
 

Semarak International Journal of Applied Sciences and Engineering Technology 1, Issue 1 (2024) 1-17 
 

1 
 

 

Semarak International Journal of Applied 

Sciences and Engineering Technology  

 

Journal homepage:  
https://semarakilmu.com.my/journals/index.php/sijaset/index 

ISSN: 3030-5314 

 

Solute Dispersion in Casson Blood Flow through a Stenosed Artery with 
the Effect of Magnetic Field 

 

Nur Husna Amierah Mohd Zaperi1, Nurul Aini Jaafar1,* 

  
1 Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia 
  

ARTICLE INFO ABSTRACT 

Article history: 
Received 14 January 2024 
Received in revised form 26 February 2024 
Accepted 10 March 2024 
Available online 30 March 2024 

Individuals with atherosclerosis cardiovascular disease (aCVD) have a higher risk of 
cancer than those without aCVD. In chemotherapy, the drug injected into the blood 
vessels that treat cancer by attacking cells at a specific site in an organ allows better 
treatment for cancer. One of the most important strategies for directing medication to 
the site of the cancer is magnetic drug administration such as neodymium magnets 
treatment. Magnetic drug targeting can reduce the side effects of drugs and optimize 
magnetic field to speed up treatment. Hence, this study examines the steady solute 
dispersion in blood flow through a stenosed artery with the effect of magnetic field by 
using Casson fluid model. The momentum and constitutive equations are solved 
analytically using integration to obtain the velocity of blood flow. The convective 
diffusion equation is solved by applying generalized dispersion model (GDM) and 
integration to obtain steady and unsteady dispersion functions and overall dispersion 
function. The effects of magnetic field and height of stenosis on the blood flow and 
solute dispersion are investigated. The results are validated with the previous solution 
without the effect of magnetic field and height of stenosis. The results showed a good 
conformity between the two solutions. An increase in magnetic field increase the 
velocity and steady dispersion function while reducing the unsteady dispersion 
function and overall dispersion function. However, when the height of stenosis is 
considered in the problem, it behaves differently for velocity, steady and unsteady 
dispersion functions and overall dispersion function. It is observed that the solute 
dispersion in blood flow is affected by magnetic field. The results of the presence study 
can potentially be used to predict the changes of blood flow behaviour and dispersion 
process in blood flow. In conclusion, the use of magnetic fields in magnetic therapy 
aids the body to reduce muscular inflammation and pain. Magnetic field affect the 
solute dispersion in human blood flow. 
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1. Introduction 
 

Cardiovascular disease (CVD) and cancer are leading causes of death with the inclined number of 
the elderly population and early cancer screening and treatment, the number of cancers cases are 
rising, while the mortality rate is decreasing [21]. CVD and cancer share several risk factors such as 
unhealthy diet, tobacco use and harmful use of alcohol. According to Bell et al., [4], individuals with 
atherosclerosis CVD (aCVD) had a higher risk of cancer than those without CVD. Cancer subtype 
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analysed specific associations of aCVD with several malignancies including lung, bladder, liver, colon 
and other hematologic cancer. Cancer has several treatments such as surgery, chemotherapy, 
radiation therapy and targeted drug delivery.  

In chemotherapy, specific medications are used to kill fast-growing cancerous cells [3]. Treatment 
success depends on delivering a sufficient amount of medicine to tumor cells when keeping damage 
to healthy cells at the minimum tolerable level [3]. Generally, delivering the right amount of medicine 
to human body is a crucial factor in curing many diseases. Therefore, it is desirable to develop 
chemotherapeutics that can either passively or actively target cancerous cells, thereby reducing 
adverse side effects while improving therapeutic efficacy [13]. Thus, to improve the chemotherapy 
treatment, it is important to understand the drug process in human body. For this reason, it helps to 
improve the survival rate of cancer patients [20].  

