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The purpose of this research was to study on performance of a heat pump dryer using 
R32 refrigerant by recovering waste heat from an external condenser. Drying was carried 
out with drying temperatures of 45, 50 and 55 °C and water flow rates in the heat 
exchanger of 2, 3 and 4 L/min. Criteria for evaluating performance of heat pump dryer 
include: drying rate (DR), specific moisture extraction rate, specific energy consumption 
(SEC) and coefficient of performance of heat pump (COPh). The result shown that the 
performance of a heat pump dryer with heat recovery is higher than that of a traditional 
heat pump dryer. It was also found that increasing in drying temperature and water flow 
rate in heat exchanger resulted in an increase in the drying rate, power of the heat pump 
dryer and the specific moisture extraction rate. Whereas the specific energy consumption 
had decreased. 
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1. Introduction 
 

As electricity demand and prices increase around the world, there are serious concerns about the 
environmental impact and influence of energy policies of countries around the world [1-3]. For 
example, the problem of global warming causes the loss of the ozone layer and air pollution, PM2.5, 
etc. In developed countries, it has been found that the drying process is widely used to create 
economic prosperity, accounting for 9 - 25% of the country's total energy consumption [4-6]. This is 
considered to be a process that uses a lot of energy, especially in the fields of food and agriculture 
[7,8]. Nowadays, energy saving technology is very important to the drying industry. A well-known 
energy saving device is a heat pump, which is a device that can convert the latent heat of the 
refrigerant into sensible heat in the condenser [9]. Because of its excellent energy efficiency, wide 
temperature adjustment range, high drying efficiency, excellent controllability and outstanding 
drying quality [10-13]. Since heat pump drying is a closed drying system, the pollution problems 
caused by drying exhaust gases are relatively small [14]. In addition, there are such advantages as 
effective control of relative humidity and good sanitary conditions. Because it is clean and safe from 
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contamination of dried products [15,16]. The disadvantages of heat pump dryers are that they have 
complicated systems and equipment that require experts to install and take good care of the system. 
The use of heat pump dryers in industry is found to be mainly used in the drying food industry, such 
as meat, fish, vegetables, and fruits, etc. Comparing the drying process between drying using an 
electric heater and a heat pump dryer, it was found that the heat pump dryer has relatively less 
energy consumption. As a result, the cost of producing dried products is kept low as well. Past studies 
by researchers have found that there have been several ways to improve the performance of heat 
pump dryers, such as heat recovery using heat exchangers that use the refrigerant R134a [17]. Study 
of the effect of different temperatures on drying time on coefficient of performance (COP) and 
specific moisture extraction rate (SMER) [18]. Study of the performance coefficient of a heat pump 
dryer with an air bypass pipe compared to a system without an air bypass pipe, which can reduce 
energy consumption but the air temperature at the bypass pipe is lower than 40◦C [19]. Dual drying 
system design using twin air compressors [20]. In addition, studies have been conducted to reduce 
energy consumption, such as using R410a refrigerant in heat pump dryers to reduce energy 
consumption by as much as 51% and reduce drying time by 69% [21]. A study of heat pump drying 
using refrigerant R744 combined with a new heat exchange system design can reduce energy use by 
7.2% [22]. Studying the design of a new closed air flow pipe and using the refrigerant R134a can 
reduce electrical energy consumption [23]. It was also found that studies on the use of other types 
of energy were also studied, including studies of heat pumps combined with the use of solar energy 
[24-27]. Study of the application of fossil energy [28]. Using infrared with a heat pump dryer [29]. In 
addition, there found that researchers studied the performance of heat pump dryers related to the 
selection of refrigerants, including a study of the use of refrigerants CO2 and R134a in heat pump 
dryers to increase the specific moisture extraction rate and coefficient of performance were 13% and 
8%, respectively [30]. Past research studies have found that most heat pump dryers use refrigerants 
that cause high global warming problems (Global Warming Potential, GWP), such as R22, R134a, 
R407C and R410a, which have GWP of 1,810, 1,430, 1,774 and 2,090, respectively [31-34]. From 
related research, it was found that most heat pump dryers have a method of controlling the 
temperature of drying chamber by using an external condenser, which wastes heat mostly into the 
atmosphere. It would be beneficial to use this waste heat to increase the temperature of the drying 
chamber. Therefore, this research aims to study how to increase the performance of a heat pump 
dryer using R32 refrigerant by increasing the temperature of the drying room by using heat recovery 
techniques to increase the temperature of the drying room because of heat recovery can be used to 
reduce energy consumption in drying. and increase drying efficiency with a heat pump dryer. and 
compare the performance of heat pump dryers with and without heat recovery. 
 
