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Cu2O stands out as a promising semiconductor material for solar energy conversion, 
primarily due to its exceptional light-absorbing qualities and its widespread availability. 
However, its efficiency is somewhat hindered by its relatively low carrier mobility and a 
limited absorption band for carriers. The introduction of magnesium (Mg) doping into 
Cu2O has emerged as a potential means to enhance its morphology, optical 
characteristics, and electrical properties, making it an intriguing avenue for exploration. 
To fabricate the Mg-doped Cu2O layers, an electrodeposition process was employed on 
an Indium Tin Oxide (ITO) substrate. The resulting films were then subjected to 
characterization using Field Emission Scanning Electron Microscopy (FESEM), 
Ultraviolet-Visible Spectroscopy (UV-Vis), and HALL Effect Measurement, focusing on 
their morphology, optical properties, and electrical behaviors. Notably, the 
concentration of magnesium played a significant role in shaping the properties of the 
Cu2O layer. The fabrication process extended up to a dopant concentration of 0.3 M for 
both undoped Cu2O and Mg-doped Cu2O layers, leading to morphological alterations. 
Specifically, the grain size increased with varying dopant concentrations, but it became 
smaller and more compact after doping with 0.3 M Mg. The average absorbance of 
visible light for both undoped and Mg-doped Cu2O layers fell within the range of 1~2 
au. Intriguingly, a doping level of 0.3 M Mg led to the simultaneous achievement of high 
carrier mobility (29.98 cm2/Vs), low bulk carrier concentration (2.3.928 x 1021 cm-3), and 
high resistivity (5.3 x 10-5 Ω cm) in the Cu2O material. Additionally, Cu2O/ITO thin films 
exhibiting rectifying characteristics were successfully fabricated, confirming the 
semiconductor nature of the deposited p-type Cu2O layer. The primary objective of this 
study was to synthesize Cu2O layers doped with varying concentrations of Mg and 
thoroughly characterize their morphology, optical attributes, and electrical behaviors 
through the electrodeposition method. The study findings and implications were 
extensively discussed. 
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The concept of "all-oxide photovoltaics" is attracting significant attention and interest, primarily 

due to the cost-effectiveness, abundance, and long-term stability associated with devices based on 
metal oxides. Generally, metal oxides are characterized by wide band gaps and transparency, which 
make them less favorable for use as the absorber material in solar cells, with limited absorption 
primarily in the UV region. However, there is a notable exception among oxides, which is copper 
oxide. Copper oxide exists in three distinct phases: cuprous oxide (Cu2O) also known as cuprite), 
cupric oxide (CuO, or tenorite), and Cu4O3 (referred to as paramelaconite) [1,2]. Among these phases, 
the first two, cuprous oxide (Cu2O) and cupric oxide (CuO), have been the primary focus of analysis 
and research for their potential applications in photovoltaic devices. Cuprous oxide (Cu2O) is 
regarded as a promising p-type semiconductor material in photovoltaics, photocatalysis, and 
optoelectronics due to its stability, ease of preparation, abundance in nature, non-toxicity, and 
visible-light activity with a direct bandgap of 2.0~2.6 eV [3-5]. 

Copper oxide thin films have been successfully fabricated through a variety of physical and 
chemical processes, which include nebulizer pyrolysis [6], thermal oxidation of copper sheets [7], 
magnetron sputtering [8,9], spin coating [10], and more recently, the electrodeposition method [11-
13]. Among these methods, electrochemical deposition stands out as one of the most fundamental 
and cost-effective techniques. It is highly adaptable and particularly efficient for large-area device 
production [14]. What further enhances the appeal of electrodeposition is the ability to fine-tune 
electrochemical parameters and the composition of the electrolytic solution. Also, electrodeposition 
can control to produce the well dispersed Cu2O deposition due to Cu2O provide a conductive pathway 
for electrons, enabling them to move more freely through the material [15]. This fine control offers 
significant advantages in regulating the film's thickness, morphology, and characteristics, making 
electrodeposition a particularly attractive choice. Moreover, it is worth noting that by adjusting 
various electrodeposition parameters, it is possible to produce single-phase Cu2O layers with 
precision [16]. 

