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TiO2 films has been widely used and deposited on various substrates due to its potential 
application as a photocatalyst. However, on unglazed or glazed ceramic tiles, TiO2 films 
on both substrates commonly resulted in a cracked morphology of the film. The cracks 
present usually lead to delamination and peel off of film from substrate and reduce its 
photocatalytic efficiency. Therefore, a binder needs to be added into the composition 
of TiO2 sol in an effort to eliminate cracking when deposited on ceramic substrates. In 
this work, silica (SiO2) powders were added into TiO2 sol preparation as an additive to 

act as a binder, in order to improve the microstructure of TiO2 films on unglazed ceramic 
tiles by sol-gel dip-coating. TiO2 sol with different amount of SiO2 (1, 3, 5 mol%) were 
utilized during film deposition. The crystalline phases were characterized by XRD, while 

film morphologies were analysed by SEM. The photocatalytic activity was evaluated by 
degradation of methylene blue under UV irradiation according to ISO 10678. The 
reduction of cracks formation was observed at a high amount of SiO2 (5 mol%) added 

and resulted in lower thickness of the films. The reduced cracks and delamination of 
film ensures film to bind closely to the substrate hence reducing film thickness. The 

highest degradation observed is at 3 mol% SiO2 where the microstructure consists of 
small cracks which promoted to more exposure of UV irradiation that enhanced the 
film’s photocatalytic activity.  
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1. Introduction 
 

TiO2 is widely known for its photocatalysis [1], air and waste water purification [2], 
superhydrophilicity and self-cleaning properties [3,4]. Originally, TiO2 nanosized particles were 
synthesized to remove organic pollutants in water [5,6] and now it can be immobilized by different 
deposition methods on different types of substrates such as glass [2,7-9], stainless steel [10-12] and 
ceramics substrates [4,13-15]. 
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However, past studies showed that it is difficult to deposit TiO2 films onto ceramic tiles when they 
often resulted in cracks and peeling off of the film from the substrate. This problem is due to the 
tensile stress during annealing stage of the films processing [16,17]. Therefore, adding additives to 
function as a binder is a promising approach in an effort to produce a microstructure that is crack 
free with continuous layer covering the substrate, henceforth improving the properties of the TiO2 
films.  

Silicon dioxide or silica (SiO2) has been introduced into TiO2 film to create a more durable TiO2 
film with improved morphology, mechanical stability and photocatalytic performance [2-4]. In most 
of these work, SiO2 sol is synthesized using a precursor such as tetraethoxysilane (TEOS), which is 
then added into TiO2 solution during the sol-gel process, which later resulted in TiO2- SiO2 composite 
films. The addition of SiO2 improves the microstructure and mechanical stability of TiO2 films as well 
as its photocatalytic performance [2,10,18]. Latthe et al., [3] synthesized TiO2- SiO2 films deposited 
on polycarbonate substrate with SiO2 content from 7 to 20 vol %. Addition of SiO2 resulted in a 
smooth and crack-free morphology which contributes to high photocatalytic performance. Zhang et 
al., [4] synthesized TiO2- SiO2 films and deposited on glazed ceramic tiles. The addition of SiO2 had 

reduced the size of particle aggregates on the surface of the film which resulted in a uniform 
distribution of particles and smooth film. The reduced particle size and smooth film surface 

contributed to the high photocatalytic activity of TiO2 films with the addition of SiO2 and which is also 
in agreement with Aziz and Sopyan [2]. Aside from smooth and crack free morphology, it was also 
deduced that the addition of SiO2 helps to create new catalytic active sites due to interaction 
between TiO2 and SiO2 [6]. This is due to the mixed metal oxide improves the ability of the surface 
adsorption and increases surface hydroxyl group of the photocatalyst [19].  

On the other hand, adding SiO2 has created a gateway for high thermal temperature treatment 
for TiO2 films. Aziz and Sopyan [2] synthesized TiO2- SiO2 thin films deposited on glass substrate via 
spin-coating with different SiO2 content. It was found out that amorphous-to-anatase and anatase-
to-rutile transformation shifts towards higher temperature up to 900˚C as SiO2 composition increases 
compared to without SiO2 addition which is at 650˚C. This occurrence is also in agreement with 
Tobaldi et al., [18] which synthesized TiO2 - SiO2 powders and stated that the bigger crystal structure 
of SiO2 blocking and suppressing the TiO2 densification and crystal growth thus making it possible to 
heat treat TiO2 at temperatures higher than 500˚C [20]. 

