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This investigation addresses the flow of hyperbolic tangential magnetohydrodynamic 
(MHD) fluids across a stretching sheet, discussing its thermophysical properties and 
observing the boundary conditions for velocity and thermal slip. The mathematical model 
converts coupled non-linear PDEs to ordinary differential equations with the aid of local 
similarity variables. In order to fix the derived ordinary differential equations, the Keller 
box method is utilized. This paper summarizes quantitative and qualitative effects of 
various flow regulating parameters which modify concentrations, temperatures, and 
velocities. In addition, the behavior near the stretched sheet is examined by computing 
the wall friction factor and the local Nusselt number. Both computational and conceptual 
computations of the wall friction factor and local Nusselt number are compared, and the 
findings show a strong agreement, giving credibility to the numerical results. 
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1. Introduction 
 

The analysis of the movement of thick fluids across an elongating surface is very relevant in 
several engineering applications. This flow phenomenon is essential in multiple industrial processes, 
such as wire drawing, transferring among the feed rollers and wind-up turns, exposed to heat 
materials, extrusion-based material manufacturing, techniques for freezing electronic components 
or metals sheets of paper, plastic sheet drawing, crystal growth, Manufacture of both paper as well 
as fibres of glass and various other manufacturing procedures. Improving process optimization, 
product quality, and engineering and manufacturing technology as a whole relies on a firm grasp of 
viscous fluid dynamics as it pertains to these situations. The cooling process plays a crucial role in 
defining the final product's qualities when applied to the stretching sheet. The efficiency of the 
cooling process has a direct impact on the final product's quality, characteristics, and performance is 
shown by Hady et al., [1]. The investigation of boundary layer flow problems that are axi-symmetric 
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and two-dimensional was initiated by Sakiadis [2]. A non-linear stretched sheet was computationally 
explored for heat transfer and viscous flow by Cortell [3]. The free convective mass and heat transfer 
in MHD fluid flow over a permeable vertical stretched sheet was studied by Rashidi et al., [4]. Impacts 
of buoyancy and radioactivity were considered in the study using the homotopy analysis method. 
Taking into account, the characteristics of chemical reactions and the influence of an electromagnetic 
field. Rapits and Perdikis [5] looked into the viscous flow across a non-linearly stretching sheet 
employing shooting technique. Turbulent movement of mixed type across a non-linear stretched 
sheet by a fluid with micropolarity was studied using the Homotopy evaluation approach is addressed 
by Hayat et al., [6]. Parametric study of micropolar fluid over a vertical permeable stretching sheet 
was done by Khan et al., [7]. 

Fluid flow in magnetohydrodynamics (MHD) with mass and heat transport has been the subject 
of intense investigation for the past few decades. Such occurrences are common in scientific and 
technical processes, which is why there has been a rise in research on the subject. Heat exchangers, 
chemical engineering procedures, nuclear process systems, groundwater systems, electronic cooling, 
heat loss from pipes, and MHD accelerators are among the significant applications. Understanding 
and treating MHD fluid flow is crucial in numerous domains due to its vast range of applications. 
Utilizing the Keller-box technique, Prasad et al., [8] investigated the effect of fluid characteristics on 
MHD flow and heat transmission across a stretching material. Khan et al., [9] used similarity 
transforms to study the influence of thermal- diffusion on the stagnation point flow of a nanofluid 
toward a stretching surface in the vicinity of a magnetic field. Under the consideration of heat and 
mass, Darcy-Forchheimer relation in convective MHD nanofluid flows limited by non-linear stretching 
surfaces was solved numerically by Rasool et al., [10]. The influence of thermophoresis and the Soret-
Dufour on the mass and heat transfer flow of magnetohydrodynamic non- Newtonian nanofluid 
across an inclined plate was looked into by Idowu and Falodun [11]. An investigation of a computer 
model of a magneto hydrodynamic Carreau liquid including gyrotactic microbes was completed by 
Naz et al., [12]. Uddin et al., [13] examined the Darcian porous medium: magneto-convective 
boundary layer with slip flow media over a non-isothermal moving permeable plate with non-linear 
radiation. The Runge-Kutta-Fehlberg numerical method, which is fourth-or fifth-order, was employed 
in their analysis. 

