disc. The hydro magnetic flow of Casson liquid through porous material was investigated 
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by Kataria and Patel [32], who took rising wall temperature with heat and mass transfer into 
consideration. The effects of Hall, DuFour, and thermal radiation on the MHD Casson fluid were 
studied by Vijayaragavan and Karthikeyan [33]. Numerical treatment of heat transfer characteristics 
of microchannel heat sink was analysed by Loon et al., [34] and finally Khan et al., [35] studied the 
importance of heat generation in chemically reactive flow with respect to convective heat surface. 

Motivated by the above literature, the purpose of this study is to extend the work of Prashu and 
Nandkeolyar [36] to examine the characteristics of magneto hydrodynamic unsteady three 
dimensional flow of Casson fluid through a stretching sheet. The analysis includes the effects of 
viscous dissipation and heat source or sink. By using the similarity transformations, the governing 
non-linear partial differential equations were converted into non-linear ordinary differential 
equations which were solved using a numerical algorithm in Matlab. The impact of different 
parameters was presented through graphs and tables. 
 
2. Mathematical Analysis 
 

The 3D time-dependent magneto hydrodynamic flow across a linearly stretchable surface of an 
incompressible Casson fluid has been examined. As the fluid is confined along the positive y-axis 
direction and the surface is along the plane 0y = , both have been considered. The sheet is also 

thought to be stretched along the x − axis. It has been assumed that the time-dependent magnetic 
field behaves along the y-axis, which is perpendicular to the sheet's surface. In Figure 1, the physical 

model of flow is shown. Here, the surface temperature is wT , the ambient temperature is T  and in 

the x-direction, wu  represents the stretching sheet velocity. The PDEs for the continuity equation, 

momentum, and energy transfer are included in the system of equations that describes the flow and 
is provided below [36]. 
 

 
Fig. 1. Physical diagram 
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The corresponding boundary conditions are 
 
𝑦 = 0: 𝑢 = 𝑢𝑤(𝑥), 𝑣 = 0, 𝑤 = 0, 𝑇 = 𝑇𝑤

𝑦 ⟶ ∞: 𝑢 ⟶ 0, 𝑤 ⟶ 0, 𝑇 ⟶ 𝑇∞
}          (5) 

 
  - Casson liquid parameter,   - electrical conductivity,  - density,  - kinematic viscosity, m - Hall 

current, T - temperature, m

p

k

c



=  the thermal diffusivity. The time dependent wall stretching 

velocity by ( ),
1

w

ax
u x t

t
=

−
 and the magnetic field with time dependent by 𝐵(𝑡) = 𝐵0(1 − 𝛾𝑡)−

1

2 

where a  and   are constants and 0B  the magnetic strength. 𝑄𝑜 is the volumetric heat source/ sink 

[23,36]. 
 

The radiative heat flux rq  is calculated as [36] 
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Rosseland mean absorption coefficient is *  in this case, while the Stefan-Boltzmann constant is 
* . Substituting rq  in Eq. (4), we get 
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Using the following similarity transformation, the mathematical model Eq. (1) to Eq. (4) may be 

transformed into a dimensionless [36], 
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The governing model is reduced to its dimensionless form, which is 
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The reduced boundary conditions Eq. (5) are 
 
𝑓(𝜂) = 0, 𝑓′(𝜂) = 1, 𝑔(𝜂) = 0, 𝜃(𝜂) = 1  𝑤ℎ𝑒𝑛  𝜂 = 0   
 
𝑓′(𝜂) ⟶ 0, 𝑔(𝜂) ⟶ 0, 𝜃(𝜂) ⟶ 0  𝑤ℎ𝑒𝑛  𝜂 ⟶ ∞                   (12) 
 
The various parameters used in Eq. (9) to Eq. (11) are described below: 
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The following defines the local Nusselt number and the skin friction coefficient along x and z - axes. 
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Given below are the formulae for w , wq  and mq . 
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The aforementioned formulas have been transformed into dimensionless form as follows: 
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where Re w

x

xu


=  is the local Reynolds number, wx  and wz  are the shear stress components, 

wq - 

the heat transfer rate. 
 
3. Numerical Solution 
 

The Bvp4c solver in Matlab is used to find numerical solutions for the ODEs Eq. (9) to Eq. (11) that 
are subject to the BCs Eq. (12). The solver is a method for finite differences with fourth order precision 
that implements the three-stage Lobatto IIIa formula. To approximate the solution, it uses a 
collocation technique. The process of collocation entails discretizing the domain into a collection of 
collocation points and then fulfilling the ODEs at each of these points. The solver iteratively adjusts 
the solution until it satisfies both the differential equations and the boundary conditions within a 
specified tolerance. To put the solver into practice, the coupled ODEs Eq. (9) to Eq. (11) are 
transformed into a system of first-order ODEs in the following way. 
 
