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In this study, the effect of nozzle temperature, (Tn) (varied between 200°C and 300°C) 
during the printing stage on the relative density, hardness, and porosity of sintered 
Inconel 718 (IN 718) specimens are investigated for the first time. The results show a 
general trend of increasing relative density and hardness values, as well as reduced 
porosity with an increase in Tn values. The highest relative density (92.34%), hardness 
(188 HV) and lowest porosity (7.66%) are all achieved at Tn=290°C. The outcomes of this 
study establish the profound impact of adjusting processing parameters even at the 
initial printing stage towards the properties of the sintered parts.  
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1. Introduction 
 

Inconel 718 (IN718) is a widely used nickel-base superalloy that serves as an important material 
in the aeronautical, aerospace, and nuclear industries due to its high strength and exceptional 
oxidation and corrosion resistance at elevated temperatures [1,2]. The strength of this material is 
primarily contributed by the γ"-phase (Ni3Nb) and some γ’, δ, and carbides, while its oxidation and 
corrosion resistances result from the high Cr content (17-21%) [3].  

In the past 10 – 15 years, additive manufacturing (AM), or more commonly known as 3D printing 
has shown significant promise to fabricate metallic parts with complex geometries and intricate 
features via a layer-wise manufacturing approach, thereby reducing material waste and lead time [4-
7]. In particular, powder bed fusion (PBF) and directed energy deposition (DED) are the two most 
common AM technologies that have shown significant promise in producing metallic components 
prototypes and end-applications [8]. Both PBF and DED processes use high-energy laser/electron 
beam to selectively melt and fuse metallic powders (PBF and DED) or wires (DED only) and form the 
desired 3D shape pre-designed in computer aided design (CAD) software. However, PBF and DED 
operations require high investment costs due to the use of high-power heat sources, as well as the 
complex and proprietary nature of the required equipment [9,10]. Therefore, researchers have been 
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exploring affordable alternatives for producing metallic components using AM technology, such as 
fused filament fabrication [11]. 

Recently, fused filament fabrication (FFF), an AM process within the material extrusion (ME) 
category has emerged as a viable low-cost AM approach to produce metallic parts, following a 3-step 
printing-debinding-sintering process derived from conventional metal injection molding (MIM) and 
powder metallurgy (PM) techniques [12]. Firstly, green parts are fabricated by extruding melted 
metal-polymer filament feedstock through one or more heated nozzles, often ranging between 200°C 
– 300°C. The use of metal-polymer filaments, typically composed of metal powders (50-65%) bound 
together with a polymer binder system (35-50%) is crucial since direct extrusion of the melted metal 
only is impossible due to the steep melting point of most metals/alloys, often reaching >1000°C that 
cannot be catered to by any presently available nozzles for FFF printers [13-15]. Therefore, debinding 
and sintering of the as-printed (green) parts are necessary to obtain fully consolidated metal parts, 
such that debinding completely eliminates the polymer binder, whereas sintering fuses the metallic 
particles to form fully dense metallic specimens [16]. So far, numerous studies have been dedicated 
to investigating the effect of post-printing measures such as sintering parameters and other heat 
treatment procedures on the microstructures and properties of metal FFF parts [17-21].  

However, not many studies have focused on the influence of adjusting processing parameters 
during the initial printing stage on the properties of sintered metal FFF parts to the best of our 
knowledge. So far, only flow rate multiplier, layer thickness, print speed, and extrusion temperature 
have been investigated in FFF printing of 17-4PH SS by Godec et al., [12] and Gonzalez-Gutierez et 
al., [22]. However, no correlations between the manipulation of these parameters on the density, 
porosity, and hardness of the sintered parts are provided in these studies. Therefore, this study aims 
to address this gap by investigating the effect of nozzle temperatures (Tn) on the physical properties 
of FFF-3D printed IN718 specimens after sintering, including relative density, hardness, and porosity. 
The values of Tn varied from 200°C – 300°C during the printing process, followed by debinding and 
sintering processes. The relative density and Vickers microhardness measurements, as well as 
porosity analysis of the sintered specimens, are conducted to establish the inter-correlation among 
the nozzle temperature during printing and the physical properties of the sintered specimens.  
 
2. Materials and Methods 
2.1 Material and Specimen Preparation 
 

A 3D printing filament comprising of IN718 powder particles (86 wt.%) and polylactic acid (PLA) 
polymer binder (14 wt.%) having a diameter of 1.75 mm is purchased from The Virtual Foundry (TVF), 
United States. The chemical composition of the filament as obtained from the supplier in wt.% is as 
follows: Ni (55.98%), Cr (17.10%), Fe (14.51%), Nb (5.72%), Mo (3.46%), Ti (0.81%), others (<0.1). A 
low-cost desktop FFF 3D printer, Creality CR-5 Pro is used to print 20mm3 cubes via filament 
deposition through a heated hardened steel nozzle (0.6 mm diameter). The nozzle temperatures (Tn) 
are varied from 200°C to 300°C, while other parameters are kept constant: bed temperature: 60°C, 
infill flow rate: 100%, layer height: 0.2 mm, and nozzle speed: 80 mm/s. Subsequent one-step thermal 
debinding, followed by sintering processes are carried out continuously in an LH 30/14 Nabertherm 
GmbH electrical chamber furnace under atmospheric conditions. The debinding and sintering 
temperatures used in this study are 427°C (held for 2h) and 1260°C (held for 4h), respectively, based 
on the recommendations by TVF. The densification level of the sintered specimens is evaluated 
through the relative density, RD calculated by using the formula  
 

