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The relationship between individuals and their thermal environment is pivotal not only 
for comfort but also for health and productivity. Thermal comfort, as defined by ASHRAE, 
reflects an individual's satisfaction with their ambient thermal conditions and can be 
gauged using the ASHRAE scale. In the past, traditional thermal comfort prediction 
models such as the Predicted Mean Vote (PMV) were used to evaluate thermal comfort. 
Nevertheless, the emergence of machine learning provides a more dynamic approach to 
predict thermal comfort of occupants. However, the subjective nature of thermal comfort 
introduces data ambiguities challenge which lead to the existence of outliers. Moreover, 
data imbalances within the dataset can cause the machine learning models to not learn 
the minority class effectively, resulting in the deterioration of the model. This research 
has developed an enhanced thermal comfort prediction model to predict the occupant’s 
thermal comfort by leveraging the outlier detection technique and synthetic data 
generator, particularly the Isolation Forest and SMOTE. The experiment showed that the 
proposed model is able to achieve an accuracy of 74.94%. This exhibited a slight 
improvement compared to the findings in prior research of using Random Forest 
prediction model. 
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1. Introduction 
 

The necessity to maintain a harmonious interaction between individuals and their thermal 
environment is not merely a matter of comfort, but a prerequisite for maintaining good health and 
well-being. Numerous studies have been conducted to assess thermal comfort in buildings, including 
studies done by Al-Absi et al., [1], Djabir et al., [2], and Alias et al., [3], further emphasizing the 
importance of thermal comfort. Poor thermal comfort can bring many side effects on occupants, 
ranging from reduced work performance to health concerns. Tham and Willem [4] demonstrated that 
thermal discomfort can undermine an occupant's ability to perform tasks effectively. This sentiment 
is echoed by Wyon [5], who emphasized that unsatisfactory thermal conditions can directly diminish 
productivity. The impact is not just confined to physical comfort and work efficiency; cognitive 
functionality also sees a decline in suboptimal conditions, as indicated by Maddalena et al., [6]. From 
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a health perspective, the Centers for Disease Control and Prevention (CDC) [7] cautioned that 
occupants exposed to poor thermal environments are at an increased risk of ailments, including 
hypothermia. These findings underline the significance of maintaining optimal thermal conditions for 
both the well-being and efficiency of occupants. Hence, thermal comfort becomes a vital metric to 
determine whether individuals find their surroundings comfortable or not from a thermal perspective 
to maintain good health. In order to measure an individual thermal comfort level, ASHRAE (American 
Society of Heating, Refrigerating and Air-Conditioning Engineers) standard is used [8]. ASHRAE 
defines thermal comfort as an individual's satisfaction with their surrounding thermal conditions. The 
ASHRAE scale is ranging from -3 to +3, where -3 is labeled as "Cold", -2 as "Cool", -1 as "Slightly Cool", 
0 as "Neutral", 1 as "Slightly Warm", 2 as "Warm", and 3 as "Hot". In the process of collecting an 
individual thermal comfort level, they are giving their feedback based on ASHRAE scale. This feedback 
referred as the Thermal Sensation Vote (TSV) [9]. 

Besides using ASHRAE standard to collect an individual thermal comfort, Fanger introduced 
Predicted Mean Vote (PMV) model in the late 1960s. This model was built from experiments 
conducted in climate chambers, supplemented by heat balance equations [10,11], which can be used 
to evaluate thermal comfort. Recently, advancements have seen the integration of machine learning 
in the realm of thermal comfort prediction. Unlike traditional methods, this technique empowers 
computers to self-learn without intricate programming [12]. The literature review Section 1.1 will 
delve into past research that utilized machine learning for thermal comfort modeling. It is 
noteworthy, however, that leveraging machine learning in this domain presents unique challenges, 
especially given the individual variations in thermal comfort. 