Additionally, the smaller grain size observed in Cu2O oxide layers can have an impact on electron 
transport, potentially leading to recombination losses before an electron enters the excited state. 
This, in turn, directly reduces the efficiency of photovoltaic devices [17]. Cu2O (cuprous oxide) 
presents several attractive features, including non-toxicity, abundance of its constituent elements, 
cost-effective production, and a direct band gap, making it a promising material for use as a p-type 
Transparent Conductive Oxide (TCO). Notably, Cu2O exhibits relatively respectable hole mobility 
values, falling within the range of 101-102 cm2V-1s-1 [18]. Its native p-type conductivity is attributed 
to the introduction of acceptor states in the material's band gap due to copper vacancies [19].  

However, current Cu2O layer materials have certain limitations in their optical and electrical 
properties. Specifically, they tend to exhibit relatively high resistivity, typically exceeding 102 Ωcm, 
and possess a relatively low band gap energy, which is approximately 2.17 eV, restricting their optical 
performance [20]. Moreover, studies have shown that doping Cu2O layers with various elements can 
significantly enhance electrical conductivity along the interface. This enhancement occurs not by 
increasing the concentration of charge carriers but by boosting their mobility, as reported by 
Lachinov. Additionally, doping can alter the microstructure of the oxide layer, offering opportunities 
to fine-tune its properties [21,22]. Furthermore, incorporating insolvent dopants into cuprous oxide 
in thin-film solar cells has the potential to adjust its energy band gap and modify the microstructure 
of the oxide layer [23-25]. 

To further enhance the properties of Cu2O, various doping elements like nitrogen [24], lithium 
[25], chlorine [26], and fluorine [27] can be introduced. Additionally, ab initio calculations conducted 
by Nolan and Elliot suggest that doping with larger cations, such as Mg2+, Sr2+, Zn2+, Ga3+, or Sn2+, can 
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lead to improvements in both transparency and conductivity [28]. This doping mechanism may also 
raise the band gap value, meeting the requirements for transparent electronics applications while 
maintaining a high level of p-type conductivity. In recent developments, Resende et al., [29] achieved 
the incorporation of Mg into Cu2O using chemical vapor deposition (CVD) processes. Their findings 
indicated a significant reduction in electrical resistivity, reaching as low as 6.6 Ωcm, along with a slight 
enhancement in transmittance in the visible wavelength range, which reached up to 51%. 

In our study, we delve into the functional characteristics of both undoped and Mg-doped Cu2O 
oxide layers, employing various doping concentrations through the electrodeposition method. By 
harnessing a comprehensive array of dedicated characterization techniques, we conduct an extensive 
examination of the morphology, optical attributes, and electrical behaviors of these films. This 
thorough analysis involves the use of Field Emission Scanning Electron Microscopy (FESEM), 
Ultraviolet-Visible Spectroscopy (UV-Vis), and HALL Effect measurement. Our research underscores 
the critical significance of controlling the deposition parameters related to doping concentrations. 
This control proves essential in attaining the optimal physical properties of these oxide layers. 
 
2. Methodology  
2.1 Preparation of ITO Substrate Glass 
 

For the substrate, we selected an ITO glass with a resistance of approximately 10 mΩ, possessing 
dimensions of 2 cm in length, 1 cm in width, and 0.75 mm in thickness (l x w x t). Before commencing 
the electrodeposition procedure, we partitioned the ITO glass into two distinct areas: the region 
designated for deposition and the non-deposited area. Subsequently, it was immersed in acetone for 
approximately 2 minutes. Following this step, the glass substrate was thoroughly rinsed with 
deionized water and subsequently dried using pressurized air. 
 