An exceptionally capable method for depicting shear-thinning events is a model of tangential 
hyperbolic fluids. The capacity of the fluids to maintain a reduced flow rate in the face of increasing 
shear stress rates is captured by this model. Ketchup, paint, and blood are typical instances of fluids 
that display this pseudoplastic pattern. Tangent hyperbolic fluids are a good description for non-
Newtonian fluids, particularly those exhibiting shear-thinning behavior. To better understand and 
define the behavior of fluids having pseudoplastic features, the model of tangential hyperbolic 
fluid hyperbolic fluid has been the subject of a great deal of research in the literature. This research 
has taken into account a wide range of physical phenomena. This study expands our understanding 
a non-Newtonian fluid and their practical application in various real-life situations. The 
magnetohydrodynamic flow through a stretching cylindrical of a hyperbolic tangential fluid has been 
addressed by Khan et al., [9]. The investigation of the study was carried out using the Keller box 
approach. In their extensive study, Nadeem and Akbar [14] examined the movement of peristaltic 
objects of tangent hyperbolic fluid in a uniformly inclined tube. Using the perturbation approach and 
the homotopy analysis method, they calculated series solutions to the governing equations. Using a 
tangent hyperbolic nanoliquid of varying thickness, Malik et al., [15] considered 
magnetohydrodynamic (MHD) stretched flows. Naseer et al., [16] investigated the properties of heat 
transmission for a tangent hyperbolic fluid across a vertical cylinder that is stretched exponentially. 
It is important to note that this research is the initial examination of this kind of situation. The authors 
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used the Runge-Kutta-Fehlberg technique to numerically resolving the resultant problem. The impact 
of heat production as well as indulging in magnetohydrodynamic hyperbolic tangent fluid movement 
on an expanded surface is developed by Salahuddin et al., [17]. Furthermore, an analytical and 
numerical solution for the tangential hyperbolic nanofluid with MHD stagnating region flow across a 
stretching cylindrical is reported by Salahuddin et at., [18]. Tangent hyperbolic nanofluid flows have 
been investigated by other authors [19-23]. 

There are many practical uses for the effects of boundary slip in fluids, like when artificial internal 
chambers and the heart valves are polished. When information on the thermal slip coefficient is 
scarce, microscale liquid flow conditions involving velocities and thermal leaps become critical. Many 
complicated micro-channels and micro-devices fit this description well. Rectangular, trapezoidal, and 
triangular micro-conduits are examples of typical and easily buildable micro-scale thermal fluid 
systems the homotopy analysis technique (HAM). Mustafa et al., [24] assessed how peristaltic motion 
is affected by the impacts of nanofluid slipping in a wall tunnel characteristic. Mukhopadhyay [25] 
examined the effects of slip on the magnetohydrodynamic (MHD) flow of the boundary layer over an 
exponential stretching sheet, including suction/blowing and thermal radiation. A numerical study by 
Malvandi et al., [26] looked at how the unstable stagnant region movement of a nanofluid technology 
is affected by temperature and velocity slip over a stretching sheet. For a nanofluid passing over a 
porous stretched sheet, heat transfer and magnetohydrodynamic (MHD) flow through boundary 
layer characteristics were studied by Ibrahim and Shankar [27]. The work addressed boundary 
conditions for thermal, solutal, and slip-in-velocity components. Singh et al., [28] applied keller box 
approach to address micropolar fluid flow through porous wedge with Hall and ion-slip. 

For instance, in the cleaning of mechanical heart valves and inner cavities, fluid models with 
boundary slip play a vital part in healthcare and technical applications. When dealing with coated 
physical substances that are resistant to adhesion, like bakelite, Navier's slip replaces the no-slip 
condition. In this case, the slip velocity is related to the local shear stress. But experiments show that 
normal stress is also a factor in slide velocity. When slip fluid conditions are present, Turkyilmazoglu 
[29] noticed that the magnetohydrodynamic (MHD) double and triplicate answers for the 
electrically conductive non-Newtonian slip flow movement across a contracting sheet. When 
considering the boundary layer flow over a moving plate for the movement of heat, Ellahi et al., [30] 
looked at the impacts of slip and MHD using particular entropy generation. Through numerical 
analysis, Reddy et al., [31] investigated the boundary layer Maxwell slip flow nanofluid across an 
exponential stretched surface under boundary conditions of convection. Featuring the velocity slip 
model, Aly and Sayed [32] investigated the effect of magnetohydrodynamics and heat radiation on 
the flow of boundary layer caused by an extensible surface that is in motion: An analysis of four 
nanofluids in comparison. Williamson nanofluids with porous media have their mass and heat 
transported through the boundary later, and the influence of velocities and thermal slips on this 
process is described by Reddy et al., [33]. Fluid flow over a stretched cylinder using a dissipation was 
explored by Murthy et al., [34] deploying magnetohydrodynamics as the boundary layer slip. Some 
more studies related to nano fluids are addressed by the authors [35-38]. 