One of the most important strategies for directing medication to the site of the tumor is magnetic 
drug administration such as neodymium magnets treatment. Magnetic drug targeting can reduce the 
side effects of drugs and optimize magnetic field to speed up treatment. By overcoming these 
constraints, a large number of pharmacological agents may be delivered into a controlled area of the 
body with few undesirable side effects [10]. One of the problems of successful magnetic drug 
targeting is controlling the accumulation of magnetic nanoparticles in the human body and aiming 
deeper tissues using an electromagnet's external magnetic field [18]. Human body experiences 
magnetic fields of moderate to high intensity in many situations of day-to-day life. Nowadays, 
magnetic therapy is frequently used to treat a variety of diseases. The use of magnetic fields in 
magnetic therapy aids the body to reduce muscular inflammation and pain. Magnetic field may affect 
the solute dispersion in human blood flow. 

The solute transportation in blood flow was studied and very important in transferring drugs into 
the physiological system. The problem of solute dispersion process in blood flow getting more 
important and it has more widely studied by researchers. Investigating the solute dispersion in blood 
flow is crucial for better treatment of cancer. In the study conducted by Taylor [16], the research 
focused on the phenomenon of solute dispersion inside a solvent in a linear pipe under conditions of 
steady flow. The solute exhibits diffusion because of the interaction between molecule diffusion and 
velocity variance throughout its cross-sectional area, resulting in the solute diffusing with molecular 

diffusivity, = 2 2 48eff m mD a u D  where a  is pipe radius, mu  is mean velocity and mD  is molecular 

diffusivity.  

The solute dispersion theory of Taylor showed by Aris [2] is only valid when eff mD D . Then, Aris 

[2] introduced the Taylor-Aris dispersion method, which describes the impact of axial molecule 
diffusion. The latter theory was only viable for a limited time. The work of Taylor-Aris has been 
simplified by Gill [7] by the establishment of a distribution for the local concentration, which is 
derived from a series expansion based on the mean concentration and is applicable for all time 
periods. Then, Gill and Sankarasubramanian [8] developed the first GDM to analyze the solute 
dispersion process. Sankarasubramanian and Gill [12] explored scattering in the presence of a wall 
response using exchange, convection, and scattering coefficients. 

Casson fluid is one of the useful and important fluid models to investigate the blood viscosity and 
yield stress. Das et al., [5] investigated the solute dispersion in blood flow through a constricted artery 
with an absorptive wall using Casson fluid model and has been solved using convective diffusion 
equation. Ali et al., [1] investigated non-Newtonian of Casson fluid with the pulsation in a channel 
having symmetrical constriction bumps on the upper and lower walls. The mathematical model has 
been solved by using vorticity-stream function form. Jamil et al., [9] analysed the Casson fluid of 
magnetic blood flow in an inclined stenosed artery and has been solved by using Caputo Fabrizio 
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fractional derivative without singular kernel. Shahzad et al., [14] investigated the fluid structure 
interaction study using Casson fluid in a bifurcated channel having stenosis with elastic wall and has 
been solved by using Arbitrary Lagrangian-Eulerian (ALE).  

All the above work based on the constant viscosity model of the fluid in blood flow. Several 
authors studied the solute dispersion in blood flow with the effect of magnetic field. Recently, 
Priyadharshini and Ponalagusamy [11] analysed the magnetohydrodynamics effects on flow 
parameters of blood carrying magnetic nanoparticles flowing through a stenosed artery with the 
effect of magnetic field and body acceleration and has been solved by using finite difference schemes. 
Suneetha et al., [15] investigated the theoretical analysis of Casson fluid with the hybrid magnetic 
nanoparticles as drug carrier with the magnetic field and has been solved by using Runge-Kutta 
method. Yadeta and Shaw [22] investigated the efficiency of the magnetic drug capture at tumor 
region using Casson fluid model and the solution has been analytical solved by using Caputo fractional 
order time-derivative. This clearly indicated that the effect of magnetic field may be significantly 
affected the blood flow. 

