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Precise forecasting of power generation and demand is essential for effective resource 
allocation and energy trading in contemporary energy systems. Power forecasting 
accuracy has increased dramatically since Random Forest Regression (RFR) techniques 
were used. The study's primary objective is to forecast electricity generation in Malaysia's 
Eastern West region, with a concentration on solar energy. The research process entails 
gathering and examining pertinent factors, weather information, and historical power 
data. To evaluate the accuracy and predictive potential of RFR models, a specific power 
grid is used for training, validation, and testing. One of the anticipated results is the 
creation of an accurate model for power generation predictions, which will help to 
optimise energy operations and smoothly incorporate renewable sources. The paper 
examines the advantages, disadvantages, and best practices related to RFR-based power 
forecasting. The dataset, which spans the years 2019 to 2023, includes 30-minute interval 
records for the following variables: average output power, ambient temperature, PV 
module temperature, global horizontal irradiance, and wind speed. Using the 
RandomForestRegressor class from the scikit-learn library, the RFR model is 
implemented. In order to assess the model's overall fit, average deviation, and sensitivity 
to outliers, measures such as root mean square error (RMSE), mean square error (MSE), 
and mean absolute error (MAE) are used on the test set. The temperature, irradiance, 
and AC power output of PV modules are found to be strongly correlated. 
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1. Introduction 
 

The global emphasis on sustainable and renewable energy has driven significant attention toward 
solar power generation [1]. As the solar energy sector evolves, the need for accurate long-term 
forecasting becomes critical for effective resource planning, grid integration, and overall system 
optimization. This technical paper, aiming to address this imperative, presents a comprehensive 
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study on the application of the Random Forest Regression (RFR) method for long-term solar power 
generation forecasting at the Eastern West Large Solar Scale (LSS) farm [2]. Large-scale solar farms, 
exemplified by the Eastern West LSS farm, play a pivotal role in meeting the escalating global demand 
for clean energy [3]. The effective harnessing of solar power on a grand scale necessitates 
sophisticated forecasting models for seamless integration with existing power grids. This paper 
explores the utilization of the RFR method—a powerful machine learning algorithm—for accurate 
and reliable long-term solar power generation forecasting. 

The primary objective of this study is to assess the efficacy of the Random Forest Regression 
method in predicting solar power generation at the Eastern West LSS farm over an extended time 
horizon [4]. Through a meticulous analysis of historical data, weather patterns, and other relevant 
variables, the aim is to develop a forecasting model that not only exhibits superior accuracy but also 
provides valuable insights into the complex dynamics of solar energy generation in this specific 
geographical context. The proposed methodology involves the application of the Random Forest 
Regression algorithm to construct a predictive model capable of capturing intricate relationships 
between various input parameters and solar power output [5]. Leveraging a diverse dataset 
encompassing meteorological data, solar irradiance levels, and historical power generation records, 
the RFR model will be trained and fine-tuned to optimize its forecasting performance. 

This research holds considerable significance for the renewable energy sector, offering a 
methodological framework for enhancing the accuracy of long-term solar power generation forecasts 
[6]. By providing a detailed analysis of the Eastern West LSS farm, this paper contributes valuable 
insights that can be extrapolated to similar large-scale solar installations, facilitating more informed 
decision-making processes in the realm of sustainable energy production. In conclusion, as the global 
community endeavors to transition towards a cleaner and more sustainable energy future, the 
development of robust forecasting models is imperative [7]. This paper presents a rigorous 
investigation into the application of the Random Forest Regression method for long-term solar power 
generation forecasting, specifically tailored to the Eastern West LSS farm. The outcomes of this study 
are anticipated to foster advancements in renewable energy planning, enabling stakeholders to make 
informed decisions that promote the efficient utilization of solar resources on a large scale [8]. 
 
2. Literature Review 
2.1 Solar Power Generation Technique 
 

This section provides a comprehensive overview of the diverse techniques employed for solar 
power generation forecasting, encompassing both traditional statistical models and modern machine 
learning algorithms. It delves into the application of autoregressive integrated moving average 
(ARIMA) models for short-term forecasting and artificial neural networks (ANN) for solar power 
prediction. By acknowledging the limitations of these techniques in capturing long-term patterns, the 
section underscores the necessity of exploring more robust and adaptable methods for accurate 
long-term forecasting [9]. 