Based on the review conducted, it should be highlighted that most work reviewed on the effect 
of SiO2 on TiO2 films were deposited on glass and steel substrates. The works involved prior 

synthesization of SiO2 sol using SiO2 precursor such as TEOS, which is later mixed into the TiO2 sol. 
Therefore, it is of our interest to study the potential of TiO2-SiO2 film on ceramic substrate, mainly on 

unglazed ceramic tile to initiate works for antimicrobial application. In our work, SiO 2 powders is used 
as SiO2 source which is directly added into the TiO2 sol prior ageing process. This is an effort to 

improve the film’s microstructure in which is crack free with uniform layer and fully covering the 
surface of the substrate. This will also contribute to the photocatalytic activity of the films by 
degradation of methylene blue. In this paper, the effect of SiO2 amount added on the microstructure 
and photocatalytic activity of TiO2 film on unglazed tile is reported.  
 
2. Methodology 
2.1 Preparation of TiO2 Films 

 
The method of making TiO2 sol with SiO2 are as follows. Titanium(IV) isopropoxide (TTIP) (Sigma 

Aldrich Co.) was used as TiO2 source. Ethanol was used as solvent, hydrochloric acid as catalyst and 
water for hydrolysis. Separate sols, sol A and sol B, were prepared with water, ethanol and 
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hydrochloric acid in sol A and TTIP and ethanol in sol B. Next, sol B were added dropwise into sol A. 
2.5g of Degussa P25 was added as the anchor for the growth of TiO2. Silica fumed powder was added 
in different amounts (1, 3, 5 mol%) to study the effect of SiO2 on the films. Then, the solution was 
kept at room temperature for 48 hours for ageing process.  

The films were prepared by dip-coating using above prepared TiO2 sol on glass and unglazed 
ceramic tile with a withdrawal rate of 0.5mm/s and 5s dwelling time. The coated substrates were 
oven dried at 110˚C for 30 minutes. The dipping step was repeated for  5 dipping times. Then the films 
were heat treated at 500˚C for 1 hour with heating rate of 2˚C/min. 

 
2.2 Characterization of TiO2 Films 

 
The crystal phase composition of the TiO2 films deposited on unglazed tile was studied by 

Glancing Angle X-ray diffraction (GAXRD) method in the 2θ range of 10˚-80˚ at a grazing angle of 4˚ 
by using the PANalytical X’PERT PRO MPD Model PW 3060/60 with Cu Kα of 1.54060Å and generator 
settings at 30 mA and 40 kV. The average crystallite size, L, were calculated at strongest XRD line 

[(101) at 25˚], [(110˚) at 27˚] by Scherrer’s equation [21]: 
 

L=Kλ/βcosθ 
 
Film surface microstructure was examined by Scanning electron microscope (JEOL model JSM-

6010PLUS/LV). Film thickness was determined by cross-section SEM analysis. 
 

2.3 Photocatalytic Activity 
 
 Degradation of methylene blue (MB) was performed following the ISO 10678:2010 [22]. The 

samples were exposed under UV radiation (Sankyo Denki, 20 W, intensity, Ep = 124.34 W/m2) for 24 
hours in order to decompose any possible remaining organic contaminants by photocatalytic 
oxidation. Then, the samples were immersed in 25 mL of 10ppm aqueous MB solution each one and 
left in the dark for another 24 hours for pre-adsorption of substrates. This process is necessary 
because the substrates tend to absorb the dye molecules. After the pre-adsorption of substrates, the 
adsorbed solution was replaced by a new solution (25 mL, 10ppm) and the samples were exposed to 
UV-light (Sankyo Denki, 20 W, intensity, Ep = 124.34 W/m2). The degradation of MB was measured 

every 1 hour for 5 hours using a spectrophotometer (SHIMADZU UV-1700, cell length, d = 10 mm) by 
determining the absorption spectrum at 664nm wavelength. A reference sample (blank) was kept in 

the dark and the absorption spectrum was also measured at the same time interval. 
The specific degradation rate R, was calculated from Eq. (1). 

 

R =
∆Aλ×V

∆t×ε×d×A
              (1) 

 
where ΔAλ is the absorption difference from one time interval to another, V is the volume of MB 
solution, Δt is the time difference, ε is the MB molar extinction coefficient at 664nm, d is the 
measuring cell length used at the spectrophotometer and A is the contact area from the MB solution 
and the catalyst.  

The degradation rate, R, of the irradiated and dark samples makes it possible to calculate the 
specific photocatalytic activity, PMB by Eq. (2). 

 

PMB = Rirr − Rdark              (2) 
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Finally, the photonic efficiency, ζMB can be calculated using Eq. (3).  
 

ζMB =
PMB

Ep
× 100              (3) 

 
where Ep is the UV radiation intensity. 