RD =  
ϱ

s
ϱ

t
x 100             (1) 
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where ϱs is the specimen density, measured using the Archimedes method (ISO 2738), and ϱ t is the 
theoretical density of IN718, 8.19 g/cm3 [23]. Subsequently, the sintered specimens are ground and 
polished down to 1µm before proceeding with Vickers microhardness (HV) measurements and 
porosity characterizations. The HV values of the sintered specimens are measured using a Vickers 
microhardness test machine (HMV-G Series) with a load and holding time of 100 gf and 10 seconds, 
respectively. The HV values are averaged from 10 measurements throughout the surface of each 
specimen. The porosity content is quantified by using the formula 
 

Porosity (Pt) =  (1 − (
𝜚

𝑠
𝜚

𝑡
))  ×  100            (2) 

 
Meanwhile, the pore morphologies are determined through OM observations, and the pore sizes 

are determined by using the binarization procedure in ImageJ software based on the OM images [24].  
 
3. Results and Discussion 
 

IN718 cube specimens (green parts) are successfully fabricated within the range of Tn: 210°C – 
290°C. However, Tn = 200°C is insufficient to melt the filament, whereas excessive filament melting 
at Tn = 300°C caused the nozzle to be clogged, resulting in printing failure for both cases.  

The average RD (%) and HV values of the sintered specimens are shown in Table 1. A generally 
increasing trend of relative density and hardness is observed with increasing Tn values from 210°C – 
290°. Interestingly, both RD and HV values experience a slight but not significant decrease at Tn = 
270°C. Nevertheless, Tn = 290°C yields the highest relative density (92.34%) and hardness (188 HV) 
for the sintered specimens with the lowest porosity content (7.66%). 

 
Table 1 
Average relative density, hardness, and porosity of sintered specimens subjected to different nozzle 
temperatures 
Nozzle temperature (°C) Relative density, RD (%) Vickers microhardness (HV) Porosity (%) 

210 66.81 ± 2 122 ± 17 33.19 
230 70.39 ± 3 135 ± 21 29.61 
250 71.97 ± 4 146 ± 35 28.03 
270 68.74 ± 3 132 ± 26 31.26 
290 92.34 ± 1 188 ± 14 7.66 

 
The general improvement in RD with increasing Tn is likely caused by the enhanced material 

fluidity achieved at higher Tn values (up to 290°C in this study) that lowers the viscosity of the melted 
filament, which subsequently reduces the flow resistance to enable more matrix particles passing 
through the nozzle [12]. This results in enhanced filament melting and improved coalescence 
between the individual layers and strands of the melted filament [22]. Consequently, better 
compaction and packing density among the matrix particles is attained, thereby promoting neck 
formation and growth, as well as pore filling through diffusion during the sintering process that leads 
to improved densification levels [25,26]. Moreover, it is also clear that the HV variation of the sintered 
specimens follows that of the RD values, whereby increasing the Tn from 210°C to 290°C improves 
the HV value from 122 HV to 188 HV, which can be attributed to the similar aforementioned reasons 
[25].   
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Meanwhile, OM images displayed in Figure 1 clearly show the presence of irregular-shaped pores 
in all sintered specimens. However, qualitative observations suggest that the porosity content at 
increasing Tn values conforms to the trend of relative density and hardness variations shown in Table 
1. At Tn = 210°C, the porosity size and content are measured as 11.58 µm and 33.19%, respectively. 
Upon increasing the value of Tn to 290°C, both quantities are significantly reduced to 4.18 µm and 
7.66%, respectively. The formation of micron-sized pores in the metal FFF process is assumed to be 
similar to those observed in typical conventional sintering procedures due to the involvement of 
debinding and sintering stages after the initial printing of the green parts [10]. Nevertheless, the 
decreasing porosity content with increasing Tn values in this study can most likely be attributed to 
the enhanced diffusion of the sintering necks during the sintering process, owing to the improved 
compaction and packing density of the matrix particles at higher nozzle temperatures [25].  

Finally, it is known that lower densification levels would increase porosity content and eventually 
decrease its hardness due to the pores being collapsed under load during the hardness test, thereby 
reducing the number of dislocations and grain boundaries that impede dislocation motions, and vice 
versa [27,28]. This is precisely being attained in the present study, whereby increasing Tn values 
generally improves the relative density and HV values, and reduces the porosity levels.  
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(e) 
Fig. 1. OM images of IN718 sintered 
specimens at (a) Tn = 210°C, (b) Tn = 230°C, 
(c) Tn = 250°C, (d) Tn = 270°C, and (e) Tn = 
290°C 

 
4. Conclusions 
 

This study investigates the effect of nozzle temperatures (Tn) during the initial printing stage on 
the physical properties (relative density, hardness, and porosity) of sintered IN718 specimens 
fabricated using the FFF AM technique through a 3-step printing-debinding-sintering stages. The 
findings from this study are summarized as follows:  

 
i. IN 718 green specimens are successfully printed within the range of Tn values from 210°C to 

290°C, whereas Tn = 200°C and Tn = 300°C result in printing failure. 
ii. The highest relative density and hardness of 92.34% and 188HV, respectively with the lowest 

porosity content of 7.66% is obtained when the Tn is set to 290°C. 
iii. Increasing Tn from 210°C to 290°C generally presents a positive trend for the relative density 

and hardness of the sintered specimens while reducing its porosity content through better 
material fluidity that improves the compaction and packing density of the matrix particles, 
which eventually enhances the diffusion of the sintering necks during the sintering stage.  
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