As far as the authors are aware, no one has yet looked at the potential consequences of tangent 
hyperbolic fluid flow and heat transfer across a non-linearly stretched surface when a field of 
magnetism is present. The current investigation aims to build upon the findings of the prior research 
[39]. Nanofluid's heat flux and the boundary layer flow in presence of wall slip are the primary areas 
of investigation. The Keller-box technique serves to numerically solve the controlling partial 
equations once they are translated into ordinary differential equations. 
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2. Formulation 
 

Considering a two-dimensional, incompressible, viscous, along with sustained boundary-level 
flow of tangential hyper nanofluid technology across a stretching surface at y = 0, which is 
stretching uniformly with speed 𝑢𝑤 = 𝑎𝑥. The stream is located at the area y > 0 where the field of 
magnets 𝐵0

2, applied normally to the fluid. Since it is predicated that the Reynolds value is low, 
then magnetic field that is produced is minimal. The level of temperature near the boundary 𝑇𝑤, the 
nano particle fraction 𝐶𝑤 are taken to be uniform at the stretched sheet. While y approaches 
infinitely, the ambient temperature nano particle fraction denotes as 𝑇∞ and 𝐶∞, respectively. The 
governing equations of the flow problem are [39-41] 
 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0              (1) 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑣(1 − 𝑛)

𝜕2𝑢

𝜕𝑦2
+ √2𝛤𝜈𝑛

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
−
σ𝐵0

2𝑢

ρ
        (2) 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= α

𝜕2𝑇

𝜕𝑦2
+ τ {DB

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+
DT

𝑇∞
(
𝜕𝑇

𝜕𝑦
)
2

}         (3) 

 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= DB

𝜕2𝐶

𝜕𝑦2
+
DT

𝑇∞

𝜕2𝑇

𝜕𝑦2
           (4) 

 
The boundaries are provided by [41] 
 

𝑦 = 0 ⇒

{
 
 

 
 

𝑢 = 𝑢𝑤 + 𝑈𝑠𝑙𝑖𝑝
𝑣 = 0

−𝑘𝑓
𝜕𝑇

𝜕𝑦
= ℎ𝑓(𝑇𝑓 − 𝑇)

𝐶 = 𝐶𝑤

, 𝑦 → ∞ ⇒ {
𝑢 → 0
𝑇 → 𝑇∞
𝐶 → 𝐶∞

        (5) 

 
The velocity elements in the directions of x and y are denoted by u and v correspondingly. 𝜈 

remains the viscosity kinematics, ρ represents the foundational flow density, 𝛤 the constancy of time, 
n the Index of Power Law, T represents liquid’s temperature, α diffusivity of temperature, c𝑝 

is particular temperature, τ denotes the proportion of flow thermal capacity to 
nanoparticles thermal capacity, DB represents the Brownian motion parameter and DT signifies a 
thermophoresis diffusing factor. Where C nanoparticles level, 𝑇𝑤 and 𝐶𝑤 represent concentrations 
and temperatures at the surface and 𝑇∞ and 𝐶∞ indicate the concentration of the nanoparticles and 
the ambient temperature, correspondingly. 

In order to convert generalized problem equations as non-dimensional structure, the subsequent 
transforms are specified [39,41] 
 

η = 𝑦√
𝑎

𝑣
, 𝛹 = √𝑎𝜈𝑥𝑓(η), 𝑢 = 𝑎𝑥𝑓′(𝜂)          (6) 

 

θ(η) =
T−T∞

T𝑓−T∞
, ϕ(𝜂) =

𝐶−𝐶∞

𝐶𝑤−𝐶∞
  

 

where 𝑢 =
𝜕Ψ

𝜕𝑦
, 𝑣 = −

𝜕𝛹

𝜕𝑥
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Using Eq. (6) into Eq. (1) to Eq. (4), then we get the following ordinary equations 
 

((1 − 𝑛) + 𝑛𝑊𝑒𝑓′′)𝑓′′′ − 𝑓′
2
+ 𝑓𝑓′′ −𝑀2𝑓′) = 0         (7) 