The present work is devoted to study the solute dispersion in blood flow through stenosed artery 
with the effect of magnetic field by using Casson fluid model. The momentum and constitutive 
equations have been solved analytically by using integral method to obtain the velocity of blood flow. 
The obtained velocity has been used to get the steady and unsteady dispersion functions and overall 
dispersion function by solving the convective-diffusion equation using generalized dispersion model 
(GDM). The study may help to understand the physiological processes of the injection of drug in the 
bloodstream when the magnetic field exists in stenosed artery. 
 
2. Methodology  
2.1 Mathematical Formulation 

 
Consider the flow of the blood assumed as viscous incompressible fluid through a circular pipe in 

a laminar, continuous, axisymmetric and fully formed unidirectional flow in the axial direction, 
treating blood as Casson fluid model. The pipe flow geometry describes the artery with the presence 

of magnetic field are shown in Figure 1, where L  is the length of conduit, 0
R  is the artery's radius, 

ψ  is the azimuthal angle, p
r  is the radius of the plug region in circular pipe, δ  is stenosis height, u  

is the velocity of fluid flow, M  is magnetic field and z  is the axial coordinate for circular pipe. 
 

 
Fig. 1. Pipe flow geometry of Casson fluid model with the influenced of magnetic field 
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2.2 Governing Equation 
 

The momentum equation which governs the flow is given as follows [17]: 
 

( ) 0

1
0,

d dp dH
r M

r dr dz dz
 − + =                                                                                                                         (1) 

 

where the variables of  , p , 0 ,  ,M  and dH dz  are the shear stress, the fluid pressure, the fluid 

density, the magnetic permeability of the vacuum, the magnetic field and the magnetic field gradient. 
The boundary condition for momentum equation is given as 
 

finite at 0.r = =                                                                                                                                              (2) 
 
The constitutive equation is defined as  
 

( )
21

 if ,

0                          if ,

y y

y

du

dr

   


 


− 

− = 
 

                                                                                                                  (3) 

 

where u , y ,   are the velocity of the fluid flow, the yield stress and the coefficient of viscosity for 

the Casson fluid model. The slip boundary condition for constitutive equation is given by Verma et 
al., [19] 
 

( ) at ,su u r R z= =                                                                                                                                             (4) 

 
where 

( )
2 2 2

0 2
0 0

1 exp ,
k z

R z R
R R

   
= − −   

  
                                                                                                               (5) 

 

where ( )R z  is the stenosed segment's radius,   is the stenosis height at the central point and k  is 

the constant in parameters and radius, 0 0/R L = . Consider the geometry of stenosis in Figure 1 in 

Eq. (5) as below 
 

( ) 2

0

1 ,bzR z
ae

R
−= −                                                                                                                                        (6) 

 

where 0/a R=  and 2 2 2
0/b k R=  are the variables in ( )R z . Non-dimensional for Eq. (6) as below 

 

( )
( )2

1

11 ,
b z

R z a e
−

= −                                                                                                                                             (7) 

 

where 1a =  and 2
1 0b bR=  are variables in ( )R z . The mean velocity is given as follows 
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( )
( ) ( )

( )

2

0

2
.

p

p

r R z

m p

r

u u r rdr u r rdr
R z

 
 = +
  
                                                                                                         (8) 

 
Then, two-dimensional unsteady convective-diffusion equation is expressed as follows: 

 
2

2

1
.m

C C
u D r C

t z r r r z 

      
+ = +  

      
                                                                                                      (9) 

 
Simplify Eq. (9), it yields 

 
2

2

2
,m

C C
u D C

t z z 

   
+ = + 

   
                                                                                                                     (10) 

 
where 
 

2 1
.r

r r r

  
=  

  
                                                                                                                                           (11) 

 
According to Gill and Sankarasubramanian [8], the initial condition of convective diffusion 

coefficient is given by 
 

( )
0  if ,

2, ,0

0   if ,
2

s

s

z
C z

C r z
z

z




= 
 


                                                                                                                            (12) 

 

where 0C  is the concentration referenced and sz  is the solute's length. The boundary condition 

following Gill and Sankarasubramanian [8] is 
 

( ), , 0,C r t =                                                                                                                                                  (13) 

 
for symmetry at the central circular pipe 0r = , the boundary condition is 
 

( )0, , 0
C

z t
r


=


                                                                                                                                                (14) 