Figure 1 illustrates the block PV diagram forecasting method using Artificial Neural Networks 
(ANN) in the context of solar power generation forecasting. The block diagram likely represents the 
different components and stages involved in the forecasting methodology [9]. 
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Fig. 1. Block PV Diagram Forecasting method using Artificial Neural Networks (ANN) 

 
2.2 Random Forest Regression (RFR) Method 
 

The introduction of the Random Forest Regression (RFR) method in this section serves to 
elucidate its significance as a reliable and robust technique for accurate solar power forecasting. By 
emphasizing its ability to capture complex non-linear relationships between meteorological variables 
and solar power generation, the section positions RFR as an ideal choice for addressing the challenges 
of long-term forecasting in the context of large-scale solar farms. This discussion lays the groundwork 
for the subsequent exploration of RFR as a key component of the proposed forecasting methodology 
[10,11]. 

Figure 2 provides a visual representation of the structure of the Random Forest Regression (RFR) 
method. It could include details on the decision trees and their ensemble, emphasizing how RFR 
captures complex non-linear relationships between meteorological variables and solar power 
generation [3,8]. 
 

 
Fig. 2. The structure of the Random Forest Regression 
(RFR) method 
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2.3 Feature Engineering Technique 
 

This section delves into the pivotal role of feature engineering techniques in enhancing the 
accuracy of solar power generation forecasting. It expounds upon the utilization of lagged variables, 
time of day, and seasonal indicators to capture the influence of time-dependent patterns, weather 
conditions, and seasonal variations. By integrating these techniques into the forecasting 
methodology, the section underscores the commitment to refining the predictive capabilities of the 
RFR model, thereby contributing to more precise and reliable long-term forecasts [3]. Figure 3 
illustrates the application of feature engineering techniques in solar power generation forecasting. It 
specifically highlights the use of a Random Forest classifier in machine learning to incorporate lagged 
variables, time of day, and seasonal indicators into the forecasting methodology [3]. 
 

 
Fig. 3. Application of feature engineering techniques in solar 
power generation forecasting 

 
2.4 Model Evaluation Metrics 
 

The discussion of model evaluation metrics in this section underscores the meticulous approach 
to assessing the performance of forecasting models. By highlighting the significance of evaluation 
metrics such as root mean square error (RMSE), mean absolute percentage error (MAPE), and mean 
absolute error (MAE), the section emphasizes the commitment to ensuring the accuracy and 
reliability of the forecasting model. This meticulous approach to model evaluation sets the stage for 
a comprehensive and rigorous assessment of the proposed forecasting methodology [8]. Figure 4 
showcases the performance metrics, including Root Mean Square Error (RMSE) and R², of the 
regression Random Forest model. The illustration likely demonstrates the results of a repeated 10-
fold cross-validation using all available data, emphasizing the meticulous approach to model 
evaluation [8]. 
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Fig. 4. Analysis of performance metrics 

 
2.5 Case Studies and Experimental Results 
 

This section presents a compelling exploration of case studies and experimental results that 
underscore the effectiveness of the RFR method in accurately predicting solar power generation over 
extended periods. By showcasing the superiority of RFR compared to traditional statistical models 
and other machine learning algorithms in terms of forecasting accuracy and robustness, the section 
substantiates the potential of RFR as a key enabler of precise and reliable long-term forecasting. The 
empirical evidence presented in this section serves to validate the viability of the proposed 
forecasting methodology [8]. 

Figure 5 compares the accuracy of different models, namely Linear Regression (LR), Classification 
and Regression Trees (CART), and Random Forest (RF). The input variables are identified as significant 
by Linear Regression (LR). This figure supports the section discussing case studies and experimental 
results [8]. 
 

 
Fig. 5. Graph of accuracy of different models 
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2.6 Software 
 

The discussion of the use of MATLAB and Python as the software platforms for implementing the 
Random Forest Regression (RFR) method and conducting data pre-processing and analysis 
underscores the commitment to leveraging advanced tools for model development and evaluation. 
By highlighting the diverse range of tools and libraries available in both MATLAB and Python for 
machine learning tasks, the section emphasizes the meticulous approach to developing and 
evaluating the forecasting model. This strategic choice of software platforms underscores the 
dedication to employing sophisticated resources for precise and reliable forecasting, while also 
acknowledging the flexibility and extensive libraries available in Python for machine learning and data 
analysis tasks. The use of Python, with its rich ecosystem of machine learning libraries such as scikit-
learn and TensorFlow, further enhances the adaptability and robustness of the forecasting 
methodology, allowing for comprehensive model development and evaluation [8]. 