 

θ′′ + Pr (𝑓θ′ + 𝑁𝑏ϕ′θ′ + 𝑁𝑡θ′
2
) = 0          (8) 

 

ϕ′′ + 𝑃𝑟𝐿𝑒𝑓ϕ′ +
𝑁𝑡

𝑁𝑏
θ′′ = 0            (9) 

 
The boundary conditions are given by 
 

𝜂 = 0 ⇒

{
 

 
𝑓′(0) = 1 + 𝜆𝑓′′(0)

𝑓(0) = 0

𝜃′(0) = −𝛾[1 − θ(0)]
ϕ(0) = 1

 ,    𝜂 → ∞ ⇒ {
𝑓′(∞) → 0
𝜃 = 0
𝜙 = 0

                 (10) 

 

Where, 𝑀 =
σ𝐵0

2

𝑎ρ
, 𝑃𝑟 =

𝑣

𝛼
 , 𝑁𝑏 =

(ρc)𝑝DB(𝐶𝑤−𝐶∞)

(ρc)𝑓𝑣
, =

α

DB
 , 𝑁𝑡 =

(ρc)𝑝DT(𝑇𝑤−𝑇∞)

(ρc)𝑓𝑇∞𝑣
, 𝑊𝑒 = 𝛤𝑥√

2𝑎

𝜈3
 

 

𝜆 = 𝑙√
𝑎

𝜗
 and 𝛾 =

ℎ𝑓

𝑘𝑓
√
𝜗

𝑎
                      (11) 

 
In the present steady, The Sherwood number, Nusselt number, and local skin friction are known by 
 

Cfx =
τw

1

2
ρuw

2
,𝑁𝑢𝑥 =

𝑥𝑞𝑤

𝑘(𝑇𝑤−𝑇∞)
,𝑆ℎ𝑥 =

𝑥𝑞𝑚

DB(𝐶𝑤−𝐶∞)
                   (12) 

 
k represents thermal conductivity of the fluid and τw, 𝑞𝑤, 𝑞𝑚are given by 
 

τw = μ(1 − n) [
𝜕𝑢

𝜕𝑦
]
y=y0

+ μ
nΓ

√2
[
𝜕𝑢

𝜕𝑦
]
y=y0

3

,qw = −k [
𝜕𝑇

𝜕𝑦
]
y=y0

,qm = −DB [
𝜕𝐶

𝜕𝑦
]
y=y0

               (13) 

 
Considering scaling parameters, then we get 
 
𝑅𝑒𝑥

1/2
Cfx

2
= (1 − 𝑛)𝑓′′(0) −

𝑛𝑊𝑒

2
𝑓′′

3
(0), 𝑅𝑒𝑥

1/2
Nux = −θ

′(0),𝑅𝑒𝑥
1/2
Shx = −ϕ′(0)              (14) 

 
Where Rex = 𝑥𝑢𝑤/𝑣 Reynold number. 

The Keller box program, which consists of the stages of finite difference approach, Newton's 
scheme, and block reduction procedure, explains the modified non-linear differential equations (9) 
to (11) using boundary constraints (12). Comparing this method to other popular strategies, this one 
appears to be the most adaptable and is currently using frequently. It can be described as being 
substantially faster, simpler to program, more effective, and simpler to use. 
 
3. Numerical Solution 
 

It is not feasible to obtain closed form solution because Eq. (9) to Eq. (11) are non-linear. The 
Keller-box technique, a finite difference approach, is applied in order to compute the 
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problem containing boundary circumstances computationally (12). To obtain numerical solutions, 
the following phases are the main components of the Keller-box technique 
 
Step 1: 
 
Applying the substitutions 𝑓′ = 𝑝, 𝑝′ = 𝑞, 𝜃′ = 𝑡, 𝜙′ = 𝑔  
 
All of the ODEs must be transformed into 1st order ODEs in the early stages. 
 
Step 2: Separation of domain 
 

The rectangle grid in 𝑥 − 𝜂 plane is deliberated in Figure 1, and the grid points are demarcated 
as: 
 

𝑥0 = 0, 𝑥𝑖 = 𝑥𝑖−1 + 𝑘𝑖, 𝑖 = 1,2,3, …… . 𝐼  
 
𝜂0 = 0, 𝜂𝑗 = 𝜂𝑗−1 + ℎ𝑖 , 𝑗 = 1,2,3, …… . 𝐽  

 

Where (𝑘𝑖 , 𝜂𝑗) are the ∆𝑥 𝑎𝑛𝑑 ∆𝜂 step length. 