 

and for the solute concentration gradient at the wall ( )r R z= , the boundary condition is given by 

 

( )( ), , 0.
C

R z z t
r


=


                                                                                                                                        (15) 
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2.3 Non-dimensional Variables 
 

The non-dimensional variables are as follows: 
 

( ) 
 

 




= = = = = = = =

= = = = = =

00 0

0 0 0 0 0 0 0 0

0
2 2 2

0 0 0 0 0 0 0

,  ,  ,  ,  ,  ,  ,  ( ) ,  

,  , ,  ,  ,  ,

y s
y s

m sm m
p s

R R zR p u ur z u
r p z u u R z

R u R R u u u R

r D zD z D tH C
r H C z z t

R H C R u R u a

 (16) 

 

where 0u , ,r   , p , 0R , ,z z  ,u ,y ,su  ( )R z , pr , C , sz , H  and t  are the fluid characteristic velocity, 

the radial coordinate, the shear stress, the pressure gradient, the radius of artery in outer region, the 
radial direction, the velocity, the yield stress, the slip velocity, the stenosed radius respectively in 
non-dimensional variables, the radius of artery in plug flow region, the solute concentration, the 
solute length, the magnetic field intensity and the time. 
 
2.4 Solution of Governing Equation 
 

The momentum equation in Eq. (1) is substituted with Eq. (16) and it forms a non-dimensional of 
momentum equation which is given as follows 

 

( ) = − +
1

,
d dH dp

r B
r dr dz dz

                                                                                                                                  (17) 

 

where 0 0 .
MH a

B
u




=  Then, Eq. (17) is solved by using integration of r  and it becomes 

 

1 ,
2

r dH dp
B C

dz dz


 
= − + + 

 
                                                                                                                                (18) 

 

where 1C  is a constant integration. The boundary equation of momentum equation in Eq. (2) then 

being applied with non-dimensional in Eq. (16), it forms 
 

finite at 0.r = =                                                                                                                                             (19) 
 

Applying non-dimensional boundary equation of momentum equation in Eq. (19) into Eq. (18), it 
is given as  
 

.
2

r dH dp
B

dz dz


 
= − + 

 
                                                                                                                                       (20) 

 
To form the yield stress, y =  and pr r=  are applied into Eq. (20), it forms 

 

.
2

p

y

r dH dp
B

dz dz


 
= − + 

 
                                                                                                                                     (21) 
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Then, the constitutive equation of Casson fluid in Eq. (3) is substituted with Eq. (16) to forms non-
dimensional constitutive equation which given as below 
 

2 .y y

du

dr
   − = + −                                                                                                                                  (22) 

 
Both Eq. (20) and (21) are substituted into Eq. (22), it forms 

 

2 .
2 2 2 2

p pr rdu r dH dp dH dp r dH dp dH dp
B B B B

dr dz dz dz dz dz dz dz dz

             
− = − + + − + − − + − +             

             
 (23) 

 
Then, the Eq. (23) is solved using integration of r  and it forms  

 

( )

3

22

2

41
,

2 2 3

p

p

r rdH dp r
u r B rr C

dz dz

 
  

− = − + + − +  
  

 

                                                                                     (24) 

 

where 2C  is also a constant integration. The non-dimensional of boundary equation for constitutive 

equation is forms by substituting Eq. (16) into Eq. (4), it yields 
 

( ) at .su u r R z= =                                                                                                                                             (25) 

 
By substituting Eq. (25) into Eq. (24), it forms 

 

( )
( )

( )
3

2
2

2

41
.