Thermal comfort is notably subjective, with perceptions differing from one individual to another 
[13]. This subjectivity creates ambiguity in thermal comfort datasets. It is crucial to emphasize that 
such ambiguity is not due to data collection errors but arises from the inherent personal preferences 
regarding thermal comfort. This variability poses challenges to machine learning models, as the 
outliers can occur due to this variability and it may mislead the data analysis results [14]. Moreover, 
it could also degrade the performance of machine learning algorithms [15,16]. Hence, data cleaning 
becomes essential to remove the outliers so that the performance of thermal comfort prediction 
models can be significantly boosted. Another challenge is data imbalance in the thermal comfort 
dataset. If feedback from occupants is not adequately collected for all TSV categories, the model may 
not train effectively. As a result, the data imbalance can negatively affect the model’s performance 
[17-19]. Therefore, implementing data balancing, ensuring uniform distribution across all classes, 
becomes vital to further optimize the model's performance [20]. Hence, in this study, an enhanced 
thermal comfort prediction model is developed with the application of Isolation Forest (IF) algorithm 
to remove the outliers and SMOTE to generate and feed in the synthetic data into the dataset to 
balance the distribution of data. The study starts with an introduction on the relevance of thermal 
comfort, followed by a literature review detailing the existing relevant works of building the thermal 
comfort models. The methodology section explains the steps from data collection to model 
evaluation. The performance of the models and their implications are then discussed in the results 
and discussion section. Finally, the paper concludes with a summarization of the findings. 
 
1.1 Literature Review 
 

Thermal comfort prediction is an important area of research, and many studies use machine 
learning and deep learning to improve predictions. As these methods get better, researchers face 
new challenges. One of the issues is that sometimes, there is uneven data, meaning some thermal 
comfort conditions have lots of data, while others have very little. This can affect the model's 
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performance. Additionally, it is crucial to have accurate data. If there are unusual or ambiguous 
values in the data, it can influence the learning of machine learning models. In this section, recent 
research on outlier detection techniques, imbalanced data handling techniques, machine learning 
thermal comfort models, deep learning thermal comfort models, thermal comfort models with 
transfer learning, and studies addressing data imbalance in thermal comfort models are reviewed. 
 
1.1.1 Outlier detection techniques 
 

Outliers or anomalies in data sets can significantly influence the outcome of data analyses and 
modeling efforts. Recent years have seen a surge in advanced outlier detection techniques, 
specifically designed to cater to diverse application domains. In 2021, a study by Nascimento et al., 
[21] undertook the task of identifying outliers in power consumption data for a tertiary building in 
France. The study made comparisons between traditional statistical methods, like boxplots, applied 
directly on measurements and on the deviation between measurements and their respective 
predictions. Another research in 2021 by Yu et al., [22] revolved around the domain of hyperspectral 
anomaly detection. The primary objective was to enhance the differentiation between anomalous 
targets and the typical background. To realize this, the research leveraged an adapted version of the 
Local Outlier Factor (LOF), which refined the selection of dictionary atoms. Additionally, a specifically 
designed filter emphasized the spatial structure of data, further enhancing the detection capability. 
In a 2020 study by Mahajan et al., [23], researchers highlighted the need for accurate air quality data 
to make decisions about air pollution. Given the constant flow of data, there is a growing need for 
methods to spot outliers in real-time. The study presented a framework that compared five statistical 
methods to detect unusual data points in ongoing air quality data. 

Lastly, delving into cybersecurity, 2021 research by Heigl et al., [24] introduced the Performance 
Counter Based iForest framework. This innovative framework employed variants of the Isolation 
Forest (IF) algorithm to detect outliers, specifically focusing on identifying malicious activities in real-
world computer networks. The emphasis on using multiple variants of the Isolation Forest showcases 
the adaptability and efficiency of this method in a real-time detection scenario. 
 
1.1.2 Imbalanced data handling techniques 
 

Researchers have explored various data balancing techniques to mitigate the negative impact of 
imbalanced datasets on prediction model accuracy. The following examples highlight the techniques 
utilized across different areas by researchers. Low et al., [25] developed a Commercial Vehicle 
Activity prediction model employing a gradient boosting approach, enhanced with data resampling 
techniques including random undersampling, random oversampling, and the Synthetic Minority 
Oversampling Technique (SMOTE) to address class imbalance. A study by Karatas et al., [20] focused 
on developing Intrusion Detection Systems (IDSs) using six machine learning algorithms, employing 
SMOTE to overcome data imbalance. In a study by Kaya et al., [26] the impact of classification 
algorithms, feature selection, and data balancing methods, particularly SMOTE-based techniques, on 
Software Vulnerability Prediction models was investigated. A study by Ivanciu et al., [27] examined 
three data balancing strategies—SMOTE with Tomek Links, SMOTE with outlier elimination, and 
random subsampling—in the context of electronic payment transactions, where fraudulent 
operations are the minority class. Finally, a study by Uttam and Sharma [28] investigated the 
effectiveness of random oversampling, SMOTE, and SMOTE Tomek in detecting credit card fraud 
using Neural Networks. As such, it can be concluded that SMOTE is a popular technique to handle 
imbalance data. 
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1.1.3 Machine learning thermal comfort models 
 

