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Terminal synergetic control (TSC) is proposed as a control strategy for the temperature 
management of a plate heat exchanger. The controller is designed by incorporating a 
selected macro variable with a time-varying sliding surface. The primary objective is to 
maintain precise control over the outlet temperature of the cold water. To assess the 
convergence characteristics of the newly proposed TSC approach, the simulation results 
achieved using TSC featuring a time-varying macro variable are compared to those 
obtained from the conventional synergetic control (SC) method. With an appropriate 
macro variable, the simulation results indicate a notable improvement in the convergence 
rate provided by our designed TSC method, compared to the conventional one. The 
desirable property of control input, the chattering-free condition, achieved by both TSC 
and SC approaches emphasizes the advantage of the synergetic control-based techniques 
over the conventional sliding mode controller. In conclusion, synergetic control-based 
techniques offer superior potential solutions for nonlinear feedback control problems. 
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1. Introduction 
 

Heat exchangers find extensive utility across diverse industrial processes, e.g., oil and gas 
industries, food processing, and HVAC systems. A heat exchanger's efficiency is a vital aspect that 
influences the overall performance of the system. One of the ways to improve the efficiency of heat 
exchangers is by using advanced control strategies for the effective regulation of the exit 
temperature of the fluid. As presented in previous studies, both linear and nonlinear feedback control 
techniques have been applied to heat exchanger units [1–11]. Due to the fundamental nonlinear 
dynamics of heat exchangers, the sliding mode control (SMC) technique is commonly employed for 
temperature control in such systems and other applications [1-4,7,12]. SMC has shown itself to be 
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successful in controlling dynamic systems with uncertainties and disturbances. However, the primary 
issue with the conventional SMC approach is that it introduces chattering into the control input 
signal. Alternatively, synergetic control (SC) is introduced in this work. The SC control theory was 
initially proposed by Kolesnikov [13,14]. It is an effective and efficient method for controlling various 
engineering systems such as power systems, robotics, thermal systems, and epidemic systems [15-
27]. The desirable properties of SC techniques are global stability, robustness to bounded 
disturbance, chattering-free characteristics, and parameter insensitivity with properly selected 
macro variables [16-18,21,22]. 

Terminal synergetic control (TSC) is the enhanced control method in terms of improving 
convergence while maintaining the beneficial characteristics of the SC approach [21,28-31]. In the 
TSC method, both macro variables which are a function of an error, and/or the corresponding 
dynamic evolutions are selected so that the finite time convergence of the macro variables and errors 
are satisfied [21,28,29,32-37]. The TSC method has been implemented in various applications in 
previous literature [21,28-37]. 

In this paper, we design the TSC approach with a selected macro variable based on the time-
varying sliding surface. The control objective is to regulate the cold fluid temperature of the plate 
heat exchanger at its exit. The following are the highlights of this study 

i. There has been no previous research that presents the development of the TSC approach 
specifically for plate heat exchanger systems, to the author's knowledge. 

ii. As mentioned in Santi et al., [17,18], sliding surfaces can be utilized as a macro variable in the 
SC approach. Also, its convergence rate is affected by the selection of the macro variable [27]. 
To improve the convergence rate of the control system, the concept of the time-varying 
sliding mode is applied in the selecting procedure of the macro variable.  

iii. In our controller design procedure, the control input of the system (flow rate of hot water) is 
restricted to nonnegative values for a practical implementation. The auxiliary system serves 
to accommodate the effect of nonnegative restriction.  

iv. Our developed TSC method significantly improves in convergence rate over the conventional 
SC method.  

v. The chatter-free properties of control input are guaranteed by both control techniques (TSC 
and SC). 

 
2. Dynamic Model of the Plate Heat Exchanger 
 

The simplified schematic of the plate heat exchanger is presented in Figure 1. coT and hoT are the 

outlet temperatures of the cold and hot water, respectively. ciT and 
hiT are the inlet temperature of 

the cold and hot water, respectively. 
 

 
Fig. 1. Schematic diagram of the plate heat exchanger 
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The mathematical model of the plate heat exchanger is based on the conservation of energy 
principle [4,11]. Two differential equations can be constructed to describe the model as shown in Eq. 
(1) 
 

( ) ( )

( ) ( )

1

2

( ) ( ) ( ) ( )

1
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c
co co ho ci co
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where 1
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K

C V
=  and 2

,p h h h

UA
K

C V
= . The parameters of the system Eq. (1) are summarized as 

follows [1,4,11]: U refers to the overall heat transfer coefficient. A  is defined as the total heat 
transfer surface area that the fluid contacts. ,c cC and ,c hC represent the specific heat capacity of cold 

and hot water, respectively. 
c  and 

h  are the density of hot and cold water, respectively. hV  and 

cV  are the volume of the hot and cold sides, respectively. Cold water is flowing with a flow rate 

denoted as cU while hot water is supplied at a flow rate marked as ( )u t with the latter serving as the 

system's control input. 