2. Methodology 
2.1 Experiment Setup 
 

The heat pump dryer used in the experiment can be shown as shown in Figure 1 and a diagram 
showing the equipment and working cycle of the heat pump dryer system is shown in Figure 2, which 
can explain the components and working principles as follows. 
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Fig. 1. Heat pump dryer 

 

 
Fig. 2. Schematic diagram of heat pump dryer and instruments  

 
The heat pump dryer used in this study for experiments under normal drying conditions consists 

of a 0.75 kW compressor, a 4.35 kW internal condenser, a 4.35 kW external condenser, an expansion 
device, a 3.50 kW evaporator, air circulation fan, drying chamber size 35 x 70 x 30 cm and maximum 
capacity of drying chamber 15 kg. For the experimental conditions, various equipment was added, 
consisting of a water tank measuring 30 x 58 x 36cm, first heat exchanger made of pipe with a 
diameter of 3.14 cm and a length of 335 cm contained within the water tank and second heat 
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exchanger, sizing of 28 cm width and 79 cm height. It was made from pipe with 2.10 cm diameter 
and 890 cm length, placed at the entrance of drying chamber. The installation of the instrumentation 
and control equipment is shown in Figure 2. 
 
2.2 Experimental Method 
 

The R32 refrigerant was used for heat pump dryer. The first case, heat pump dryer operated as 
traditional. The experiment was conducted under the drying temperature of 45, 50 and 55°C, drying 
chamber air velocity of 1, 1.5 and 2 m/s. The second case, heat pump dryer operated by recovering 
heat. The experiment was conducted under the drying temperature of 45, 50, and 55 °C and water 
flow rate in the heat exchanger of 2, 3 and 4 L/m, respectively. Pork was selected for drying product. 
Pork was cut lengthwise to a thickness of approximately 0.1 cm, a length of approximately 12 cm, 
and initial weight of 1,000 grams a batch with average initial moisture content of 275% d.b. which is 
then dried until the final moisture remains approximately 112% d.b. The moisture determination 
according to AOAC [35] standard was used. 

Various values were measured and recorded during the experiment including drying air 
temperature, refrigerant temperature, water temperature, refrigerant pressure, product weight 
changes throughout drying period, electrical power and electrical energy consumption, etc. The 
quality of the product is not determined, thus in further study this aspect should be considered. 
 
2.3 Analysis 
 

The analysis of the experimental results includes moisture content, drying rate, specific moisture 
extraction rate and specific energy consumption. The details of the analysis are as follows. 

Moisture content, MC, was carried out by preparing some products to dry in an electric oven at 
103°C for 72 hours according to AOAC (2019) standard. The equation calculates moisture content at 
each time period as shown in Eq. (1). 
 

−
=

w d
MC

d
              (1) 

 
where  MC is a moisture content at each time period (d.b.), w is a wet mass of sample product at 
each time interval (g), d is a dried mass of sample product (g). 