2 2 3

p

s p

r R zR zdH dp
C u B R z r

dz dz

 
  

= − − − + + −    
 

 (26) 

 
Eq. (26) is then substituted into Eq. (24), it forms the velocity in the outer non-plug core which is 

given as follows 
 

( )
( )

( )
( )

3 3
222 24 41 1

2 2 3 2 2 3

           .

p p

p p

s

r r r R zR zdH dp r dH dp
u r B rr B R z r

dz dz dz dz

u

   
     

= − − + + − + − + + −           
  

+

 (27) 

 
Then, pr r=  is applied into Eq. (27) which forms the velocity in plug flow region, 

 

( )
( )

( )
( )

3
22 2 2

2
441 1

2 2 3 2 2 3

           .

pp p

p p p

s

r R zr r R zdH dp dH dp
u r B r B R z r

dz dz dz dz

u

 
     

= − − + + − + − + + −            
 

+

 (28) 
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By substituting Eq. (16) into Eq. (10), it is given as 
 

2
2

2 2

1
,

C C
u C

t z Pe z 

   
+ = + 

   
                                                                                                                     (29) 

 
where  
 

0 0 .
m

R u
Pe

D
=                                                                                                                                                          (30) 

 

Here, Pe  is the Peclet number for the flow in a circular pipe which is given by Dash et al., [6]. By 
using approach of Sankarasubramanian and Gill [12] and by assuming the solution of Eq. (29) as a 

derivative series expansion involving 1
i i

mC z   is shown as follows: 

 

( ) ( ) ( )
( )1

1
1 1

,
, , , , ,

i
m

m i i
i

C z t
C r z t C z t f r t

z



=


= +


                                                                                                (31) 

 

where mC  is the mean concentration of the solute over a cross-sectional area of the geometry, 

( ),if r t  is the dispersion function associated with 1
i i

mC z  . By substituting Eq. (16) into Eq. (12) - 

Eq. (15), the non-dimensional of initial and boundary conditions of convective-diffusion equation are 
given as 
 

( )
1 if ,

2, ,0

0 if ,
2

s

s

z
z

C r z
z

z




= 
 


                                                                                                                                (32) 

 

( ), , 0,C r t =                                                                                                                                                    (33) 

 

( )0, , 0,
C

z t
r


=


                                                                                                                                                 (34) 

 
and 
 

( )( ), , 0.
C

R z z t
r


=


                                                                                                                                           (35) 

 

Using the initial condition Eq. (32) into Eq. (37), it yields ( )0 ,0 1f r = . Multiplying the solution in 

Eq. (37) with r  and integrating it from 0  to ( )R z  with the respect to r , it forms 

 

( ) ( )
( )

1 1

0

, 2 , , .

R z

mC z t C r z t rdr=                                                                                                                           (36) 
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According to Sankarasubramanian and Gill [12], the GDM is a derivative series expansion which 
given as  
 

( ) ( ) ( )1 1
1 1

, , ,
i

m m
i i

i

C C
z t K t z t

t z



=

 
=

 
                                                                                                                  (37) 

 

where ( )iK t  is the transport coefficient. The mean velocity plays an important role in calculating 

dispersion function. Thus, Eq. (16) is substituted into Eq. (8), the non-dimensional of mean velocity is 
given as below 
 

( )
( ) ( )

( )

2

0

2
.

p

p

r R z

m p

r

u u r rdr u r rdr
R z

 
 = +
  
                                                                                                           (38) 

 
Then, the mean velocity is solved by using integration of r , it forms 

 

( ) ( ) ( )
( )

43
2 2

2

1 4 16 1
.

8 3 7 21

p

m p p s

rdH dp
u B R z r R z r R z u

dz dz R z

  
= − + + − − +     

 (39) 

 
The dispersion function at steady state is given by 
 

( )( )1 _1
0 if 0s

p m p

f
r u r u r r

r r r

 
− − =   

  
                                                                                                 (40) 

 
and the dispersion function in outer region is given as follows: 
 

( )
11

( ) 0 if ( ).
s

m p

f
r u r u r r R z

r r r
+

 
− − =   

  
                                                                                              (41) 

 
Eq. (40) and Eq. (41) are solved by using integral method to get 1sf

−
 and 1sf

+
 

 