2.2 Electrodeposition of Undoped Cu2O and Mg Doped Cu2O Oxide Layers 
 

The electrodeposition of Cu2O oxide layers was carried out using a two-electrode setup, where a 
Pt wire served as the counter electrode and an ITO substrate glass served as the working electrode. 
To maintain stability, a platinum wire was employed as the anode since it doesn't undergo oxidation 
when used as a cathode. The Cu2O electrolyte solution was prepared by dissolving 79.86 g of 99% 
pure copper (II) acetate monohydrate (C4H10CuO6) from Kanto Chemical Co., Inc., along with 270.24 
g of 85~92% pure lactic acid (C3H6O6) from the same supplier, and 210 g of potassium hydroxide 
(KOH) with a chemical purity of 86% into 500 ml of ultrapure water (UPW) at ambient temperature. 
It's worth noting that all aqueous solutions used were meticulously prepared using a water 
purification system, specifically the Milli-Q IQ 7003. The pH of the solution was adjusted to 12.5 by 
the addition of KOH. The deposition parameters employed in the electrodeposition process are 
detailed in Table 1. In the case of the starting solution for Mg-doped Cu2O oxide layers, 95% pure 
magnesium hydroxide from Acros Organics was utilized to formulate doping concentrations of 0.1 M, 
0.2 M, and 0.3 M Mg in Cu2O. 
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Table 1 
Electrodeposition parameters of undoped Cu2O and Mg doped Cu2O  
Deposition parameters 

Current (mA) 2.0 
Voltage (V) 1.0 

Bath temperature (⁰C) 45.5 

Solution temperature (⁰C) 40.0 

pH value 12.5 
Deposition time (min) 3.0 

 
2.3 Characterization of Analysis 
 

The morphology of undoped Cu2O and Mg doped Cu2O on ITO glass substrate was observed by 
FESEM (Leo 1525) with 20x to 70x magnification and 7 kV of accelerating voltage. Next, the optical 
properties of thin films were observed by UV-Vis (Perkin ELMER LAMBDA 950 Series) in the 
wavelength range of 200-800 µm referenced to the air. For electrical properties of the thin film were 
observed by HALL Effect Measurement (ECOPIA HT55T3) with a current of 5 mA, and a diameter of 
0.1 µm to measure the carrier concentration, mobility carrier, and resistivity.   
 

3. Results  
3.1 The Appearance of Undoped Cu2O and Mg Doped Cu2O Thin Films  
 

Figure 1 provides a schematic illustration of the deposition of Mg-doped Cu2O on the ITO 
substrate. The Cu2O layer was applied to the ITO substrate, with varying concentrations of 0.1 M, 0.2 
M, and 0.3 M Mg. In Figure 2, you can observe the physical appearance of the Cu2O layer before and 
after doping with different concentrations of Mg. The initially clear color of the ITO substrate 
transforms into a consistent light brown hue after being coated with both undoped Cu2O and Mg-
doped Cu2O. Interestingly, there are no distinct visual changes in the appearance of the Cu2O layers 
when different Mg doping concentrations are applied. 
 

 
Fig. 1. Illustration cell configuration of Mg 
doped Cu2O on ITO substrate glass 

 

 
Fig. 2. The appearance of Cu2O (a) ITO substrate glass (b) Undoped (c) 0.1 M (d) 0.2 M (e) 0.3 M Mg 
doped Cu2O 
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3.2 Surface Morphology of Undoped Cu2O and Mg Doped Cu2O Oxide Layers 
 

Figure 3 provides a detailed view of the morphology of both undoped and Mg-doped Cu2O oxide 
layers, each featuring varying dopant concentrations. The Cu2O grains exhibit a pyramid-like 
structure [30], forming a consistently uniform and compact layer, regardless of the doping 
concentration, when deposited at 1 V and 2 mA. However, it's noteworthy that the distribution of 
grain sizes undergoes changes depending on the Mg doping concentration applied. For instance, the 
grain size increases for concentrations of 0.1 M and 0.2 M, while the sample doped with 0.3 M Mg 
exhibits notable differences in surface morphology and grain size. Figure 3(d) clearly illustrates that 
the grain size has decreased compared to the other samples. Figure 4 provides a quantitative 
comparison of the grain sizes for undoped Cu2O and Mg-doped Cu2O oxide layers.  
 