 

 
Fig. 1. Grid point labelling 

 
Step 3: Newton's technique of linearization 
 

As a consequence of Newton's method, the (i + 1)th iterations of the formulae may be found in 
the preceding equations 
 

( )𝑗
(𝑖+1)

= ( )𝑗
(𝑖)
+ 𝛿( )𝑗

(𝑖)
  

 

and after overlooking the higher-elevated bounds of 𝛿( )𝑗
(𝑖)

 a linear tri-diagonal equation scheme. 

 
Step 4: The bulk scheme and eliminating 
 
The equation 𝐹𝛿 = 𝑟 has finally resulted in a bulk tri-diagonal matrix. 
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where 
 

𝐹 =

[
 
 
 
 
 
  𝐴1         𝐶1                              
    𝐵2          𝐴2       𝐶2                   
       ⋱         ⋱            ⋱                
            ⋱          ⋱             ⋱          
               𝐵𝑗−1      𝐴𝑗−1      𝐶𝑗−1 

                         𝐵𝑗           𝐴𝑗  ]
 
 
 
 
 

,  𝛿 =

[
 
 
 
 
 
 

 

𝛿1
𝛿2
⋮  
 
⋮ 
𝛿𝑗−1
𝛿𝑗 ]
 
 
 
 
 
 

,    𝑟 =

[
 
 
 
 
 
 
 
 
 
(𝑟1)𝑗−1

2

(𝑟2)𝑗−1
2

⋮ 
 
⋮

(𝑟𝑗−1)𝑗−1
2

(𝑟𝑗)𝑗−1
2 ]
 
 
 
 
 
 
 
 
 

  

 
where F is 7 × 7 block-sized matrix that corresponds to the size 𝐽 × 𝐽. However, 𝛿 𝑎𝑛𝑑 𝑟 are the 
vectors of order 𝐽 × 1 . Now an efficient LU factorizing process is applied to solve for 𝛿. In 𝐹𝛿 = 𝑟, F 
is splinted into lower and upper trigonal matrices, i.e. 𝐹 = 𝐿𝑈. 
 
4. Results and Discussion 
 

Using the procedure outlined in the preceding section, a numerical computing endeavor was 
undertaken to examine the outcomes for various measurements for the velocity slip, temperature 
slip, and magneto parameters (M). Displayed in Figure 2 to Figure 16 are the results of the parametric 
exploration. In order to ensure that the numerical scheme is accurate, we compare the current 
results for the skin friction coefficient, heat transfer coefficient, and mass transfer coefficient to the 
data in Table 1 to Table 3. In Table 1 we can see the skin friction coefficient as a function of the 
Hartmann number. We find that the skin friction coefficient decreases as the Hartmann number 
increases. The results are contrasted with the prior results and discovered to be in good agreement, 
which validates the numerical method. It is clear from Table 2 that skin friction coefficient improves 
as a function of power-law index, thermal slip, Wiesenberger number as well, Hartmann number, 
and velocity slip. The impacts of altering the settings with regard to Sherwood and Nusselt numbers 
are displayed in Table 3. Sherwood number is improved and Nusselt number is decreased by the 
Brownian motion parameter, Lewis number, and thermophoresis factor. While the Prandtl number 
causes to rise both the Nusselt number and Sherwood number. 
 

Table 1 
Comparing local skin friction coefficients with different Hartmann numbers 
M Hussain et al., [43] Akbar et al., [42] Khan et al., [9] 

Present −𝐶𝑓𝑅𝑒𝑥

1

2 

0 -1 -1 -1 -1 
0.5 -1.1180 -1.11803 -1.11802 -1.11803 
1.0 -1.4137 -1.41421 -1.41419 -1.41421 
5 -2.4495 -2.44944 -2.44945 -2.449449 
10 -3.3166 -3.31663 -3.31657 -3.31663 
100 -10.0500 -10.04987 -10.04981 -10.0498 
500 -22.3835 -22.38303 -22.38294 -22.38303 
1000 -31.63859 -31.63859 -31.63851 -31.63859 
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Table 2 
Variation of skin friction coefficient by varying λ, 𝛾, 𝑛,𝑀,𝑊𝑒 values, 
for Pr=Le=0.0 and Nt=0.0, Nb=0.001 
λ 𝛾 n M We −𝑓′′(0) 