The study and optimization of thermal comfort has become an area of keen interest in recent 
years, and various research efforts have employed machine learning techniques to better predict and 
understand comfort levels based on various environmental and individual factors. In 2017, a study 
by Chaudhuri et al., [29] employed ASHRAE RP-884 dataset focusing solely on data from Singapore 
to develop their model. The model used a comprehensive set of inputs, including Air Temperature, 
Mean Radiant Temperature, and several individual factors such as Gender and Age. The researchers 
employed various algorithms, notably Machine Learning Classifiers, PMV model, Extended PMV, and 
Adaptive PMV. The highest accuracy achieved among these was 85.3% with the Machine Learning 
Classifiers, while the Adaptive PMV model demonstrated a notably lower efficiency of 35.51%. 

A subsequent study in 2021 by Abdulgader and Lashhab [30], also utilizing the ASHRAE RP-884 
dataset, incorporated parameters like Outdoor Temperature and Standard Effective Temperature to 
predict Thermal Comfort Value. They employed a diverse set of algorithms, including Multiple Liner 
Regression (MLR), Support Vector Regression (SVR), Random Forest Regression (RFR), and Decision 
Tree Regression (DTR). Among these, the SVR algorithm achieved the best results, with Root Mean 
Square Error (RMSE) value of 0.7601 and an R2 Score of 0.3766. In 2022, a different approach was 
seen in the study by Acquaah et al., [31] where the researchers used their own dataset. This study 
stood out for its multiple labels with multiple classes output, including thermal comfort and thermal 
sensation, among others. The employed algorithms – Extratrees, Random Forest, Decision trees, and 
K-nearest neighbour – achieved varying degrees of accuracy. Extratrees demonstrated the best 
performance with an accuracy of 68% and an MSE of 2.15. The year 2023 saw further advancements. 
In a study by Feng et al., [32], a hybrid ensemble learning approach was utilized. This research 
uniquely combined two or more algorithms, leveraging the strengths of Extreme Learning Machine 
(ELM), Stochastic configuration network (SCN), Random Forest (RF), Support vector regression (SVR) 
to achieve impressive RMSE values ranging from 0.157 to 0.237. Another 2023 study by Tekler et al., 
[33] presented results from their own dataset, predicting user preferences for room temperature 
adjustments using the Extreme Gradient Boosting (XGB) algorithm. The output classes were distinctly 
labeled as 'Cooler', 'No Change', and 'Warmer', with an achieved accuracy of around 75%. 
 
1.1.4 Deep learning thermal comfort models 
 

Deep learning methods, a subset of machine learning techniques that utilize multi-layered neural 
networks, have garnered significant attention in predicting thermal comfort based on various 
environmental and individual parameters. In 2019, a study by Ma et al., [34] utilized the ASHRAE RP-
884 dataset to forecast the Thermal Comfort Value. This research stood out for its inclusion of 
parameters like Distance Between People and Equipment, Human Activity Type, and individual 
characteristics such as Gender, Age, Weight, and Height. Using Artificial Neural Network (ANN) and 
the PMV Model, they achieved Mean Square Error (MSE) values of 0.39 and 2.1 respectively, showing 
the superiority of ANN in this particular context. The subsequent year, 2020, Irshad et al., [35] 
developed their model using their own dataset, which considered parameters like globe temperature 
and clothing value. Using ANN, they achieved a compellingly low MSE of 0.07956. In contrast, Gao et 
al., [36], using the ASHRAE RP-884 dataset, employed algorithms including Deep Feedforward Neural 
Network, SVM, and others. Among these algorithms, the Deep Feedforward Neural Network 
recorded the lowest MSE value of 1.1583. A unique perspective was brought to the field in year 2021. 
In a study by Brik et al., [37], the focus was shifted towards understanding the indoor thermal comfort 
of disabled individuals. This research incorporated parameters like Disability Type and several indoor 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 118, Issue 1 (2024) 52-64 

56 
 

environmental factors. Among the algorithms used, the Artificial Neural Classifier (ANC) stood out 
with an astounding accuracy of 94%, significantly outperforming traditional classifiers like Logistic 
Regression and Decision Tree. Lastly, in 2022, a study by Lala et al., [38] utilized both the ASHRAE 
Global Thermal Comfort Database II and their own dataset, focused on primary school students. Their 
proposed model, DeepComfort, was compared with several single-task techniques, and it excelled 
particularly concerning F1-score, Precision, and Recall. The emphasis on F1-score as a performance 
metric was due to existing data imbalances, which can mask the accuracy of predicting minority 
classes. Remarkably, DeepComfort outperformed even the Bayesian deep neural network, further 
underscoring its effectiveness. 
 