 
Fig. 3. Morphology structure of (a) undoped, (b) 0.1 M, (c) 0.2 M, and 
(d) 0.3 M Mg doped Cu2O 

 

 
Fig. 4. Average grain size of undoped, and Mg doped Cu2O 
with different concentrations 
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The undoped sample has an average grain size of 84.18 nm, as shown in Figure 4. In contrast, the 
introduction of 0.1 M Mg doping into Cu2O leads to an increase in grain size, resulting in an average 
size of 286.4 nm. The 0.2 M Mg-doped Cu2O oxide layer exhibits an even larger average grain size of 
311.4 nm. However, when doping with 0.3 M Mg, the grain size decreases to 220.2 nm, as evidenced 
in Figure 3(d). This decrease is attributed to the stress within the grains, which alters the grain 
structure after Mg doping in Cu2O layers [31].  
 
3.3 Optical Analysis of Undoped Cu2O and Mg Doped Cu2O Oxide Layers 
 

Figure 5 presents the absorption spectrum of Cu2O oxide layers doped with Mg at varying 
concentrations. The absorption spectrum was measured within the range of 300 to 800 nm at room 
temperature. The results clearly demonstrate that higher absorption bands are achieved after the 
introduction of Mg doping, regardless of the specific doping concentration. Notably, the absorption 
edge, occurring at a wavelength of 500 nm, exhibits the highest absorption band for the Cu2O layer 
doped with 0.2 M Mg, reaching its peak. In contrast, the Cu2O oxide layer doped with 0.3 M Mg shows 
an absorbance of approximately 1 au in the visible light range. It's important to recognize that the 
absorption profile is influenced by various factors, including lattice strain, film thickness, oxygen 
availability, and particle size within the samples [32]. The observed changes in the absorption profile 
in our study can be attributed to the lattice strain induced in the structure after the introduction of 
Mg doping. While Mg2+ and Cu+ have similar ionic radii, leading to minimal structural distortion that 
doesn't significantly disturb Cu-Cu interactions [33], there are still subtle differences in the optical 
band gap. These differences can be attributed to the lattice strain induced by the Mg doping 
concentration, ultimately affecting the absorption profile. 
 

 
Fig. 5. Absorption spectrum of undoped and Mg doped Cu2O with 
different concentrations 

 
3.4 Electrical Analysis of Undoped and Mg Doped Cu2O Oxide Layers 
 

The carrier concentration, mobility carrier, and resistivity of electrodeposited undoped and Mg-
doped Cu2O oxide layers were analyzed by using the HALL Effect measurement. Table 2 shows the 
result of the HALL Effect measurement of the undoped and Mg-doped Cu2O.  
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Table 2 
Analysis result of HALL effect measurement of the undoped and Mg doped Cu2O 
Concentration of 
Mg doping (M) 

Carrier concentration x 1021 (/cm3) Mobility carrier x 10 (cm2/vs) 
 

Resistivity x 10-5 (Ωcm) 
 

Undoped  3.021 3.556 5.829 
0.1  3.344 3.115 5.993 
0.2 2.596 4.022 5.980 
0.3 3.928 2.998 5.300 

 

