

Semarak International Journal of Electronic System Engineering 3, Issue 1 (2024) 28-45

28

Semarak International Journal of

Electronic System Engineering

Journal homepage:
https://semarakilmu.com.my/journals/index.php/sijese/index

ISSN: 3030-5519

Development of Digital Image Processing Algorithms via FPGA
Implementation

Shamsiah Suhaili1,, Joyce Huong Shing Yii1,, Asrani Lit1, Kuryati Kipli1, Maimun Huja Husin1,
Mohamad Faizrizwan Mohd Sabri1, Norhuzaimin Julai1

1 Department of Electrical & Electronics Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak,

Malaysia

ARTICLE INFO ABSTRACT

Article history:
Received 3 July 2024
Received in revised form 26 August 2024
Accepted 3 September 2024
Available online 15 September 2024

A real-time image processing is one of the fundamental elements in achieving IR 4.0.
The rapid development of digital image processing techniques has enabled various
applications in fields such as healthcare, transportation, and manufacturing. People
are seeking higher-performance image processing as traditional image processing is no
longer fulfilling the demands. FPGA-based digital image processing has become one of
the choices for the public due to its parallel pipelining, which enables shorter
processing time and better performance. Several digital image processing algorithms
have been developed in this project, which are gray level transformation, brightness
manipulation, contrast adjustment, thresholding, and inversion. They are the most
popular algorithms used in digital image processing. Microsoft Paint is used to convert
the format of the color input image to bitmap format, followed by MATLAB to convert
it into a hexadecimal file to be read and written in FPGA. Platforms such as ModelSim
Altera and Intel Quartus II are used to write Verilog HDL for digital image processing
algorithms. As a result, five hexadecimal files are obtained from the simulation. The
output hexadecimal files are further processed in MATLAB to generate respective
images.

Keywords:

FPGA; image processing; MATLAB;
Verilog HDL

1. Introduction

Technological innovation is taking place and new technologies are introduced every year. Now,
the global is focusing on the latest trend, which is the Fourth Industrial Revolution (IR 4.0). It describes
how digital technologies are incorporated into industrial and manufacturing processes. It also offers
an overview of the complete networking of smart digital systems. Embedded systems can be said to
be a technological foundation for realizing IR 4.0. This project is focusing on developing image
processing algorithm on FPGA implementation. When it is used on medical images, it aligns with SDG

 Corresponding author.
E-mail address: sushamsiah@unimas.my
 Corresponding author.
E-mail address: 75219@siswa.unimas.my

https://doi.org/10.37934/sijese.3.1.2845

Semarak International Journal of Electronic System Engineering

Volume 3, Issue 1 (2024) 28-45

29

Goal 3 which is good health and well-being. This is because through FPGA, the efficiency of the image
processing is increased, which enhances the diagnosis capabilities and further contributes to
improved healthcare outcomes.

FPGA is a semiconductor device that allows users to define its function after it is being
manufactured. It can be programmed and reprogrammed to suit the different functionality of the
device. Due to its architecture, FPGA allows parallel pipelining, which results in faster execution,
higher efficiency and better performance [1]. Digital image processing describes the use of a digital
computer to process digital images. Through this process, an image is enhanced and useful
information in the image is extracted by means of mathematical models and algorithms [2]. There
are numerous techniques used in digital image processing. The fundamental algorithms include
grayscale conversion, brightness manipulation, contrast adjustment, thresholding and inversion.

1.1 Literature Review

Study by Vanaparthy et al., [3] presented real time hardware image enhancement techniques

using FPGA. It focused on using FPGA to create image enhancement algorithms such as brightness
control, contrast stretching, negative transformation, thresholding and filtering techniques.
Chiuchisan and Geman [4] proposed a method for implementing image enhancement techniques
using FPGA technology to improve the diagnosis of skin cancer through computer-aided diagnosis. In
medical imaging applications, digital image processing is essential because it can enhance image
quality and extract data that is needed for a more precise diagnosis. There are different aspects of
digital image processing, which includes the digitalization of images, compressing images, enhancing
image quality, restoring images, matching images, describing images and reconstructing images.
Algorithms such as contrast operation, brightness operation, gray level transform, inversion and
thresholding are used to enhance the images of skin lesion (tumour). Zhang et al., [5] focused on
designing a colour to grayscale converter using a low-cost OV7670 camera. The low-cost camera was
used to capture images, which were then processed, and the output was shown on a monitor through
a Video Graphics Array (VGA) connector. Verilog HDL was used to write the modules, which are
Camera Controller, Image Capture and VGA Master for the FPGA interfaces. Paper by Panappally and
Dhanesh [6] discussed the design and implementation of GPU specifically for image processing. The
GPU is designed to support 4-stage pipelining, which includes fetching instructions from memory,
decoding the instructions, executing the operations on the data pixels and storing the processed data
back to memory.