Drying rate, DR, is a variable indicating the value of moisture that can evaporate per unit of time. 
The relationship is as shown in Eq. (2) [36,37]. 
 

w
DR

t


=


              (2) 

 

where DR is drying rate (g/min), w is water evaporates (g), t is time (minutes). 
Specific moisture extraction rate, SMER, is the amount of water that evaporates from the product 

per energy used. The relationship equation can be written as Eq. (3) [38,39]. 
 

i fSMER
w w

E
=

−
             (3) 
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where SMER is specific moisture extraction rate (kg/kWh), wi is wet mass before drying (kg), wf is wet 
mass after drying (kg), E is electrical energy consumption (kWh). 

Specific energy consumption, SEC, is a value that indicates the efficiency of energy consumption. 
which has a relationship as in Eq. (4) [40,41]. 
 

3.6

i f

E
SEC

w w
=

−
             (4) 

 
where SEC is specific energy consumption (MJ/kg), wi is wet mass before drying (kg), wf is wet mass 
after drying (kg), E is electrical energy consumption (kWh). 

The coefficient of performance of heat pump, COPh, is defined as the ratio of the heat transfer 
rate at the internal condenser to the electrical energy used by the compressor, as in Eq. (5) [42]. 
 

c
h

c

Q

P
COP =               (5) 

 
where COPh is coefficient of performance of heat pump (decimal), Qc is a heat rate at condenser (kW), 
Pc is power of compressor (kW). 
 
3. Results 
 

Figure 3 and Figure 4 show the moisture ratio of the product in the case of experiments under 
traditional heat pump dryer conditions and heat recovery conditions, respectively. It was found that 
the product moisture decreased rapidly during the first 35 minutes for the case of normal drying and 
the first 25 minutes for the case of heat recovery. Thereafter the product moisture will have a slower 
rate of decrease and similarly the product temperature will increase with increasing drying time. It 
was found that an increase in the drying temperature, hot air velocity and water flow rate in the heat 
exchanger would result in a decrease in the drying time. It was also found that in the case of 
increasing the drying temperature and water flow rate resulting in increased heat transfer, the 
amount of moisture evaporation from the product increases [18,24]. Similarly, in the case of 
increasing hot air velocity, resulting in an increase in the convection coefficient, which results in an 
increase in heat transfer as well, resulting in a reduction in the drying time. Comparing the moisture 
ratio, it was found that the drying time of heat recovery conditions are higher than the traditional 
heat pump dryer condition in all experimental conditions, with an average of 13.89 minutes or 
12.64%. The minimum drying time at 85 minutes occurred under the condition of drying temperature 
at 55°C and water flow rate 4 L/min and maximum drying time at 120 minutes occurs in drying 
temperature at 45°C and hot air velocity 1 m/s. 
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Fig. 3. Moisture ratio in the case of experiment under 
traditional heat pump dryer conditions in each 
experimental condition 

 

 
Fig. 4. Moisture ratio in the case of the heat recovery in each 
experimental condition 

 
Figure 5 shows the drying rate of the product under each experimental condition. It was found 

that the drying rate in the case of heat recovery was higher than in the case of traditional heat pump 
dryer condition in all experimental conditions about 6.10g/h or 4.40% of all experimental conditions. 
It was also found that the highest drying rate occurred in the drying temperature of 55°C and the 
water flow rate of 4 L/min was 2.63 g/min, and the lowest drying rate of 2.14 g/min occurred in the 
drying temperature of 45°C and the hot air velocity of 1 m/s. This could be explained with the same 
reasons as Figure 3 and Figure 4. The use of waste heat results in an increase in the temperature of 
the hot air and the temperature of the product, causing more heat transfer rate and increasing 
moisture evaporated from product [15,40]. It causes the drying rate increased. 
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Fig. 5. The drying rate in each experimental condition 