1.1.5 Thermal comfort models with transfer learning 
 

There are researchers who explore the development of thermal comfort prediction models 
through the application of transfer learning approaches. In 2021, a study by Gao et al., [39] 
emphasized the utility of transfer learning, a technique that apply knowledge gained from one 
domain to enhance performance in a related domain. When comparing the Transfer Learning 
Multilayer Perception (TL-MLP) to traditional models like Random Forest and SVM, it achieved a 
commendable accuracy range of 50.76 – 54.50%, underscoring the potential of transfer learning in 
this field. Transfer learning was again the focal point of research by Somu et al., [40] in the same year. 
They have selected the ASHRAE RP-884 and Scales Project datasets as the source domains, and the 
Medium US Office dataset as the target dataset. Among numerous deep learning models, the 
Transfer Learning CNN-LSTM model outshined others with an accuracy of 59.84%. In 2022, another 
study by Park and Park [41] proposed an ensemble transfer learning (TL) approach for their thermal 
comfort prediction model, aiming to transfer knowledge across datasets from different indoor spaces 
and thermal environments. This study utilized a dataset collected by the researchers themselves. The 
results demonstrated that the ensemble TL approach enhanced the accuracy of thermal comfort 
predictions for two target subjects using a model pre-trained on a source dataset. In 2023, Zhang and 
Li [42] proposed integrating transfer learning with a transformer model to predict thermal comfort, 
utilizing the ASHRAE RP-884 dataset from the Scales project as the source and the Medium US dataset 
as the target domain. The proposed TL-Transformer model achieved an accuracy of 62.6%, 
outperforming other state-of-the-art methods tested in their experiments. Moreover, Natarajan and 
Laftchiev [43] introduced a transfer active learning framework for thermal comfort prediction, 
significantly reducing the need for a large, labeled dataset. The study, conducted with a dataset 
collected by the authors, demonstrated that their methodology achieved a mean error of 
approximately 0.82, which is lower than that of traditional supervised learning models. 
 
1.1.6 Studies addressed data imbalance in thermal comfort models 
 

There are also researchers who explored building thermal comfort prediction model by 
addressing the imbalanced data issue. Study by Fayyaz et al., [44] in 2021 dealt with the data 
imbalance by deploying both downsampling and oversampling techniques. By focusing on HVAC 
building data from the ASHRAE RP-884 dataset, the researchers found that SVM and RF, after 
addressing the imbalance, could achieve accuracies up to 86.08%, marking a significant 
improvement. In 2022, a study by Cakir and Akbulut [45] that employed the ASHRAE Comfort 
Database II, SMOTE was used to address data imbalance. Their results highlighted that Deep Neural 
Network (DNN) achieved the highest accuracy of 78.01%, outperforming traditional models like 
Gradient Boosting and PMV. Finally, a study by Martins et al., [46] in 2022 emphasized the role of 
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downsampling to address data imbalance. Their model, which considered parameters like health 
perception, showed that a DNN with health perception could achieve an accuracy of up to 91.67%. 
This suggests that considering additional human-centric parameters, when combined with 
techniques to address data imbalance, can offer a more comprehensive and accurate model for 
thermal comfort prediction. 
 
2. Methodology 
 

In this section, an overview of the systematic procedure for developing a reliable thermal comfort 
prediction model is presented. As depicted in Figure 1, this procedure consists of 5 stages. Firstly, the 
data acquisition is conducted, followed by data preprocessing, data splitting, model development, 
and performance evaluation. Within the data preprocessing process, there are 3 sub-processes 
involved, which include data cleaning, injection of synthetic samples in the dataset, and feature 
scaling. The data cleaning process is further divided into 2 steps, which are identifying and eliminating 
unimportant or missing data columns (Step 1) and outlier detection (Step 2). Later, the data 
imbalance issue is addressed by injection of synthetic samples in the dataset processes. Lastly, 
feature scaling is implemented. A detailed explanation of each of these stages is provided in 
subsections 2.1 through 2.5. 
 