0.0 0.0 0.0 0.0 0.5 1.0005 
0.5 0.0 0.0 0.0 0.5 0.5452 
1.0 0.5 0.0 0.0 0.5 0.3547 
1.0 1.0 0.1 0.0 0.5 0.3761 
1.0 1.0 0.2 0.5 0.5 0.4942 
1.0 1.0 0.2 1.0 1.0 0.7298 
1.0 1.0 0.2 1.0 1.5 0.7595 

 
Table 3 
Relationship between Sherwood and Nusselt numbers by varying λ, 𝛾, 𝑃𝑟, 𝑁𝑏,𝑁𝑡, 𝐿𝑒 Values, for 
M = n = We = 0.0 
𝜆 𝛾 Pr Nb Nt Le −𝜃′(0) −𝜙′(0) 

0.0 0.1 1.6 0.1 0.1 1.0 0.0661 0.7514 
0.5 0.1 1.6 0.1 0.1 1.0 0.0540 0.6137 
1.0 0.5 1.6 0.1 0.1 1.0 0.1694 0.4589 
1.0 1.0 2.0 0.1 0.1 1.0 0.2817 0.4789 
1.0 1.0 2.5 0.2 0.1 1.0 0.2730 0.6660 
1.0 1.0 2.5 0.3 0.2 1.0 0.2281 0.6662 
1.0 1.0 2.5 0.3 0.3 2.0 0.1949 1.0554 
1.0 1.0 2.5 0.3 0.3 2.5 0.1887 1.2181 

 
Figure 2 displays the velocity characteristics of the nanofluid as a function of slip variable λ and 

magnetic profile M. The trends in the profiles clearly show that when M is increased, the nanofluid 
velocity decreases, while the inverse trend holds true for λ. When electromagnetic force is divided 
by viscous force, the result is the magnetic field effect. Thus, the magnetic field acts as a barrier to 
the movement of the liquid. As one might expect, a drop in momentum occurs when the M is raised. 
 

 
Fig. 2. Impact of M with λ on 𝑓′(𝑛) 

 
The profiles of the temperature distribution under the influence of the magnetic variable M and 

the thermo slip coefficient γ are shown in Figure 3. As both M and γ grow in value, it is clear that the 
temperature rises. This is because a larger value of the M causes the nanofluid's velocity to decrease, 
which in turn causes the temperature distribution to rise. 
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Fig. 3. Impact of M with γ on 𝜃(𝑛) 

 
The impact of the velocity slip component λ and Wiesenberger number We on the velocity 

profiles is apparent in the Figure 4. When the value of λ increases, the hydrodynamic boundary layer 
thins out and velocity decreases. The ratio of the fluid's relaxation time to a given process time is 
called the Wiesenberger number (We). When We increases, the flow velocity decreases and the 
hydrodynamic boundary level becomes thinner. 
 

 
Fig. 4. Impact of We with λ on 𝑓′(𝑛) 

 
Figure 5 illustrates how the velocity profile is impacted by the velocity slip coefficient λ and a 

power law coefficient n. Looking at this graph, we can observe that as n and λ are larger, the velocity 
gets smaller. The lower the velocity, the bigger the value of λ, as seen in Figure 5. Actually, the fluid 
receives a portion of the stretching velocity as λ increases. Newtonian fluids (𝑛 = 0) and non-
Newtonian fluids (n= 0.2, 0.5) both exhibit a drop in the velocity profile. 
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Fig. 5. Impact of n with λ on 𝑓′(𝑛) 

 
Both Figure 6 and Figure 7 show how the distributions of temperature and concentrations are 

affected through the thermal slip coefficient γ and the Brownian motion parameter Nb. Figure 6 
illustrates how the thermal slip component affects the thermal field. As γ and Nb rise, the 
temperature field is noticed to rise as well as Brownian motion describes the irregular behavior of 
the nanomaterials in fluids. This chaotic motion quickens the collision between the nanoparticles and 
the liquid's particles, which causes the molecules' kinetic energy to be transformed to the thermal 
energy, resulting in temperatures to increase. Since heat is a source of energy for particles, Brownian 
motion is proportional to temperature. It follows that it rises as the temperature rises. As seen in 
Figure 7, which depicts that as γ, Nb rise, the concentration falls, and the concentration profile shows 
the same impact. It is due to the fact the collisions between the molecules in a solvent can induce 
the particles to move randomly and hence concentration is decreased. 
 