3.4.1 Bulk carrier concentration analysis of undoped and Mg doped Cu2O oxide layers 
 

Figure 6 displays a graph illustrating the bulk concentration (/cm3) in relation to the concentration 
of Mg doping (M). Interestingly, the graph does not exhibit a discernible trend as the dopant is 
progressively added to the Cu2O oxide layers. For the Cu2O oxide layer doped with 0.1 M Mg, the 
bulk concentration increases from 3.012 x 1021 to 3.344 x 1021 cm-3. However, when the Mg 
concentration is increased to a 0.2 M Mg-doped Cu2O oxide layer, the bulk concentration takes a dip, 
reaching its lowest value of 2.596 x 1021 cm-3. This decrease is likely influenced by the larger grain 
sizes observed, which result in gaps or voids between the grains. Smaller crystallite sizes and a higher 
density of grain boundaries act as barriers for carrier transport and trap free carriers, contributing to 
this reduction [32]. Conversely, in the case of the 0.3 M Mg-doped Cu2O oxide layer, which exhibits 
a more compact structure, the bulk concentration increases to its highest value of 3.928 x 1021 cm-3. 
This phenomenon can be attributed to the doping process, which introduces an acceptor level slightly 
higher than the valence band in the band structure. This acceptor level receives electrons (e-) 
transitioning from the valence band, leading to the formation of electron holes (h+) in the valence 
band. This process ultimately results in a higher carrier concentration according to the previous study 
[34]. 

In comparison to previous research efforts, where Mg-doped Cu2O oxide layer was fabricated 
using various techniques, the results of our study reveal a notable enhancement in carrier 
concentration. For instance, Prabu et al., [35] conducted research employing a nebulizer spray 
pyrolysis technique with different pressure rates. In their work, the highest carrier concentration was 
achieved at a pressure of 3 bars, with a carrier concentration value of 17.60 x 1015 cm-3. Similarly, 
Joao et al., [29] undertook research on Mg-doped Cu2O, utilizing aerosol-assisted metal-organic 
chemical vapor deposition. Their findings indicated that incorporating magnesium doping led to an 
increase in charge carrier density (holes) of up to 8.1 x 1017 cm-3. This effect was attributed to the 
increase in simple copper vacancies resulting from the presence of magnesium in a tetrahedral 
position, consequently raising the hole concentration, as proposed by Nolan et al., [28]. 

When comparing these findings to our research, it becomes evident that Mg-doped Cu2O oxide 
layers fabricated in our study exhibit superior carrier concentration. Specifically, the highest carrier 
concentration was attained in the 0.3 M Mg-doped Cu2O oxide layer, with a value of 3.928 x 1021 cm-

3. This highlights the significant enhancement in carrier concentration achieved in our Mg-doped 
Cu2O oxide layers compared to previous studies. 
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Fig. 6. Bulk concentration measurement of undoped and Mg 
doped Cu2O oxide layers 

 
3.4.2 Mobility carrier analysis of undoped and Mg doped Cu2O oxide layers 
 

Figure 7 illustrates the relationship between carrier mobility (cm2/Vs) and the concentration of 
Mg doping (M). In our study, for the 0.1 M and 0.3 M Mg-doped Cu2O oxide layers, carrier mobility 
decreases from 3.556 x 10 cm2/Vs for undoped Cu2O to 3.115 x 10 cm2/Vs for 0.1 M, and further 
reduces to its lowest value of 2.998 x 10 cm2/Vs for 0.3 M doping. This trend aligns with findings from 
previous research, indicating that as doping concentration increases, carrier mobility tends to 
decrease. The explanation for this phenomenon lies in the concept that electrons or holes can only 
move freely under the influence of an electric field when they are mobile. When doping levels 
increase, the concentration of charge carriers rises, which, in turn, increases the likelihood of charge 
carrier collisions. These collisions subsequently lead to a reduction in carrier mobility [36]. 
Interestingly, for the 0.2 M Mg-doped Cu2O oxide layer, carrier mobility shows an opposite trend. It 
increases from 3.556 x 10 cm2/Vs for the undoped Cu2O oxide layer to its highest mobility value of 
4.022 x 10 cm2/Vs. This result can be explained by the lower value of carrier concentration in this 
sample. With less carrier (holes) present, as indicated in the carrier concentration analysis, the high 
mobility observed for the 0.2 M Mg-doped Cu2O oxide layer is consistent with this lower carrier 
concentration. 