 
Fig. 1. Thermal comfort prediction framework 

 
2.1 Data Acquisition 
 

In this study, the ASHRAE dataset obtained from Cakir and Akbulut [45] is the selected dataset 
for building the thermal comfort prediction model. This dataset consists of dataset consists of 40,988 
rows and 17 features. The features are Clothing Insulation, Metabolic Rate, Standard Effective 
Temperature, Air Temperature, Globe Temperature, Air Velocity, Relative Humidity, Outdoor 
Monthly Air Temperature, Publication (Citation), Year, Season, PMV, Koppen climate classification, 
Building type, Cooling strategy, building level, Sex and Age. 
 
2.2 Data Preprocessing 
 

The purpose of data preprocessing is to clean, scale and ensure the data is ready for the model 
learning. It consists of 3 phases which include Data Cleaning, Handling Imbalanced Data, and Feature 
Scaling. 
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2.2.1 Data cleaning 
 

This process begins by identifying and eliminating unimportant or missing data columns. 
Following that, an outlier technique will be applied to remove unusual data points. The detailed 
explanations are as below: 
 
Step 1: Identifying and eliminating unimportant or missing data columns 
 

In accordance with the input features suggested by Cakir and Akbulut [45], the development of a 
predictive model for thermal comfort requires important features from personal factors, indoor 
environment factors, and outdoor environment factors. Those features include Clothing Insulation, 
Metabolic Rate, Standard Effective Temperature, Air Temperature, Globe Temperature, Air Velocity, 
Relative Humidity, and Outdoor Monthly Air Temperature. The target variable chosen for this 
predictive model is Thermal Sensation with 7 classes, ranging from cold to hot, which is known as “7-
point TSV”. While all other columns, are removed from the dataset. The cleaned dataset consists of 
9 columns with 8 input features and 1 output. 
 
Step 2: Outlier Detection 
 

Among the outlier detection techniques, IF is chosen for this study [47]. One of the reasons of 
choosing IF is it is a highly efficient algorithm especially for large dataset. Furthermore, there is a 
parameter called "contamination" in IF that users can modify to decide the ratio of outliers in the 
dataset to be removed. This parameter allows the value range (0, 0.5]. Different contamination 
values, 0.15, 0.25, 0.35, and 0.45 will be experimented with to investigate which one works best for 
building the thermal comfort prediction model. 

Following the application of the IF with various contamination values, each contamination value 
provides a different total number of data points. The specific quantities of data points corresponding 
to each contamination value are presented in Table 1. 
 

Table 1 
Number of data points for each contamination value 
Contamination Number of Data Points 

0.15 34,839 
0.25 30,741 
0.35 26,642 
0.45 22,543 

 
2.2.2 Injection of synthetic samples in the dataset 
 

The dataset, both before and after the applying IF algorithm, exhibits significant imbalance. To 
mitigate this imbalance and enhance the reliability of the proposed model, SMOTE is employed to 
generate synthetic samples, thereby increasing the amount of data in the dataset and achieving a 
more balanced distribution. The amount of data before and after applying SMOTE across various 
contamination values and without applying Isolation Forest are visualized in Figure 2 and Figure 3. 
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Fig. 2. Amount of Data Points without applying IF 

 

  

  
Fig. 3. Amount of Data Points by applying IF with Contamination Values of 0.15, 0.25, 0.35, and 0.45 

 
2.2.3 Feature scaling 
 

Feature scaling serves as a procedure in the standardization of independent variables within a 
dataset. This operation is important in maintaining equal distribution of influence from each variable 
during the model's training process. For this study, we utilized the Standard Scaler, outlined in (1), to 
fit and transform our training dataset. Identical Standard Scaler was then applied to the test dataset, 
ensuring a uniform scaling application across both sets of data. This meticulous procedure was 
adopted to prevent any potential data leakage. 
 

𝑥𝑠𝑡𝑎𝑛𝑑 =
𝑥−𝑚𝑒𝑎𝑛(𝑥)

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑥)
            (1) 

 
2.3 Data Splitting 
 

For effective model evaluation, the dataset will be divided into two segments: 90% for training 
and 10% for testing, utilizing K-Fold validation with K set to 10, this is to ensure a robust assessment 
of our model's generalization capability. In pursuit of maintaining a consistent data distribution 
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across these cross-validation folds, Stratified K-Fold is selected to preserve the proportional 
representation of different classes in the dataset, thereby minimizing variance in the model 
evaluation. 
 
2.4 Model Development 
 

In the development of thermal comfort prediction models, two types of models are used, namely 
tree-based ensemble model, and distance-based model. The particular classifiers chosen for the two 
types of models are Random Forest, and K-Nearest Neighbors respectively. Notably, all the models 
used in this study were configured with default settings from the Scikit-Learn library for thermal 
comfort prediction model development. 
 