Figure 6 illustrates an example execution result after performing Random Forest Regression (RFR) 
in MATLAB. It likely provides a visual representation of the output or outcomes, showcasing the 
practical application of the RFR method using MATLAB [8]. 
 

 
Fig. 6. The example execution results after performing Random Forest Regression (RFR) in 
MATLAB 

 
3. Research Methodology 
 

The research methodology presented in this technical paper offers a systematic and 
comprehensive approach to address the critical need for accurate long-term solar power generation 
forecasting at Eastern West Large-scale solar farm. Leveraging the Random Forest Regression (RFR) 
method, a robust machine learning algorithm, this methodology aims to capture complex non-linear 
relationships between meteorological variables and solar power generation. By integrating feature 
engineering techniques and utilizing historical data, the proposed methodology seeks to enhance the 
accuracy and reliability of solar power generation forecasts. Furthermore, the utilization of 
performance evaluation metrics such as root mean square error (RMSE) and mean absolute 
percentage error (MAPE) will enable a thorough assessment of the forecasting model's effectiveness. 
The incorporation of phyton as the software platform for model development and analysis 
underscores the commitment to employing advanced tools for precise and reliable forecasting. This 
methodology stands as a significant contribution to the field of renewable energy forecasting, 
offering a structured framework for optimizing operations and planning in large-scale solar farms 
[3,9,12,13]. 
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Figure 7 illustrates flowchart act as a visual representation of the proposed methodology for long-
term solar power generation forecasting at Eastern West large-scale solar farm using the Random 
Forest Regression (RFR) method. The flowchart outlines the key steps involved in the methodology, 
including data collection, pre-processing, RFR model training, refinement and iteration, model 
validation and tuning, performance evaluation and analysis, long-term forecasting, reporting and 
decision making, and adjusting hyperparameters. The flowchart also highlights the importance of 
data consistency and cleanliness, as well as the need to meet desired criteria for model performance. 
The flowchart serves as a useful tool for understanding the methodology and its various components, 
providing a clear and concise overview of the research process [14]. 
 

 
Fig. 7. Research flowchart of project 

 
3.1 Data Acquisition and Preprocessing 
3.1.1 Dataset description 
 

The dataset employed in this study is sourced from an authoritative solar energy database 
[Eastern West Large Scale Solar (LSS) farm], providing comprehensive information on key 
parameters. The dataset is meticulously loaded into a pandas DataFrame, laying the foundation for 
subsequent in-depth analysis. 
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3.1.2 Data cleaning 
 

Maintaining the integrity of our analysis is paramount. Any rows containing missing values are 
systematically addressed through the judicious application of the `dropna()` function. This critical 
step mitigates the risk of biases or inaccuracies that may compromise the robustness of our findings. 
 
3.2 Exploratory Data Analysis 
3.2.1 Visualization 
 

An exhaustive exploratory data analysis is conducted to unveil temporal patterns inherent in the 
dataset. Specifically, the most recent 24 rows are visualized, plotting the relationship between the 
hour of the day (`Hour`) and the corresponding average output power (`Average Output Power 
(kW)`). 
 
3.3 Machine Learning Model Development 
3.3.1 Feature selection 
 

A meticulous approach is taken in the selection of features, a pivotal step in constructing an 
effective predictive model. Two key variables, 'Total Global Horizontal Irradiance / Direct Normal 
(W/m2)' and 'PV Module Temperature (Celcius),' are chosen for their direct relevance to solar energy 
production, forming the basis for predicting 'Average Output Power (kW). 
 
3.3.2 Model selection and training 
 

For predictive modeling, the robust RandomForestRegressor is selected. Leveraging ensemble 
learning techniques, this model is adept at capturing intricate relationships within the data. The 
model is meticulously trained using the chosen features (`X`) and the target variable (`Average Output 
Power (kW)`). 
 
3.4 Model Evaluation 
3.4.1 Prediction 
 

With the model successfully trained, predictions for the target variable are generated, 
representing a key milestone in the analytical pipeline. 
 
3.4.2 Data cleaning 
 

A comprehensive evaluation of the model's performance is undertaken using widely accepted 
regression metrics. These metrics include Mean Absolute Error (MAE), Mean Squared Error (MSE), 
and Root Mean Squared Error (RMSE). 
 