 
Figure 6 shows the power of the heat pump dryer at each experimental condition. It was found 

that the power of the heat pump dryer in case of traditional heat pump dryer condition and heat 
recovery conditions was similar in all experimental conditions. It was found that there was an average 
difference in electrical power about 0.011kW or 0.907% of the case of traditional heat pump dryer 
condition. It was also found that when increasing the drying temperature by 10%, the power of the 
heat pump dryer in both conditions increased by 2.90% and 3.10%, respectively. Similarly, if the 
drying temperature is kept constant in the case of traditional heat pump dryer condition, increasing 
the flow rate by 50% will increase the heat pump dryer power by an average of 3.44%. In the case of 
heat recovery drying, increasing the hot air velocity by 50% increases the heat pump dryer power by 
an average of 3.26%. It was also found that the effect of drying temperature has a greater effect on 
the power of heat pump dryer than water flow rate and hot air velocity. It could be seen that the 
power of heat pump dryer increased with increasing the drying temperature, water flow rate and air 
velocity. This could be explained that increasing the drying temperature would cause the vapor 
compressor more work to produce a sufficiently high pressure in the refrigerant at desired drying 
temperature. This process results in an increase in the heat load on the evaporator. As a result, the 
power of the heat pump dryer increased. 
 

 
Fig. 6. Electrical power of the heat pump dryer at each 
experimental condition 

 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

T45V1
T45Q2

T50V1
T50Q2

T55V1
T55Q2

T45V1.5
T45Q3

T50V1.5
T50Q3

T55V1.5
T55Q3

T45V2
T45Q4

T50V2
T50Q4

T55V2
T55Q4

Sy
st

e
m

 p
o

w
e

r,
 k

W

Drying conditions

External Hot water



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 118, Issue 2 (2024) 34-46 

41 
 

Figure 7 shows the specific water withdrawal rate at each experimental condition. This value 
indicates the efficiency of energy use in the drying process with a heat pump dryer. If the specific 
moisture extraction rate increases, it means that the drying process with this heat pump dryer has a 
high level of energy efficiency. It was found that the highest specific moisture extraction rate 
occurred in the heat recovery drying case of 0.108 kg/kWh under the condition of a drying 
temperature of 55°C and a water flow rate of 4 L/min. If considering only the power consumption, it 
would be found that in this condition the heat pump dryer uses the highest power. However, at this 
condition the drying time is shortest. Considering under the condition that the water evaporates from 
the product is the same, the condition with a short drying time has a high specific moisture extraction 
rate and this value is inversely proportional to the specific energy consumption as shown in Figure 8 
[15,38]. In addition, it was found that the specific moisture extraction rate in the case of normal 
drying was between 0.081–0.097 kg/kWh and in the case of heat recovery the value was between 
0.091–0.108 kg/kWh. It was found that in all experimental conditions in the case of heat recovery 
the specific moisture extraction rate was higher than in the case of normal drying. 
 

 
Fig. 7. Specific moisture extraction rates at each 
experimental condition 

 

 
Fig. 8. Specific energy consumption at each experimental 
condition 

 
Figure 9 shows the coefficient of performance of heat pump in each experimental condition. It 

was found that the coefficient of performance of heat pump in each experimental condition had very 
little difference, with an average between 4.34 - 4.42 [17,23,41]. In other words, the difference in the 
coefficient of performance of heat pump in each experimental condition did not exceed 0.02. As a 
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result, the coefficients of heat pumps in each experimental condition were not significantly different. 
Therefore, it could be said that the drying temperature, water flow rate and hot air velocity have very 
little effect on coefficient of performance. 
 

 
Fig. 9. Heat pump coefficient of performance in each 
experimental condition 

 
Table 1 and Table 2 show an overview of performance analysis of heat pump dryer in case of 