The researcher named Chaithra et al., [7] focused on the use of Verilog HDL and MATLAB to
enhance images in real time. It highlights the benefits of using FPGAs as an image processing tool
instead of DSPs. The implementation of image enhancement techniques using Verilog HDL on FPGA
differs significantly from MATLAB or DSP based image processing due to the parallel nature of HDL.
The image enhancement algorithms are implemented on FPGA. It was simulated with Isim from Xilinx
ISE Design Suite 14.3 and synthesized with Xilinx XST. The input image of bitmap file is first converted
into hexadecimal format using MATLAB. It is then transferred into Xilinx ISE to read the image. The
study by Dhanabal et al., [8] focused on using Verilog HDL to apply circle recognition and coin
counting through adjustments to a digital image’s brightness, threshold and contrast. FPGA based
hardware image processing is a good method to enhance the quality of image due to its
reconfigurable feature and low manufacturing cost.

Study by Nived et al., [9] focused on the usage of Verilog HDL and FPGA for real time configurable
image enhancement. Verilog HDL’s parallel nature makes it different from MATLAB or DSP based
methods when it comes to implementing image enhancement algorithms on FPGA. The FPGA based

Semarak International Journal of Electronic System Engineering

Volume 3, Issue 1 (2024) 28-45

30

hardware implementation offers faster processing compared to software execution. Azhari et al.,
[10] focused on implementing image enhancement on the hardware to improve the recognition
speed to achieve real-time plate recognition. The input image is converted from bitmap format into
a hexadecimal file. MATLAB is used to convert the bitmap image into hexadecimal format. Every RGB
pixel value is kept in the Input Image Memory block. Then, the Brightness and Contrast Adjuster block
modifies each fetched pixel value from the memory block. The result is later stored into the Output
Image Memory block and transformed into bitmap format. Chiuchisan [11] focused on implementing
and enhancing the real-time configurable system for image enhancement using Verilog HDL and
FPGA. Medical image quality can be improved by performing various image processing operations
such as edge detection, sharpening, contrast and brightness manipulation at the hardware level by
designing new series of filters.

1.2 Significance of Study

The significance of this study lies in its potential to enhance image quality across various fields
such as medical imaging, surveillance and remote sensing. For example, in automotive driver
assistant systems, real-time video processing and analytics cannot be effectively performed by the
traditional digital signal processing (DSP) processors due to their limited capabilities. Therefore,
integrating the entire camera system in a single, low-cost System on a Chip (SoC) FPGA is a robust
solution. The SoC FPGA’s hard processor system (HPS) can run the software algorithm while the FPGA
logic constructs hardware parallel processing engines, optimizing the overall system performance.

FPGAs are unique in their architecture, offering parallel processing capabilities unlike other
hardware platforms such as CPUs and GPUs, which perform sequential instructions. For instance, in
preparing an image for particle counting (Vision System Design), a convolution filter is applied to
sharpen the image. The image is then run through a threshold to produce a binary image.
Morphology is used to perform a close function, removing holes in the binary particles. On a CPU,
the algorithm must complete each step sequentially across the entire image, taking approximately
166.7 ms. However, on a FPGA, each step is executed in parallel as each pixel completes the previous
step, reducing the process to only 8 ms. This demonstrates that FPGAs can execute algorithms almost
20 times faster than CPUs. This is particularly beneficial for real-time applications where processing
speed is crucial.