 
Let 
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and the corresponding boundary conditions are 
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4. Results and Discussion 
 

Graphs and tables have been used to demonstrate the physical impacts of important parameters 
on the skin friction and Nusselt number. The spectral quasi linearization technique was used by 
Prashu and Nandkeolyar [36] to solve the model numerically. The Matlab bvp4c solver has been used 
for the current survey in order to replicate the solution. 

Table 1 presents the findings that highlight the influence of significant parameters on the skin 

friction coefficients 
1

2RefxC− , 
1

2RefzC−  and the Nusselt number 
1

2RexNu
−

. There is a strong 

agreement between the findings and those of Prashu and Nandkeolyar [36]. The skin friction 
coefficients grow in both the x  and z directions as the value of M  rises, but the Nusselt number 
falls. The ascending values of the Casson parameter   cause the skin friction coefficient to drop in 

the x  and z directions as well as the Nusselt number. Additionally, when the Hall current m

accelerates, 
1

2RefxC−  decreases and 
1

2RefzC− and the Nusselt number rises. Similarly, when the 

unsteadiness parameter A  values climb, there is a little rise along the x -axis and a drop along the z
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-axis in the skin friction coefficient. The decrement in 
1

2RexNu
−

 is observed when A  grows. 

Comparison of present result with Prashu and Nandkeolyar [36] for Nusselt number by varying 
Magnetic parameter M  is depicted in Figure 2. 
 

 
Fig. 2. Comparison of results for Nusselt number with varying  

 
 

2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

0 2 4 6 8 10

N
u

ss
el

t 
n

u
m

b
er

 N
u

x

M

-------- Prashu and Nandkeolyar [36]
-------- Present Result

M



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 118, Issue 1 (2024) 116-131 

 

123 
 

Table 1 

Results of the 

1

2Ref xC−  ,

1

2Ref zC−  and 

1

2RexNu
−

for various parameters 

M  

m  A  R  

tr    Pr  

1

2Ref xC−  

1

2Ref zC−  

1

2RexNu
−

 

Prashu and 
Nandkeolyar [36] 

Present 
Result 

Prashu and 
Nandkeolyar [36] 

Present 
Result 

Prashu and 
Nandkeolyar [36] 

Present 
Result 

6 0.1 0.1 2 1 0.3 10 5.51874 5.51875 0.239056 0.239053 2.680739 2.68074 
2       3.63997 3.64076 0.125176 0.124865 2.853953 2.85384 
8       6.24973 6.24974 0.279886 0.279885 2.611975 2.61198 
 0.5      5.51310 5.51309 1.038104 1.0381 2.709701 2.7097 
 1.0      4.47154 4.47148 1.509685 1.50977 2.766775 2.76679 
  0.13     5.52749 5.5275 0.238664 0.238661 2.643034 2.64303 
  0.15     5.53332 5.53333 0.238403 0.2384 2.617320 2.61732 
   4    5.51874 5.51875 0.239053 0.239053 2.446145 2.44614 
   6    5.51874 5.51875 0.239053 0.239053 2.358626 2.35863 
    2   5.51874 5.51875 0.239053 0.239053 3.863248 3.86325 
    3   5.51874 5.51875 0.239053 0.239053 5.082558 5.08255 
     0.5  4.59187 4.59187 0.198907 0.198907 2.579187 2.57594 
     0.6  4.32925 4.32926 0.187531 0.187532 2.540835 2.53767 
      15 5.51874 5.51875 0.239053 0.239053 3.398092 3.39809 
      20 5.51874 5.51875 0.239053 0.239053 4.001888 4.00189 
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The implications of the significant parameters on the Nusselt number are seen in Table 2. Due to 
accelerating values of the Heat source or sink parameter Q  and Viscous dissipation Ec , a rising 

pattern is seen in the 
1

2RexNu
−

. 

 
Table 2  

Variation of the Nusselt number 

1

2RexNu
−

 with Ec and Q  when 

 0.1,  0.1,  2,  0.3,  1,  Pr 10,  6m A R tr M= = = = = = =  

Ec  Q  1

2RexNu
−

 

0.5  7.23144 
1  17.1129 
2  36.8759 
 -0.1 7.12587 
 0 7.21108 
 0.1 7.29784 
 0.2 7.31891 

 
The implications of numerous parameters on velocity and temperature are shown in Figure 3 to 

Figure 5 respectively. The declining trend of velocity in the x  direction due to an increase in  and 

M values is shown in Figure 3. The characteristics of yield stress are really revealed by the  . 

 

  
Fig. 3. Change in for increasing values of  and M 

 
Increasing the yield stress also has stabilizing effects. The Lorentz force in a flow field is a resistive 

force is created by the effects of an applied magnetic field. Figure 4 illustrates how the velocity profile 
along the z − axis grows close to the boundary surface before beginning to decrease away from it 
due to rising values of the Casson parameter   and the magnetic field M . As seen in Figure 5, the 

temperature profile rises with rising values of M  and falls with rising values of  . 