            (1) 

 

             (2) 
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             (3) 

 
3.5 Result Analysis and Regression 
3.5.1 Graphical representation 
 

To enhance interpretability, a graphical representation is meticulously crafted, facilitating a 
nuanced comparison of the first 24 hours of actual and predicted output power values. 
 
3.6 Model Deployment 
3.6.1 Anvil integration 
 

The Anvil platform is incorporated into the project via the `anvil-uplink` library, facilitating 
seamless communication between the machine learning model and the Anvil server. 
 
3.6.2 Deployment function 
 

A callable function, `predict_power`, is defined to enable Anvil users to interact with the machine 
learning model. This function accepts irradiance and PV module temperature as input parameters 
and returns the predicted output power. 
 
3.6.3 Anvil server connection 
 

A secure connection to the Anvil server is established using a unique connection key generated 
by Anvil. 
 
3.6.4 Server operation 
 

The script is configured to perpetually wait for incoming requests through Anvil's server, ensuring 
continuous operation and responsiveness to user queries. 
 
3.6.5 Usage in anvil web application 
 

Upon successful deployment, users can interact with the trained model through the Anvil web 
application. Input values for irradiance and PV module temperature are provided, and the deployed 
function returns the corresponding power output prediction. 

Figure 8 illustrates the Anvil UI fessentially represents the user interface that Anvil provides for 
interacting with the machine learning model. Users can input the data which is irradiance and PV 
temperature, submit the form, and receive predictions for average output power seamlessly through 
the deployed model. Anvil function is designed to make predictions for a specific time, considering 
the input parameters provided. 
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Fig. 8. The Anvil UI 

 
3.6.6 Continuous server operation 
 

The Anvil server operates indefinitely, enabling the machine learning model to handle requests 
continuously. This characteristic is imperative for real-time applications where users expect prompt 
and accurate predictions. 
 
3.7 Determining the Percentage of Accuracy 
3.7.1 Data preparation 
 

Collect or obtain a dataset with known ground truth values, typically labeled data where the 
actual outcomes are known. This initial step involves acquiring a dataset that serves as the foundation 
for model training and evaluation. The dataset should include features relevant to the problem and 
corresponding actual outcomes, allowing the model to learn from known patterns. 
 
3.7.2 Model training 
 

Train a machine learning model using a portion of the dataset. Ensure the model is appropriate 
for the problem type (classification, regression, etc.). In this phase, a machine learning model is 
trained using a subset of the dataset. The model is tailored to address the specific problem at hand, 
whether it involves predicting continuous values (regression) or class labels (classification). 
 
3.7.3 Model prediction 
 

Use the trained model to make predictions on a separate set of data to ensure an unbiased 
evaluation. The trained model is applied to a different set of data that was not used during the 
training phase. This separation is crucial to assess how well the model generalizes to unseen 
instances, avoiding overfitting to the training data. 
 
3.7.4 Evaluation metrices 
 

Choose appropriate evaluation metrics (MAE, MSE, RMSE) to assess the performance of the 
model. Selecting suitable evaluation metrics is essential to quantify how well the model performs. 
For regression problems, common metrics include Mean Absolute Error (MAE), Mean Squared Error 
(MSE), and Root Mean Squared Error (RMSE). 
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3.7.5 Usage in anvil web application 
 

Determine the percentage accuracy by comparing the model's predicted values with the actual 
ground truth values. The lower the absolute percentage error, the higher the accuracy. Calculate the 
absolute percentage error for each prediction using the formula: 
 

         (4) 

 
3.7.6 Aggregate accuracy 
 

Aggregate percentage accuracy values over the entire dataset, commonly calculating the mean 
percentage error. Summarize the accuracy assessment by aggregating the calculated percentage 
accuracy values. Computing the mean percentage error provides an overall measure of how well the 
model performs across the entire dataset. 
 
4. Result and Discussion 
 

Figure 9 illustrates the value of Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root 
Mean Squared Error (RMSE). Delving into the quantitative metrics, the MAE of 1209.98KW signifies 
the average absolute deviation between the model’s prediction and actual values. This value is 
relatively small in the context of solar energy forecasting, indicating a commendable level of 
accuracy, The MSE and RMSE values further corroborate the model’s effectiveness, with RMSE 
providing a more interpretable scale, indicating an average prediction error of 1957.65KW. 
 