1 (0) 0sdf

dr
=                                                                                                                                                         (42) 

 
and 
 

1 ( ) 0.sdf
R z

dr
=                                                                                                                                                      (43) 

 
 
 
 
 



Semarak International Journal of Applied Sciences and Engineering Technology  

Volume 1, Issue 1 (2024) 1-17 

10 
 

The steady dispersion function in the plug flow region, 1sf
−

 and outer flow region, 1sf
+

. Thus, the 

steady dispersion function in the plug flow region, 1sf
−

 yields 

 

( )

2 2 2 4 3
2 2 2 22

1 _ 2

1 2 1
( ) ( ) ( )

48 672 12 21 32

p p

s p p

Ar r Ar r
f CI Ar r R z Ar r R z Ar R z

R z
= − + + − +  (44) 

 
and outer flow region, 1sf

+
,  

 
3

2

4 2 474
3 2 22

1 2

2 2 4 4

1158 1 1 2
( ) ( )

64 147 18 28224 672 ( ) 12 21

1 1 1
( ) log( ) log( ),

32 336 336

p p

s p p p p

p p p

Ar Ar rAr
f CI Ar r Ar r Ar r R z Ar r R z

R z

Ar R z Ar r Ar r

+
= − + − − + + −

+ − +

 (45) 

 

where 
1

8

dH dp
A B

dz dz

 
= − + 

 
 and 

 

( ) ( )

7

4 6 3 42 4
4

2

15 ( )13 7 ( ) ( ) 1
log log ( ) .

7056 5280 ( ) 360 539 96 336 336

pp p p p

p p

r R zr r r R z rR z
CI A r r R z

R z

 
 

= + − + − − + 
 
 

 (46) 

 

The general solution of unsteady dispersion function, 1 ( , )tf r t  is given as  

 
2

1 0
1

( , ) ( ),mt
t m m

m

f r t A e J r 


−

=

=                                                                                                                             (47) 

 
where 
 

( )

0 12
0 0

2
( ) ( ) .

( )

R z

m m s

m

A J r f r rdr
J




= −                                                                                                                     (48) 

 
The overall dispersion function is given as follows: 

 

1 1 1( , ) ( ) ( , ),s tf r t f r f r t= +                                                                                                                                    (49) 

 

where 1 ( )sf r  is the steady state dispersion function and 1 ( , )tf r t  is the dispersion function in the 

unsteady state that characterises the solute's time-dependent dispersion. The manuscript does not 
include the full mathematical formulas for the unsteady and overall dispersion functions due to the 
expressions are very large which required the use of Mathematica to solve. 
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3. Results and Discussions 
 

The present study goals to investigate the effect of magnetic field on the velocity of Casson fluid 
and dispersion function by varying the parameters of magnetic field and height of stenosis. The 
present results of Casson fluid with the effect of magnetic field and height of stenosis are beneficial 
to depict the non-Newtonian behaviour and the impact of magnetic field and height of stenosis on 
the velocity and dispersion coefficients. 
 
3.1 Velocity 

 
Figure 2 shows the validation result of velocity, u  for the present and previous study in the 

absence of height of stenosis, a  and magnetic field, M  with ( ) 1,R z =  0.02pr =  and 4p = . The 

validation figure is found to be in good agreement with Dash et al., [6]. For validation purpose, the 

geometry of the stenosed artery, ( )R z  is set to one. 

 

 
Fig. 2. The validation of velocity of Casson fluid model 

 
Figure 3 shows the variation of velocity for various values of magnetic field, 

0, 0.2,  0.4,  0.6,  0.8M =  when 0.02,a =  2.5,b=  0.5,z =  0,su =  4,p =  1,B =  0.1pr =  and 

1.dH dz =  The velocity increases, the magnetic field increases. The magnetic force can cause a 

particle to move in spiral or circular motion which make the velocity increases when it moves through 
a region of increased magnetic field strength. Thus, the increasing of magnetic field tends to increase 
the velocity. 