To provide a comparison, research by Naama et al., [37] which focused on Mg-doped Cu2O oxide 
layers fabricated using magnetron sputtering under optimized pressure conditions, found that the 
mobility decreased from 8.31 cm2/Vs to 0.11 cm2/Vs with the incorporation of Mg. This comparison 
suggests that the Mg-doped Cu2O oxide layers produced via electrodeposition in our experiment 
exhibits superior mobility characteristics. Even after adding Mg dopant, the mobility remains 
relatively higher, with the lowest mobility recorded at 0.3 M Mg-doped Cu2O oxide layer, where it 
reaches a value of 2.998 x 10 cm2/Vs. 
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Fig. 7. Mobility carrier of undoped and Mg doped Cu2O oxide 
layers 

 
3.4.3 Resistivity analysis of undoped and Mg doped Cu2O oxide layers 
 

Figure 8 presents the graph depicting resistivity (Ω·cm) as a function of Mg doping concentration 
(M). Interestingly, there is no discernible pattern that can be conclusively established. For the 0.1 M 
Mg-doped Cu2O oxide layer, resistivity experiences a slight increase, rising from 5.829 x 10-5 Ω·cm to 
5.993 x 10-5 Ω·cm. A similar trend is observed for the 0.2 M Mg-doped Cu2O oxide layer, where 
resistivity decreases slightly from 5.993 x 10-5 Ω·cm to 5.980 x 10-5 Ω·cm, albeit it remains somewhat 
higher than the resistivity value of undoped Cu2O oxide layer. This increase in resistivity following 
doping at 0.1 M and 0.2 M may be attributed to the introduction of carrier traps by the doping 
process, which in turn limits the movement of carriers. However, a distinct shift occurs as the doping 
concentration is increased to 0.3 M Mg-doped Cu2O oxide layer, where the resistivity significantly 
drops to 5.300 x 10-5 Ω·cm. This reduction in resistivity can be attributed to the increased Cu voltage 
density resulting from the incorporation of Mg2+ ions into the Cu2O lattice, which contributes to a 
reduction in electrical resistance caused by Mg doping [38]. 

For the sake of comparison, research by Santhosh et al., [39] involving Mg-doped Cu2O oxide 
layers prepared using the nebulizer pyrolysis technique, showed that at a 7% Mg doping 
concentration, Cu2O resistivity reached its lowest point at 1.53 × 102 Ω·cm. This demonstrates that 
the incorporation of Mg dopant into Cu2O leads to decreased resistivity and improved conductivity. 
Additionally, our research outperforms this previous work, with the most optimal resistivity obtained 
at 0.3 M Mg-doped Cu2O oxide layer, measuring 5.300 x 10-5 Ω·cm, which is approximately 7 times 
better. 
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Fig. 8. Resistivity of undoped and Mg doped Cu2O oxide 
layers from HALL effect measurement 

 
4. Conclusions 
 

In summary, our study successfully fabricated undoped Cu2O and Mg-doped Cu2O oxide layers 
using the electrodeposition method on ITO substrates. The impact of Mg doping concentration on 
morphology, optical and electrical properties of these samples have been investigated. The 
electrodeposition process was carried out in an alkaline aqueous solution containing copper (II) 
acetate and lactic acid. The observation of the Cu2O oxide layers via Field Emission Scanning Electron 
Microscopy (FESEM) revealed that they possess a pyramid-like structure and exhibit a polycrystalline 
nature. The change in grain size of the Cu2O structure was observed as the Mg concentration 
increased, attributed to the stress present within the crystals after doping. The average absorbance 
of visible light ranged from 1 to 2 au. The Hall Effect measurements indicated that Mg-doped Cu2O 
oxide layers effectively enhanced the electrical characteristics of Cu2O at specific doping 
concentrations, including improvements in bulk concentration, bulk mobility, and resistivity. Notably, 
the 0.3 M Mg-doped Cu2O oxide layer exhibited superior electrical properties, with a bulk 
concentration of 3.928 x 1021 cm-3 and a resistivity of 5.300 x 10-5 Ω·cm. 
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