 
Fig. 6. Impact of Nb with γ on 𝜃(𝑛) 
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Fig. 7. Impact of Nb with γ on 𝜙(𝑛) 

 
Nanoparticles physically migrate from a warmer to a zone that is cooler due to the temperature 

differential; this process is known as thermophoresis. In Figure 8 and Figure 9, we can observe how 
the trends of concentrations as well as temperatures are impacted by the thermophoresis parameter 
Nt and the thermal slip parameter γ. The thermal and concentration boundary levels are found to be 
increased by a surge in Nt. 
 

 
Fig. 8. Impact of Nt with γ on 𝜃(𝑛) 
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Fig. 9. Impact of Nt with γ on 𝜙(𝑛) 

 
Figure 10 shows how the temperature is affected by the velocity slip component λ, as well as the 

thermal slip component γ. At close range to the sheet, the temperature drops as the thermal slip 
parameter drops; however, beyond a certain distance g, this effect becomes blurry. As γ increases, 
the thermal transfer from the sheet to the fluid decreases, leading to a fall in temperature. 
 

 
Fig. 10. Impact of γ with λ on 𝜃(𝑛) 

 
In Figure 11, we can see how three different values of the We and the magnetic parameters affect 

the skin friction as a function of the velocity slip component. When both the We and Magnetic 
numbers go up, the skin friction goes up as well. This is because as the Weissenberg number is 
elevated the polymer chains create elastic stresses, which can lead to greater drag and hence skin 
friction rises. 
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Fig. 11. Impact of M and We with λ on −𝑓′′(0) 

 
Figure 12 shows the connection with the magnetic parameters’ values, the power-lax index and 

the type of skin friction. The local skin friction number is found to rise as values for M and n increase. 
In the physical sense, magnetic fields have the ability to alter the motion of fluids via Lorentz forces, 
which, depending on the field's orientation and strength, may raise or lower the fluids' velocity. 
However, the rheological behavior of the fluid determines how the power law index impacts skin 
friction. 
 

 
Fig. 12. Impact of M and n with λ on −𝑓′′(0) 

 
Figure 13 to Figure 16 exhibit the consequences of the slip boundary condition on the Skin friction 

and Nusselt number for various values of the Brownian motion parameters, thermophoresis, and 
thermal slip. 
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Fig. 13. Impact of Nt and γ with λ on −𝜃′(0) 

 

 
Fig. 14. Impact of Nt and γ with λ on 𝜙′(0) 

 

 
Fig. 15. Impact of Nb and γ with λ on −𝜃′(0) 
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Fig. 16. Impact of Nb and γ with λ on −𝜙′(0) 

 
When the values of Nt, Nb, and γ are raised, the comparison of these figures reveals that the 

variation in the rates of dimensionless heat transport is reduced. Likewise, when the values of the 
thermophoresis Nt, the Brownian motion Nb, and the thermal slip variables vary, the mass transfer 
rate also increases. As the anisotropic slip (the difference between the two-directional slip velocities) 
and thermophoresis parameter are increased, While the mass transfer rate rises, the thermal 
transmission rate falls. 
 
4. Conclusions 
 

In this present investigation is focused on MHD hyperbolic tangent fluid flow of power law index 
with slip boundaries, considering magnetic variable M, Weissenberg parameter We, power-law 
index, Brownian motion and Thermophoresis parameters Nb and Nt. Keller box technique is used for 
solving the problem and the outcomes of the investigation is summarized below 

i. The magnetic component induces that the temperature increases and velocity 
profile decrease. 

ii. For higher values of the power-law index, Weissenberg parameter and the velocity slip 
variable, lower the velocity and hence thinning of hydro dynamic boundary layer. 

iii. Thermal slip ensures raise the temperature. 
iv. The effect of Brownian motion component Nb is to raise the fluid's temperature while 

lowering its concentration. 
v. Thermophoresis parameter Nt enhances then we can observe increment in the thermal and 

concentration boundary layer. 
vi. Weissenberg number and power-law index raise Skin friction. 

vii. For the higher amount of Nt, Nb, Gamma, reduces the mass transport and rate of thermal 
transmission. 

 
Incorporating thermal factors, such as changing thermal conductivity, internal heat 

generation/absorption, and thermal radiation, is within the purview of future work for the current 
study. More thorough understanding could be gained by investigating the flow's response to both 
thermal and magnetic fields simultaneously. 
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