 
Fig. 9. The result of performance metrics 

 
Figure 10 illustrates the actual output of the Eastern West LSS farm over the initial 24 hours. The 

y-axis represents the average output power, indicating the amount of energy produced, while the x-
axis represents time. The observed patterns in the graph are a result of various factors influencing 
solar power generation. During daylight hours, the system generates more power as it harnesses 
sunlight. This leads to a rise in output, usually peaking when sunlight is most intense. As the sun sets 
or weather conditions change, the power output decreases, reflecting the reduced ability to capture 
sunlight for conversion into electricity. Factors such as solar panel efficiency, environmental 
conditions, and the system's operational dynamics contribute to the observed fluctuations. The 
efficiency of solar panels can vary, affecting how much sunlight they can convert into electricity. 
Additionally, occasional drops in output may occur due to factors like maintenance activities or 
temporary decreases in sunlight caused by cloud cover. Understanding these patterns helps assess 
the performance of the solar power system. Anomalies in the graph could prompt investigation into 
potential issues affecting efficiency or operational adjustments. Real-time data, as reflected in this 
graph, provides valuable insights into how well the Eastern West LSS farm is functioning, enabling 
optimization for consistent and reliable energy generation. 
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Fig. 10. The graph of actual output of the Eastern West 
LSS farm over the initial 24 hours 

 
Figure 11 illustrates the deployed model's performance when a user inputs specific parameters. 

In this instance, the user submitted an irradiance value of 130.29 (W/m²) and a PV temperature of 
26.5°C. The resulting average output power prediction is 6086.95 kW. Notably, the Anvil interface 
dynamically showcases this prediction, specifically representing the average output power at 7:30 
a.m. This alignment with the provided data time stamp ensures that the displayed result corresponds 
accurately to the user-inputted parameters, demonstrating the real-time and user-centric 
functionality of the integrated Anvil web app. 
 

 
Fig. 11. The deployed model's performance when a user 
inputs specific parameters 

 
Figure 12 shows the comparison between the predicted and actual power output of the Eastern 

West LSS farm over the last 24 hours. The red line represents the model's predictions, while the green 
line represents the actual power output observed. A close look at the graph reveals a strong 
agreement between the predicted and actual values. The graph indicates that the model, specifically 
the RandomForestRegressor, has effectively learned and applied patterns from past data. It 
demonstrates an understanding of how factors like sunlight intensity and module temperature 
influence the power generated by the solar panels. As a result, the model accurately predicts the 
power output for the given time period. The success of the model is crucial because it means it can 
reliably forecast how much energy the solar farm will produce. This alignment between predicted 
and actual values provides confidence in the model's ability to handle the complex dynamics of solar 
energy production. The RandomForestRegressor, known for its ability to handle diverse and 
nonlinear relationships, proves effective in capturing the nuances of the Eastern West LSS farm's 
power generation. 
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Fig. 12. Graph of predicted and actual output 
in the first 24 hours 

 
Figure 13 illustrates a percentage accuracy of 87.16% reflects the model's proficiency in 