 

( )f  
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Fig. 4. Change in for increasing values of  and M 

 

  
Fig. 5. Change in for increasing values of and M 

 
The influence of significant parameters on velocity and temperature profiles, such as the Hall 

Current m  and the unsteadiness parameter A , is also shown in Figure 6 to Figure 8. Since Hall current 
is created when an electrically conducting fluid is utilized in combination with a magnetic field, its 
effects are impossible to ignore when the magnetic field is strong enough. The influence of m  and 
the unsteadiness A  on the velocity profile in the x -direction are shown in Figure 6(a) and Figure 6(b). 
When m  values rise, the velocity profile likewise rises. However, when unsteadiness A  values rise, 
the velocity profile marginally declines. The effect of the m  and the A  on the velocity profile in the 
z direction is seen in Figure 7(a) and Figure 7(b). 
 

  
(a) (b) 

Fig. 6. Change in  for increasing values of  and  

 

( )g  

( )  
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(a) (b) 

Fig. 7. Change in  for increasing values of  and  

 
There is a slight decrease in the velocity within the boundary layer area for rising values of A , 

but a considerable increase in the velocity profile for growing values of m . The effect of the m  and 
the A  on the temperature is seen in Figure 8(a) and Figure 8(b). However, the temperature is a 
decreasing function of the Hall current m , and the temperature behaviour is marginally enhanced 
by raising the values of the unsteadiness A . The momentum boundary layer's thickness is observed 
to decrease with increasing Hall current m  values. However, the thermal boundary layer thickens as 
unsteadiness A  values accelerate. 
 

  
(a) (b) 

Fig. 8. Variation in  for increasing values of  and  

 
Figure 9 to Figure 13 demonstrate how various significant parameters affect temperature 

behaviour. Due to the fact that the temperature distribution is inversely proportional to the radiative 
parameter R , as seen in Figure 9, the temperature increases close to the boundary and then 
decreases thereafter. Figure 10 illustrates that when the Prandtl number grows, the temperature 
rises in the vicinity of the boundary before decreasing. Pr  stands for the thermal diffusion to viscous 
diffusion ratio. Figure 11 illustrates how the temperature profile exhibits a rising trend when the 
temperature ratio tr  increases. As a matter of fact, the temperature behaviour at the surface divided 
by the temperature behaviour beyond it is represented by tr . Additionally, the impact of Ec  on the 

temperature field ( )   is depicted in Figure 12. This graph shows that the temperature field ( )   

increases along with improved Ec  estimates. Lastly, Figure 13 illustrates how the thickness of the 
thermal boundary layer rises in parallel with an increase in the heat source or sink parameter Q  . 

 
 

( )g  m A

( )  m A



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 118, Issue 1 (2024) 116-131 

127 
 

 
Fig. 9. Variation in ( )   for increasing values of R  

 

 
Fig. 10. Variation in ( )   for increasing values of Pr  

 

 
Fig. 11. Variation in ( )   for increasing values of tr  
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Fig. 12. Variation in ( )   for increasing values of Ec  

 

 
Fig. 13. Variation in ( )   for increasing values of Q  

 
5. Conclusion 
 

In this article, a mathematical model has been presented for the influence of viscous dissipation 
and heat source/sink on an unsteady three dimensional Casson fluid flow through a stretching sheet. 
Using the similarity transformations, a set of ordinary differential equations has been derived for the 
bounder layer governing equations. These non-linear, coupled differential equations have been 
solved under valid boundary conditions using Matlab. 

The results of this investigation are shown below. 
i. In Casson fluid, the velocity behaviour reduces along the x- axis as a result of increasing 

magnetic parameter M  values. 
ii. Increasing the magnetic parameter M  also results in an improvement in the Casson fluid's 

temperature behaviour. 
iii. The ascending values of Hall current m  are responsible for the increment in velocity in the 

z direction and marginal increment is noticed in the x direction. However, the Casson fluid's 
temperature profile shows a little decline.  

iv. Because of the ascending values of unsteadiness A , a decrease in velocity behaviour is seen. 
However, the velocity profile of the Casson fluid does not significantly alter in the x direction. 
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v. The increasing values of unsteadiness A  in the Casson fluid are causing an increase in the 
temperature behaviour. 

vi. As the viscous dissipation Ec  increases, a rise in temperature is observed. 
vii. Temperature profiles are enhanced as the heat source or sink parameter Q  increases. 

viii. As viscous dissipation and the heat source or sink parameter rise, so does the rate of heat 
transfer coefficient.  

ix. The fluid flow model described in this study finds use in the printing industry, polymer 
engineering, blood flow and silicon suspensions. This work can be extended in future with 
some other geometries and physical conditions. 
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