 

3. Experimental Results  
3.1 Characterization of TiO2 Films 

 
Figure 1 shows XRD pattern of TiO2 film with different SiO2 content on glass slides and unglazed 

tiles. XRD patterns show all samples exhibit a mixture of anatase and rutile crystalline phase after 1 
hour heat treatment at 500˚C. Peaks identified as anatase (1 0 1) are at 25.33˚, 37.90˚ and 48.05˚ 

while rutile (1 1 0) is at 27.50˚, 41.28˚ and 54.00˚. Note that for films on unglazed tile, crystalline peak 
observed at 26.65˚ represents quartz which is attributed to the substrate’s element.  

 

  
(a) (b) 

Fig. 1. XRD pattern of TiO2 films on (a) glass (b) unglazed tile 

 
It was observed as the amount of SiO2 is increased, the intensity of anatase peak decreased at 

25.3˚ for both substrates. This observation is much more obvious with films on glass slides. Besides 
that, the reduction of rutile peak intensity at 54.0˚ was similarly detected. With the increasing  

content of SiO2, the intensity of anatase peak decreases. This implies that with the existence of SiO 2, 
the crystal growth and arrangement of TiO2 is suppressed and retarded resulting in low crystallinity 

phase [2,20,23]. The addition of SiO2 has a suppressive effect on the growth of TiO2 since the SiO2 or 
Ti-O-Si bond blocks the contact among TiO2 particles and inhibits grain growth during calcination 
process.  

Table 1 shows the crystallite sizes of anatase phase without and with SiO2 addition. In this study, 

the addition of SiO2 into TiO2 films did not significantly change the crystal size of TiO2 anatase. 
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Nevertheless, there are findings that claimed crystallite size of anatase becomes smaller with the 
addition of SiO2 due to the suppressive effect of SiO2 on TiO2 grain growth [4,6,10,18]. The SiO2 matrix 
behaves as a barrier, thus reducing the coarsening of anatase by preventing titania particles from 
coming into mutual contact and therefore delaying the growth of anatase crystal size [24]. 

 
Table 1 
Anatase crystallite size of TiO2 coating without and with SiO2 addition  

SiO2 Addition Anatase crystallite size (nm) 

Glass Unglazed tile  

Without SiO2 17.28 19.21 

1 mol %  19.20 21.60 

3 mol %  19.20 17.28 

5 mol %  17.28 19.20 

 

Figure 2 shows SEM surface images of TiO2 films with different amount of SiO2 on glass slides and 
unglazed tiles. It was observed that on glass, Figure 2(a) to 2(d), showed a smooth surface of the films 

produced in contrast to the films deposited on unglazed tile, Figure 2(e) to 2(h). This is due to the 
nature of the substrates in which glass has a smoother surface than unglazed tile [17]. It is more 
clearly observed when comparing films without SiO2 addition where TiO2 film on glass showed a 
smooth coating while on unglazed tile showed cracks as shown in Figure 2(a) and 2(e) respectively. 

Referring to the effect of SiO2 addition on the microstructure of TiO2 film, it is seen that the 
microstructure of films deposited on unglazed tile is much more affected compared to films on glass 
substrate. For example, films with 1 and 3 mol % SiO2 on unglazed tile showed more cracks in contrast 
to film with 5 mol % SiO2. With 5 mol % SiO2, the formation of cracks is reduced and no agglomerates 
were seen. The size of agglomerates on the surface of the film reduces with an increase of SiO2 
addition and particles present are less visible. This result is in agreement with the report that SiO2 
benefits the dispersion of TiO2 particles [4]. In the case of sol-gel coated films, Latthe et al., [3] 

reported that the capillary forces might have generated during drying process which provides cracks 
and propagation on the surface of the films and in this case, 1 and 3 mol% of SiO 2 was not sufficient 

to avoid the propagation. However, Aziz and Sopyan [2] claimed that the cracked surface may result 
in more exposure to UV irradiation and which will enhance the film’s photocatalytic activity.  

 
Without SiO2 

  
 (a) (e) 
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1 mol % SiO2 

  
 (b) (f) 
3 mol % SiO2 

  
 (c) (g) 

5 mol % SiO2 

  
 (d) (h) 

Fig. 2. SEM surface image of TiO2 films without and with SiO2 on (a-d) glass (e-h) unglazed tile 

 
Figure 3 shows cross-sectional SEM images of TiO2 films with different amount of SiO2 on glass 

and unglazed tile at 5 dipping times. It is clearly seen that the film’s thickness on unglazed tiles is 
greater than glass. The greater thickness is due to the nature of ceramic substrate utilized. The 
rougher surface of the tile would ensure better hold onto the TiO2 colloids during dip-coating until 
heat treatment [17]. In contrast to the smooth surface of the glass when dip-coated, TiO2 colloids slip 
from the surface due to gravity. The average thickness of TiO2 films on glass slides without SiO2, 1 
mol % SiO2, 3 mol % and 5 mol % SiO2 is 1.94, 2.59, 2.90 and 1.21 µm respectively. While on unglazed 

tile, the film’s average thickness is 15.10, 17.77, 17.37 and 14.62 µm for films without SiO 2, 1 mol %, 
3 mol % and 5 mol % SiO2 respectively. The decrease in thickness with an increased addition of SiO2 

is due to the reduced cracks of the film, creating a denser and more compact microstructure. This 
indicates the film with 5mol % SiO2 addition is more tightly bonded with both substrates. This finding 

is also similar to Shi et al., [25] which stated a lower film thickness will create more compact and high 
adhesion and hardness of films, while greater film thickness creates a looser microstructure resulting 
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in lower adhesion and hardness. Furthermore, a lower film thickness will have a better advantage 
such as lower surface roughness, better film adhesion to substrate and good mechanical stability of 
the film [26-29]. 