2.5 Performance Evaluation 
 

The effectiveness of the model will be assessed by using key performance indicators such as 
accuracy, precision, recall, and the F1 score. Accuracy provides the proportion of correctly classified 
instances out of the total instances in a dataset. Whereas, precision and recall measure the 
proportion of true positive predictions (correctly identified positive cases) out of all positive 
predictions made and the proportion of true positive predictions out of all actual positive cases, 
respectively. Finally, the F1 Score is a balance between precision and recall, providing a single metric 
that combines both. 
 
3. Results and Discussions 
 

This section provides an analysis of the performance of 7-point TSV prediction models using 
different types of machine learning algorithms based on various contamination values in Isolation 
Forest. Figure 4 and Figure 5 display the performance of these models. It is important to note that 
the results for each machine learning algorithm were obtained after training on the same dataset 
using 10-fold cross-validation. 

From the figures, Random Forest exhibits a mean accuracy that spans from 74.28% to 74.94%. 
This suggests a consistent performance across different contamination values. The K-Nearest 
Neighbor model displays a mean accuracy range of 62.58% to 63.62%. This is notably lower than the 
Random Forest model by approximately 11 percentage points. Precision for the Random Forest 
model varies between 73.57% and 74.30%, indicating a relatively stable output across the 
contamination values. The K-Nearest Neighbor model has a precision ranging from 60.74% to 62.14%, 
again trailing the Random Forest by over 11 percentage points. The Random Forest model's recall 
ranges between 74.28% and 74.94%, aligning closely with its accuracy. The recall for the K-Nearest 
Neighbor model oscillates between 62.58% and 63.62%, mirroring its accuracy values. The F1 score, 
representing the harmonic mean of precision and recall, for the Random Forest model fluctuates 
between 73.81% and 74.52%. For the K-Nearest Neighbor model, the F1 score ranges from 60.95% 
to 62.33%. Throughout the metrics of accuracy, precision, recall, and F1 score, the Random Forest 
model consistently surpasses the K-Nearest Neighbor model. The performance metrics for the 
Random Forest model suggest a stable response to changes in contamination values with narrow 
ranges in all metrics. In contrast, the K-Nearest Neighbor model, while presenting some degree of 
consistency, yields lower performance values across all metrics. The Random Forest with Isolation 
Forest contamination value of 0.15 achieves the best performance among all the models, which 
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slightly surpasses the findings obtained in the study by Cakir and Akbulut [45] of their Random Forest 
model. 

As the contamination value in the Isolation Forest increases for the Random Forest algorithm, we 
observe a unique performance trend: the model's performance first improves, then diminishes, and 
subsequently improves again. However, with the K-Nearest Neighbor algorithm, the performance 
initially drops with increased contamination value but eventually rebounds. The general trend across 
all models indicates that, post-implementation of the Isolation Forest, there is an initial decrease in 
performance, which is then followed by an improvement. This phenomenon suggests that at lower 
contamination values, the Isolation Forest might be discarding some pertinent data. However, as we 
increase the contamination value, model performance improves due to more selective data. Users 
can select a contamination value that achieves optimal model performance while retaining a data 
volume appropriate for their research. 
 

 
Fig. 4. Results of Random Forest based on Contamination 
Value 

 

 
Fig. 5. Results of KNN based on Contamination Value 
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The standard deviation for all metrics within the Random Forest models ranges between 
0.003785574 and 0.00527, whereas for the K-Nearest Neighbor models, it lies between 0.003207 and 
0.004547. This uniformity implies an absence of variance during model development. 
 
4. Conclusions 
 

This study demonstrates that the enhanced thermal comfort prediction model that integrating 
outlier detection with the isolation forest and the injection of synthetic samples in the dataset using 
SMOTE in the data preprocessing slightly outperformed the results from the study by Cakir and 
Akbulut [45]. The performance trend, based on the contamination value in the Isolation Forest, 
suggests a risk in the original data where critical data might be discarded. However, by adjusting the 
contamination value in the isolation forest, researchers can achieve optimal model performance and 
preserve essential data. The small standard deviation across all metrics for every model indicates an 
absence of variance during model development. 

In future research, potential areas of improvement include addressing any class overlapping 
within the thermal comfort dataset, using deep learning models to learn better from complex 
datasets, and conducting hyperparameter tuning to further optimize model performance. 
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