Furthermore, FPGAs allow for the creation of custom hardware architectures tailored to specific
image processing tasks, optimizing performance and efficiency. This level of customization is difficult
to achieve with fixed-function hardware. Partial dynamic reconfiguration is supported by certain
FPGA chips. This makes it possible to use them more effectively. Reconfigurable computing benefits
greatly from this capability because it allows for easy swapping of the modules into and out of the
devices without resetting the entire device for a total reconfiguration [12]. The reconfigurability of
the FPGAs makes it possible to update and modify image processing algorithms without changing the
hardware, providing a flexible platform for development and experimentation.

Several previous research have been analyzed. Based on these research, three objectives have
been developed, which are to develop different types of digital image processing algorithms using
Verilog HDL, to verify the functionality of the design through simulation in ModelSim and MATLAB
and to validate the performance of the image processing algorithms on an FPGA board. Based on the
previous studies, the first objective has been defined by designing digital image processing algorithms
such as grayscale conversion, brightness manipulation, thresholding, contrast adjustment and
inversion using Verilog HDL. Different platforms are chosen for the project, which are Intel Quartus
II and ModelSim Altera. The second objective, which is to verify the functionality of the design

Semarak International Journal of Electronic System Engineering

Volume 3, Issue 1 (2024) 28-45

31

through simulation in ModelSim and MATLAB, is set based on the outcomes in research [6-10,13].
The hexadecimal files outputted from the design can be generated back to images using MATLAB.
Furthermore, studies in [5] provides insights for the third objective, which is to validate the
performance of the image processing algorithms on an FPGA board.

There are two approaches for handling the image data in digital image processing on FPGA. The
first approach inputs the image as a file, processes it in the FPGA and then outputs the processed
image back as a file [7]. This approach makes use of FPGA’s ability to store and manipulate digital
data and results effectively, making it an ideal choice for batch processing and offline applications
where real-time limitations are less important. On the other hand, the second approach utilizes a
camera to capture live images, processes them on the FPGA in real-time and outputs the processed
images straight to a monitor via a VGA interface [20]. This approach offers instantaneous visual
feedback and is ideal for applications requiring continuous image processing. It usually demands
more complex synchronization and timing considerations to ensure seamless operation.

2. Methodology

The focus of the project is to develop digital image processing algorithms using Verilog HDL for
FPGA implementation. The proposed algorithms used in the project are grayscale conversion,
brightness manipulation, thresholding, contrast adjustment and inversion. These algorithms are
crucial for various image processing applications such as enhancing image quality, extracting
important information and adapting images for different display conditions. They are important
because they can be used in a variety of fields, including real-time video processing, surveillance
systems, satellite imaging and medical imaging [11,14]. In this project, both Intel Quartus II and
ModelSim Altera are used. Intel Quartus II is used for the synthesis and implementation of the design
into the FPGA whereas ModelSim Altera is used to simulate the Verilog HDL-based design to verify
the functionality of the design.

The input image is first converted into hexadecimal format before undergoing image processing
by different image processing algorithms in Verilog HDL. Then, the image data undergoes several
image processing algorithms such as grayscale conversion, brightness manipulation, thresholding,
contrast adjustment and inversion. Later, the processed image data is output to their corresponding
hex files. Using these hexadecimal files, their respective output images are generated through
MATLAB. The processed data is then output in their respective hex files. By using Matrix Laboratory
(MATLAB), the processed output images are generated from the hexadecimal files to Portable
Network Graphics (PNG) format.

2.1 Grayscale Conversion

Grayscale conversion is the process of shrinking an image dimension from RGB to the intensity
value (I) [15]. The pixel values of a grayscale image range from 0 (black) to 255 (white). This algorithm
is used because a grayscale image requires less memory space, and the processing time is faster
compared to a colour image. For example, this technique is widely used in medical imaging such as
in X-rays, MRIs and CT scans. This is because the grayscale image offers a detailed view of the body’s
internal components and with the high resolution, even the smallest abnormalities, can be accurately
diagnosed [16]. There are three methods of converting a colour image to a grayscale image. The first
method is known as the lightness method [15], where it calculates the grayscale values by averaging
the minimum and maximum of the RGB data as shown in Eq. (1).

Semarak International Journal of Electronic System Engineering

Volume 3, Issue 1 (2024) 28-45

32

𝐺𝑟𝑎𝑦 =
min(𝑅,𝐺,𝐵)+max (𝑅,𝐺,𝐵)

2
 (1)

However, the primary flaw of this method is that it does not use the RGB components that are

three colours. The second method is known as the average method [15], where it obtains the
grayscale values by averaging the values of the RGB data as shown in Eq. (2). This method has a flaw
where it gives each of the RGB data the same weight, even though our eyes see colour differently.