The system’s state variable coT and hoT , the model represented in Eq. (1) can be transformed 

algebraically into an input-output state-space representation as follows 
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To control the outlet temperature of the cold water ( coT ) to a set point value, the state equations 

illustrated in Eq. (2) with the corresponding input-output equation can be expressed in the following 
equations 
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For the practicality of the controller design, Eq. (3) can be further modified by defining the state 

variables as 
1 1( ) ( ) crx t z t T= −  and ( )2 1 2 1( ) ( ) ( )c

ci

c

U
x t K z t T z t

V
= + −  where 

crT  is the set point 

temperature. The model can therefore be rewritten as the following state equation 
 

Let   2
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where 1 2 0[x , x ]Tx U , 
0 1 1 2 2( ) ( ) ( )f x f f x t f x t= − −  , 

0 1 1 2 2( ) ( ) ( )g x g g x t g x t= − − . It is worth to 

note that ( ) 0g x   [0, )t   since 
0x U . 

The constants variables of Eq. (4) are given by 2
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The state equations Eq. (4) are further used throughout the controller design process in the 
following section. 
 
3. Control of Heat Exchanger 
3.1 Control Objective 
 

To control the dynamic of the heat exchanger, the outlet temperature of the cold water ( )coT t  

needs to be regulated to the set point temperature 
crT  by the designed controller. An error 

corresponding to the control objective can then be expressed as Eq. (5) 
 

1 1 1 ,re x x= −               (5) 

 

where 1rx  is the reference signal corresponding to the desired output cold water 
crT . 

 
3.2 Controller Design 
 

According to previous studies, the controller design procedure for regulating the output 
temperature of the cold water is summarized and conducted as follows [13-21,24,28]. 

First, the macro variable is selected in terms of the error based on the control objective. In this 
paper, the macro variable is selected based on the sliding surface of the sliding mode control [38] 
 

1 1 1 1 2( ) ( ),e c t e c t = + +             (6) 

 

where the coefficient 1( )c t  and the function 
2( )c t  in Eq. (6) are such that 
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             (7) 

 
and 
 

2 2 2( ) exp( ),c t a k t= −              (8) 

 

where the exponent terms 1k  and 2k  are positive real numbers. The coefficients 1a  and 2a  are 

selected based on an initial condition as outlined in a study by Wang et al., [38]. This selection of 
coefficients is aimed at manipulating the macro variable surface to cross the initial condition, thereby 
enhancing the convergence time of the surface. 

Considering the physical characteristics of the heat exchanger system, the control input (fluid 
volumetric flow rate) should be of a non-negative value. Thus, the constraint of the control input 
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needs to be considered. To handle this non-negative constraint, we implement the concept of the 
auxiliary system as presented in the study by Qi et al., [39]. Consequently, the error is modified as 
follows 
 

1 1 1 1,re x x z= − −               (9) 

 

where the variable 1z  is the state variable of the auxiliary system. The auxiliary system is defined as 

Eq. (10) [39] 
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                       (10) 

 

where u u v −  and v  is a nominal control. 
 
Then, the dynamic evolution of the macro variable is defined as Eq. (11) [14,17,18,21,24,28] 
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1T  is the control parameter. The parameter 

1T  affect the rate of convergence of the macro 

variable to the manifold in Eq. (11). The exponent p  and q  are positive odd numbers and defined 

as 1 / 2p q  . In the light of Eq. (5), Eq. (9), and Eq. (10), Eq. (11) becomes 
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Finally, solve for the nominal control, ( )v t , Eq. (12) is then given by 
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Then, 
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Recall that v u u= − , thus, the nominal control v  can be determined as 
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3.3 Proof of Stability 
 
Define the Lyapunov function in terms of the macro variables as Eq. (16) [17,18,21,24,28] 
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V =                         (16) 

 
Then, the derivative of the Lyapunov function is calculated as Eq. (17) 
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From Eq. (5) and Eq. (6), the Lyapunov function in Eq. (17) becomes 
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Substituting v  into Eq. (18) yields 
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where 2
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   by construction. 

By lemma 1, we can conclude that the macro variables will converge to zero in a finite time 
st . 

Further description of lemma 1 as below [28,40,41] 
 
Consider the system in Eq. (20): 
 

                       (20) 

 

where  denotes a state vector and . If there exists a positive-definite and continuous 
Lyapunov function with the following inequality 
 

( )=x f x
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                    (21) 

where  is a positive constant and  is a constant exponent with .  Then, the following 
inequality 
 

                   (22) 

 

holds for given an initial time , and 
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where  is determined as 
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On the manifold 
1 0 = , the convergence of the error 1( )e t  to zero according time varying 

differential equation 1 1
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 together with appropriate value of the 

value the 1,a 2 ,a
1,k  and 2k , e.g. 

1 2 1 20, 0, 0a a k k   . However, it is worth noting that, by this 

condition, it will limit the initial condition to be crossed by the specified macro variable in Eq. (6). In 
conclusion, this implies that the heat exchanger's cold-water temperature can be properly controlled 
by the designed controller. 
 