 
Without SiO2 

  
 (a) (e) 
1 mol % SiO2 

  
 (b) (f) 

3 mol % SiO2 

  
 (c) (g) 

5 mol % SiO2 

  
 (d) (h) 

Fig. 3. Cross-sectional image of TiO2 films on (a-d) glass (e-h) unglazed tile 

T = 1.94 µm 

 
T = 15.10 µm 

 

T = 2.59 µm 

 
T = 17.77 µm 

 

T = 2.90 µm 

 
T = 17.37 µm 

 

T = 1.21 µm 

 

T = 14.62 µm 
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3.2 Photocatalytic Activity  
 
The specific photocatalytic activity, PMB, is shown in Figure 4. The PMB is the standard expression 

of photoactivity according to ISO 10678. The presence of SiO2 clearly improved the photocatalytic 
activity of TiO2 films. For instance, the PMB for TiO2 film without SiO2 addition on glass substrate is 
57.65e-5 mol/m2h, while with 3 mol % addition, the PMB is higher at 71.61e-5 mol/m2h and with 5 
mol % is at 57.02e-5 mol/m2h. Comparably on unglazed tile, the PMB for TiO2 films without SiO2 added 
is 30.70e-5 mol/m2h, while with 3 mol % and 5 mol % SiO2 addition the PMB increased up to 42.30e-5 
and 34.40e-5 mol/m2h respectively. Therefore, it was determined that the highest methylene blue 
degradation is when adding 3 mol% of SiO2 on both substrates. 
 

 

 

 
(a)  (b) 

Fig. 4. Specific photocatalytic activity, PMB, of TiO2 films on (a) glass (b) unglazed tile 

 

The enhanced photocatalytic activity is attributed to the microstructure and unique 
physicochemical properties of TiO2-SiO2 composite oxides. Films with 3 mol % SiO2 has higher 

photocatalytic activity as compared to films with 5 mol % on both substrates. The clear difference in 
photocatalytic activity is due to the exposure area of the TiO2 films to UV irradiation which is related 

to its microstructure. The cracked surface of 3 mol % SiO2 films resulted in high surface area to be 
exposed to the UV irradiation and generate more charge carriers as also observed by Aziz and Sopyan 

[2]. The higher surface area caused larger amounts of methylene blue to be adsorbed on the surface 
hence resulting a higher degradation rate resulted in increased photocatalytic capacity [30].  

Furthermore, crystallinity of anatase phase also affects the photocatalytic activity of TiO 2 films. 

From Figure 1, it is observed that the intensity of anatase peak at 25.3˚ for TiO 2 film with 3 mol % 
SiO2 addition is higher than 5 mol % SiO2 addition. This indicates that the anatase present is more 

dominant in 3 mol % than 5 mol % SiO2 added. Aziz and Sopyan [2] reported that less TiO2 anatase 
content means less photocatalytic centre. The higher amount of SiO2 would hinder the TiO2 particles 

from interacting with organic molecules and decelerate photocatalytic activity. Therefore, it was 
determined that 3 mol % of SiO2 addition is the suitable amount to enhance the photocatalytic 

activity of TiO2 film.  
 

4. Conclusions 
 

TiO2-SiO2 composite films was synthesized and deposited on glass and unglazed tile to study the 
effect of SiO2 on the microstructure and photocatalytic activity of TiO2 films. A higher amount of SiO2 

need to be added in order to reduce the cracks of films deposited on unglazed tile. However, with 
higher amount of SiO2 added, it decreases the photocatalytic activity of TiO2 film due to smaller 



Journal of Advanced Research in Micro and Nano Engineering  

Volume 24, Issue 1 (2024) 95-104 

103 
 

surface area exposed to UV irradiation. The optimized addition of SiO2 is at 3 mol % with the highest 
degradation of MB which is 71.61e-5 and 42.30e-5 mol/m2h on glass and unglazed tile respectively. 
With 3 mol % SiO2, cracks were observed when the film is deposited on unglazed tile, nevertheless, 
the cracks open up to more surface area exposed by the UV irradiation hence the high photoactivity.  
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