traditional heat pump dryer condition and recovery heat conditions, respectively. The summary data 
is an average from the beginning until the end of the experiment. It was found that, in case of 
traditional heat pump dryer condition, drying temperature of 55°C and an air velocity of 2 m/s had a 
drying rate of 153.64 g/h, a specific moisture extraction rate of 0.097 kg/kWh and the highest 
coefficient of performance was 4.42. this condition gives the lowest specific energy consumption. It 
was found that, in case of recovery heat conditions, at temperature of 55°C and a water flow rate of 
4 L/min, the drying rate was 159.57 g/h, the specific moisture extraction rate was 0.108 kg/kWh, and 
the highest heat pump coefficient of performance was 4.42. In addition, it is a condition that gives 
the lowest specific energy consumption. When comparing the overall data of analysing the 
performance of heat pump dryers in in case of traditional heat pump dryer condition with recovery 
heat conditions, it was found that in the heat recovery conditions would have higher heat pump 
performance than in the case of traditional heat pump dryer condition. That is, the drying rate, 
specific moisture extraction rate and coefficient of performance of heat pump are greater. Including 
the specific energy consumption is lower as well. 
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Table 1 
Analysis of experimental results in the case of normal drying 
Description Conditions 

T45 
V1 

T45 
V1.5 

T45 
V2 

T50 
V1 

T50 
V1.5 

T50 
V2 

T55 
V1 

T55 
V1.5 

T55 
V2 

Initial weight, g 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 
Initial moisture 
content, %d.b. 

275 275 275 275 275 275 275 275 275 

Final moisture 
content, %d.b. 

112 112 112 112 112 112 112 112 112 

Drying time, h 1.95 1.90 1.78 1.88 1.82 1.73 1.75 1.68 1.62 
Drying rate, g/min 2.14 2.19 2.34 2.21 2.29 2.40 2.38 2.48 2.58 
Electrical energy, 
kWh 

3.10 3.02 2.92 3.00 2.89 2.76 2.79 2.68 2.57 

Specific moisture 
extraction rate, 
kg/kWh 

0.081 0.083 0.090 0.083 0.086 0.093 0.086 0.091 0.097 

Specific energy 
consumption, MJ/kg 

44.70 43.55 42.02 43.17 41.64 39.73 40.11 38.58 37.06 

Heat pump 
coefficient of 
performance, COPh 

4.34 4.36 4.40 4.35 4.40 4.42 4.38 4.41 4.42 

 
Table 2 
Analysis of experimental results in the case of heat recovery 
Description Conditions 

T45 
Q2 

T45 
Q3 

T45 
Q4 

T50 
Q2 

T50 
Q3 

T50 
Q4 

T55 
Q2 

T55 
Q3 

T55 
Q4 

Initial weight, g 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 
Initial moisture 
content, %d.b. 

275 275 275 275 275 275 275 275 275 

Final moisture 
content, %d.b. 

112 112 112 112 112 112 112 112 112 

Drying time, h 1.87 1.80 1.72 1.78 1.72 1.65 1.70 1.63 1.57 
Drying rate, g/min 2.23 2.31 2.43 2.38 2.48 2.58 2.45 2.53 2.63 
Electrical energy, 
kWh 

2.75 2.63 2.50 2.65 2.53 2.41 2.53 2.43 2.31 

Specific moisture 
extraction rate, 
kg/kWh 

0.091 0.095 0.100 0.094 0.099 0.104 0.099 0.103 0.108 

Specific energy 
consumption, MJ/kg 

39.61 37.84 36.07 38.19 36.42 34.65 36.42 35.01 33.24 

Heat pump 
coefficient of 
performance, COPh 

4.33 4.35 4.39 4.34 4.39 4.41 4.39 4.42 4.42 

 
4. Conclusions 
 

This research studied the performance of a heat pump dryer using heat recovery from external 
condenser to increase drying air temperature. To compare the performance of heat pump dryer in 
the case of in case of traditional heat pump dryer condition and heat recovery conditions. The results 
of the study found that an increase in the drying temperature and water flow rate in the heat 
exchanger in the case of heat recovery conditions will affect the drying rate, power of heat pump 
dryer and specific moisture extraction rate to be increased. Meanwhile, the specific energy 
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consumption decreased more than in the case of traditional heat pump dryer condition. It was also 
found that an increase in the drying temperature, water flow rate in the heat exchanger and hot air 
velocity had a little effect to the coefficient of performance of the heat pump dryer. 
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