4. Simulation 
 

This section encompasses the simulation of the controlled heat exchanger system, which was 
carried out to assess the viability and practicality of the newly proposed controller. The design 

parameters of the system are from Almutairi and Zribi [4] as follows: o20ciT C= , o80hiT C= , 
3 o300 /U W m C=  , 20.0672A m= , o

, , 4180 /p c p hC C J kg C= =  , 31000 /c h kg m = = ,
30.000537c hV V m= = , and 3150 / mincU cm=  The control input, the hot water flow rate, is also 

restricted to nonnegative values with 3

max 3000 / minu cm= . The parameters for the designed TSC 

method are set as follows: 
1 50T = , 7p = , 5q = , 1 0.0001k = , 

2 0.6k = , and 
1 3a = . Then, the 

corresponding coefficient 2a  is obtained as 2 29.46a = . To assess the convergence characteristics of 

the proposed TSC method, the simulation results achieved using the TSC method with time-varying 
macro variable are compared with the results obtained from the conventional SC method. In the 

conventional SC method, the macro variable is specified as 
1 1 1 1e a e = +  and the corresponding 

dynamic evolution is 
1 1 1 0T + =  [17,18,21]. 

Figure 2 shows the outlet temperature of the cold side. Both the TSC and SC control approaches 
effectively achieve the desired outcome of driving the outlet temperature to the designated set point 
of 40°C. The proposed TSC method shows a faster convergence rate (approximately 200 seconds 
faster) compared to the conventional one. Similarly, as presented in Figure 3, the TSC approach 
converges to the steady state temperature faster than the SC method for the output temperature of 
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the hot side. Figure 4 illustrates the flow rate of the hot water which is the system's control input. 
The control input under the TSC approach performs impulsive behaviour (spike) with a lower peak 
compared to the conventional SC approach. This smoother input and chattering-free condition are 
the preferable characteristics for the practical implementation of water flow rate manipulation. 

Furthermore, a simulation was conducted on the heat exchanger, subject to the bounded 
disturbances occurring between 500 seconds and 700 seconds. This simulation was performed using 

the TSC method's designed controller, with the disturbance ( )d t  defined as ( ) sindis disd t A t= , 

where 0.025disA =  and 0.025dis = . This disturbance occurs in the second equation of (4). The 

simulation results were compared with those obtained using the SMC approach with the sliding 

surface of 1 1 1smcs e a e= + , where 0.05smca = . This SMC approach was derived based on the reaching 

law of 1 ( )sws k sign s= − , where the switching gain is selected as 0.8swk =  [42-44]. The controller 

parameters are selected to ensure similar convergence rates for both the TSC and SMC methods. The 
time-domain responses of the cold and hot water in the heat exchanger system, considering the 
effect of the disturbance, are depicted in Figure 5 and Figure 6, respectively. The corresponding 
control inputs are presented in Figure 7. As evidenced in Figure 5, both the TSC and SMC methods 
effectively control the outlet cold water temperature to the desired setpoint. Additionally, Figure 6 
demonstrates the temperature of the hot water converges to its corresponding level under both 
controllers. As shown in Figure 7, the control input under the TSC method remains free from 
chattering as expected, whereas the control input of the SMC method exhibits chattering. Both parts 
of the simulation confirm that the TSC method's designed controller achieves the desired 
characteristics of improved convergence rates and chattering-free control input. 
 

 
Fig. 2. Time responses of the outlet temperature of cold water under the TSC 
and the conventional SC approach 
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Fig. 3. Time responses of the outlet temperature of hot water under the TSC 
and the conventional SC approach 

 

 
Fig. 4. Control inputs, the volumetric flow rate of hot water, under the TSC and 
the conventional SC approach 
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Fig. 5. Time responses of the outlet temperature of cold water under the TSC 
and the conventional SMC approach 

 

 
Fig. 6. Time responses of the outlet temperature of hot water under the TSC and 
the conventional SMC approach 

 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 117, Issue 1 (2024) 189-202 

199 
 

 

 
Fig. 7. Control inputs, the volumetric flow rate of hot water, under the TSC and 
the conventional SMC approach 

 
5. Conclusions 
 

In this paper, to control the outlet temperature of the heat exchanger, we develop the TSC 
method with a selected macro variable based on the time-varying sliding surface. The proposed TSC 
method's stability is thoroughly investigated within the framework of the control system. The 
investigation demonstrates that the proposed TSC method ensures stability for the controlled heat 
exchanger system. The simulation results indicate the notable improvement in the convergence rate 
provided by our designed TSC method, compared to the conventional SC method. In addition, the 
chattering-free condition of control input raises the value of the TSC technique, compared to the 
conventional SMC method. Consequently, applying the TSC technique offers a feasible and attractive 
method for controlling the temperature of heat exchanger systems. 
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