Figure 4 shows the variation of velocity of various values of height of stenosis, 

0, 0.02,  0.04,  0.06,  0.08a =  when 1,M =  2.5,b=  0.5,z =  0,su =  4,p =  1,B =  0.1pr =  and 

1.dH dz =  The velocity decreases as increasing of height of stenosis. This leads to a smaller space 

for the red blood cells and other cell materials to flow through the artery, hence the decrease in flow 
velocity. Thus, the velocity decreases when height of stenosis increases. 
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Fig. 3. Velocity of magnetic field, M  Fig. 4. Velocity of height of stenosis, a  
 

3.2 Steady Dispersion Function 
 

Figure 5 shows the validation result of steady dispersion function, 1sf  for the present and previous 

study in the absence of height of stenosis, a  and magnetic field, M  with ( ) 1,R z =  0.02pr =  and 

4p = . The validation figure is found to be in good agreement with Dash et al., [6]. For validation 

purpose, the geometry of the stenosed artery, ( )R z  is set to one. 

 

 
Fig. 5. Validation of steady dispersion function 

 
Figure 6 shows the variation of steady dispersion function for various values of magnetic field, 

0, 0.2,  0.4,  0.6,  0.8M =  when 0.02,a =  2.5,b=  0.5,z =  0,su =  4,p =  1,B =  0.1pr =  and 

1.dH dz =  The steady dispersion function decreases, the magnetic field increases. Surface waves in 

arterial flow destroy cell aggregates due to frequency dispersion, which reduces the inertial/elastic 
characteristics, while reflection at the artery wall might harm the endothelium sheet and cause 
denudation, which is the first step in the development of atherosclerosis. It is demonstrable that 
electromagnetic forces create extra energy in the blood flow. It emerges from the heart's rotating 
dipole and spreads via ac current to every live cell in the body. Thus, the steady dispersion function 
decreases when magnetic field increases. 

Figure 7 shows the variation of steady dispersion function of various values of height of stenosis, 

0, 0.02,  0.04,  0.06,  0.08a =  when 1,M =  2.5,b=  0.5,z =  0,su =  4,p =  1,B =  0.1pr =  and 

1.dH dz =  The steady dispersion increases, height of stenosis increases. As stenosis grows larger, 

the steady dispersion function reduces along the wall, and the opposite behaviour occurs in the 
artery's core. The scattering function exhibits inverse behaviour under the unstable conditions for 
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the rheological parameters given above. The height of the stenosis has a significant impact on the 
size of the stenosis and affects the blood velocity and dispersion process. Thus, steady dispersion 
function increases when height of stenosis increases. 

 

  

Fig. 6. Steady dispersion function of magnetic field,

M  

Fig. 7. Steady dispersion function of height of 

stenosis, a  

 
3.3 Unsteady Dispersion Function 

 

Figure 8 shows the validation result of unsteady dispersion function, 1tf  for the present and 

previous study in the absence of height of stenosis, a  and magnetic field, M  with ( ) 1,R z =  0.5,t =  

0.02pr =  and 4p = . The validation figure is found to be in good agreement with Dash et al., [6]. For 

validation purpose, the geometry of the stenosed artery, ( )R z  is set to one. 

 

 
Fig. 8. Validation of unsteady dispersion function 

 
Figure 9 shows the variation of unsteady dispersion function for various values of magnetic field, 

0, 0.2,  0.4,  0.6,  0.8M =  when 0.02,a =  2.5,b=  0.5,z =  0,su =  4,p =  1,B =  0.01,t =  0.1pr =  and 

1.dH dz =  The unsteady dispersion function increases, the magnetic field increases. The increasing 

in magnetic parameters causes a reduction in unsteady dispersion function. Thus, the unsteady 
dispersion function increases when magnetic field increases. 
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Figure 10 shows the variation of unsteady dispersion function of various values of height of 

stenosis, 0, 0.02,  0.04,  0.06,  0.08a =  when 1,M =  2.5,b=  0.5,z =  0,su =  4,p =  1,B =  0.01,t =  

0.1pr =  and 1.dH dz =  The unsteady dispersion function decreases, height of stenosis increases. As 

stenosis decreases, the unstable dispersion function increases along the wall and reverses in the 
artery's core. The scattering function exhibits inverse behaviour under unstable conditions for the 
rheological parameters given above. Thus, the unsteady dispersion function decreases as increasing 
of height of stenosis. 