predicting outcomes relative to the actual ground truth values. This accuracy is derived from the 
absolute percentage error, a metric used to quantify the extent of deviation between predicted and 
actual values. In this case, the calculated absolute percentage error, which is approximately 12.84%, 
signifies the average magnitude of the model's prediction errors. The occurrence of this specific 
percentage accuracy is influenced by several factors. Firstly, the model's performance is notable, 
indicating that, on average, it excels in making predictions that closely align with the actual outcomes 
in the dataset. The model demonstrates effectiveness in capturing patterns and relationships within 
the provided features. The features used for prediction, such as irradiance and PV module 
temperature, play a crucial role, contributing to the model's accurate predictions. Additionally, the 
choice of a RandomForestRegressor model signifies its suitability for the regression task, given its 
flexibility and ability to capture complex relationships in data. The quality and representativeness of 
the training data also contribute to the observed accuracy, as a diverse dataset enables the model to 
generalize well to unseen instances. After an in-depth examination of the performance of the current 
RandomForestRegressor (RFR) model in solar forecasting, the several factors have pintpointed in 
contributing to the observed below 90% of the percentage accuracy. Firstly, the dataset used for 
training may be limited in size, potentially leading to overfitting or underfitting issues and negatively 
impacting accuracy. Additionally, the complexity of the RandomForestRegressor model employed 
may not be sufficient to capture non-linear relationships between input features and the output 
variable, potentially resulting in lower accuracy compared to other solar forecasting method. To 
contextualize the model's performance, a comparative analysis with other solar forecasting 
methodologies has been conducted through a review of pertinent research papers. A study by Lee et 
al., [15] employed the deep learning approach Long Short-Term Memory (LSTM) to forecast solar 
power generation with an impressive accuracy of 94%. Similarly, Isabona et al., [16] presented a 
hybrid model combining LSTM and Extreme Learning Machines (ELM), achieving a remarkable 
accuracy of 96%. These findings underscore the potential superiority of deep learning approaches, 
such as LSTM and ELM, over traditional machine learning methods like RandomForestRegressor in 
terms of percentage accuracy for solar forecasting. To elevate the current percentage accuracy, 
various strategies have been proposed, including feature engineering, hyperparameter tuning, 
ensemble learning, and regularization. Additionally, the exploration of more complex models like 
GradientBoostingRegressor or XGBoost has been considered, albeit with a recognition of potential 
increased computational demands and expertise required for implementation and optimization. 
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Despite the observed lower percentage accuracy when compared to alternative methods, there are 
compelling reasons to persist with the RFR methodology. Referencing Bühlmann, Rütten, and Tutz's 
(2018) comprehensive review of decision trees—the base learners in RandomForestRegressor—
offers valuable insights. Decision trees are argued to be less susceptible to overfitting and better 
equipped to handle missing values and irrelevant features, enhancing their reliability and consistency 
in practical applications. The review emphasizes the interpretability and computational efficiency of 
decision trees, positioning RFR as a practical and scalable choice for real-world scenarios with limited 
resources. The authors also discuss strategies, such as ensemble learning techniques, to improve 
decision trees' performance. In conclusion, while deep learning approaches like LSTM and ELM may 
outperform RandomForestRegressor for solar forecasting in terms of percentage accuracy, there are 
still valid reasons to consider using RFR method due to its interpretability, robustness, and 
computational efficiency. The choice of method ultimately depends on the specific use case and 
requirements of the application at hand. A review of machine learning techniques for solar power 
forecasting, including LSTM, ELM, and RFR. The authors highlighted the potential for achieving 
percentage accuracy above 80%, particularly with high-quality and well-curated datasets [17,18]. 
They acknowledge challenges such as weather variability, sensor errors, and data scarcity, proposing 
solutions like ensemble learning, transfer learning, and domain knowledge integration to enhance 
the accuracy and reliability of machine learning models. This reference offers valuable insights into 
the current landscape of machine learning for solar forecasting and emphasizes the considerable 
potential for achieving high percentage accuracy with appropriate algorithms and datasets [19,20]. 
 

 
Fig. 13. Percentage of accuracy 
between predicted and actual output 
data 

 
5. Conclusion and Recommendation 
 

In conclusion, the utilization of the Random Forest Regression (RFR) method for Long-Term Solar 
Power Generation Forecasting at the Eastern West Large Scale Solar (LSS) Farm has yielded 
compelling outcomes. Rigorous evaluation metrics, encompassing Mean Absolute Error (MAE), Mean 
Squared Error (MSE), and Root Mean Squared Error (RMSE), affirm the model's accuracy and 
reliability in predicting solar power generation over extended periods. The graphical representation 
of the last 24 hours' average output power provides valuable temporal insights, enhancing the 
understanding of system dynamics crucial for long-term forecasting and optimization [21]. 

The integration of Anvil as a real-time user interface enhances the practicality of the forecasting 
model. Stakeholders can actively engage with the system, inputting specific parameters, and 
receiving immediate, tailored predictions. This real-time interaction aligns with the dynamic needs 
of decision-makers, offering insights into specific scenarios and times, thereby enhancing the user-
centric functionality of the model [22]. Beyond its immediate application, the developed forecasting 
model, coupled with Anvil's interface, emerges as a strategic decision support tool for large-scale 
solar farm management. Decision-makers can leverage accurate predictions and a user-friendly 
interface to optimize operational activities and plan for future energy needs, contributing to the 
overall efficiency of the LSS Farm. 

Looking forward, the successful integration of RFR with Anvil opens avenues for future 
enhancements. Research opportunities may explore the incorporation of additional features to 
refine the model further or investigate alternative forecasting methods for comparative analysis. 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 118, Issue 1 (2024) 1-16 

15 
 

These potential improvements signify the continual evolution and optimization of solar power 
forecasting methodologies. 

In a broader context, while the study focuses on the Eastern West LSS Farm, the implications 
extend to the realm of renewable energy management. The developed forecasting model and user 
interface serve as a blueprint for similar applications, fostering efficient resource utilization and 
sustainable energy practices across diverse renewable energy settings. 
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