 

  
Fig. 9.Unsteady dispersion function of magnetic 
field, M  

Fig. 10. Unsteady dispersion function of height of 

stenosis, a  

 
3.4 Overall Dispersion Function 

 

Figure 11 shows the validation result of overall dispersion function, 1f  for the present and 

previous study in the absence of height of stenosis, a  and magnetic field, M  with ( ) 1,R z =  0.02pr =  

and 4p = . The validation figure is found to be in good agreement with Dash et al., [6]. For validation 

purpose, the geometry of the stenosed artery, ( )R z  is set to one. 

 

 
Fig. 11. Validation of overall dispersion function 
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Figure 12 shows the variation of overall dispersion function for various values of magnetic field, 

0, 0.2,  0.4,  0.6,  0.8M =  when 0.02,a =  2.5,b=  0.5,z =  0,su =  4,p =  1,B =  0.1pr =  and 

1.dH dz =  The overall dispersion function decreases, the magnetic field increases. The overall 

dispersion function decreases with the presence of magnetic field since the blood velocity decreases 
when the magnetic field exists. This is due to the fact that the blood velocity moves together with 
the overall dispersion function in blood flow. Thus, the overall dispersion function decreases as 
increasing of magnetic field. 

Figure 13 shows the variation of overall dispersion function of various values of height of stenosis, 

0, 0.02,  0.04,  0.06,  0.08a =  when 1,M =  2.5,b=  0.5,z =  0,su =  4,p =  1,B =  0.1pr =  and 

1.dH dz =  The overall dispersion function increases, the height of stenosis increases. The behaviour 

of the overall dispersion function is low at the centre of the artery and high at the wall of the artery. 
However, the increase of overall dispersion function from the centre of the artery to the wall of the 
artery is uniform in approaching the arterial wall. Thus, the overall dispersion function increases 
when the height of stenosis increases. 

 

  
Fig. 12. Overall dispersion function of magnetic 
field, M  

Fig. 13. Overall dispersion function of height of 

stenosis, a  

 
4. Conclusions 

 
In conclusion, the effect of magnetic field and height of stenosis on the behaviour of steady flow 

velocity and unsteady solute dispersion through Casson fluid with the presence of stenosed artery 
can be investigated by manipulating magnetic field and height of stenosis. It can be noted that an 
increase in magnetic field, increases the velocity and unsteady dispersion function but decreasing in 
steady and overall dispersion functions. Meanwhile, increasing in height of stenosis, increasing in 
steady and overall dispersion functions but decreasing in velocity and unsteady dispersion function. 
The decreases in the flow region that causes red blood cells to flow in a much smaller space leading 
to an accumulation of red blood cells. Hence, the flow velocity decreases. As for the steady dispersion 
function, the smaller region caused by the increase in height of stenosis leads to a slower flow velocity 
and causes the solute to disperse more effectively at a particular region.  

As for magnetic field, it leads to a fastest the flow velocity. For unsteady dispersion function, the 
effect of magnetic field and height of stenosis is reverse behaviour of steady dispersion function. The 
overall dispersion function is the summation of steady and unsteady dispersion functions. Therefore, 
the overall dispersion function exhibits similar behaviour to steady dispersion function when 
magnetic field and height of stenosis increases. The result obtained from the mathematical analysis 
concluded that the magnetic field and height of stenosis highly influence the velocity flow and 
dispersion function. Both parameters should be considered when study the dispersion of solute using 
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Casson fluid model that has a presence of stenosed artery as it changes the behaviour of blood flow 
and solute dispersion. Therefore, this presence study contributes a significant advancement in the 
mathematical modelling field of solute dispersion in blood flow through stenosed artery using Casson 
fluid model. 
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