𝐺𝑟𝑎𝑦 =
𝑅+𝐺+𝐵

3
 (2)

The third method is known as luminosity method [15], where it calculates the grayscale values

based on a weighted combination of the RGB data. In this method, the green channel gets the highest
weight, followed by red and blue channels. In this project, the second method is chosen. The
implementation of grayscale conversion starts by reading the input colour image and separating it
into three different channels (red, green and blue). The grayscale data is obtained by summing up
the RGB data of the same pixel and then divided by 3 as shown in Eq. (3). The gray output image is
obtained.

𝐺𝑟𝑎𝑦 = 0.2989 × 𝑅 + 0.587 × 𝐺 + 0.114 × 𝐵 (3)

2.2 Brightness Manipulation

Brightness manipulation is a basic operation of digital image processing. When the input is too

bright, we would want to increase its brightness to increase its visibility. In contrast, if the image is
too dull, brightness addition is crucial to make the image more visible for the users. Basically,
brightness manipulation refers to adding or subtracting a constant value to each pixel of the image.
Brightness can be increased by adding a value to each pixel of the image and vice versa. The
mathematical expression for increasing brightness is shown in Eq. (4) whereas decreasing brightness
is in Eq. (5) where Brightness is the new pixel value, Gray is the original pixel value and x is a constant
brightness value. The implementation of brightness manipulation starts by reading the data of the
grayscale image. The brightness data for both brightness addition and subtraction are obtained based
on the respective mathematical expressions illustrated in Eq. (4) and (5). The brightness Gray output
image is obtained.

𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 = 𝐺𝑟𝑎𝑦 + 𝑥 (4)

𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 = 𝐺𝑟𝑎𝑦 − 𝑥 (5)

2.3 Thresholding

Based on a specified threshold value, thresholding transforms a grayscale image into a binary

image. The resulting image becomes black and white only. It is crucial in computer vision applications,
such as surveillance and object detection. With a suitable threshold value, it can separate the objects
from the background, aiding in automated recognition and tracking. It helps in analysis and decision-
making. By referring to Eq. (6), if the initial Gray value is more than x, the new Threshold value will
be set to 255 (white) whereas if it is less than or equal to x, the new Threshold value will be 0 (black).
The variable x refers to the threshold value that determines the output pixel to be black or white.

Semarak International Journal of Electronic System Engineering

Volume 3, Issue 1 (2024) 28-45

33

The implementation of thresholding starts by reading the data of the grayscale image. The threshold
data for thresholding can be obtained using the mathematical expression presented in Eq. (6). The
threshold output image is obtained.

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = {
255(𝑤ℎ𝑖𝑡𝑒) 𝑖𝑓 𝐺𝑟𝑎𝑦 > 𝑥

0 (𝑏𝑙𝑎𝑐𝑘) 𝑖𝑓 𝐺𝑟𝑎𝑦 ≤ 𝑥
} (6)

2.4 Contrast Adjustment

Image enhancement can be done by adjusting contrast to change the difference in intensity
between the pixels of the image. By increasing the contrast, the dark pixels will become darker, and
the bright pixels will become brighter. This operation can be done by multiplying each image pixel
with a contrast factor. When contrast factor > 1, contrast is increased while contrast is decreased
when contrast factor < 1. It is widely used in optical character recognition (OCR) systems and
digitization projects to ensure the text and details are clear and legible. This enhances the accuracy
of text extraction and overall document interpretation. Eq. (7) shows the mathematical expression
for contrast adjustment where x is the contrast factor. The implementation of contrast adjustment
starts by reading data of the grayscale image. The contrast data can be calculated using the
mathematical expression displayed in Eq. (7) The contrast output image is obtained.

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑥 × 𝐺𝑟𝑎𝑦 (7)

2.5 Inversion

Inversion involves reversing the intensity values of each pixel of an image. As a result, the dark
pixels will become bright whereas the bright pixels will become dark. Inversion is useful in medical
imaging for enhancing the visibility of certain structures or features within images. For example, by
inverting the image in X-ray imaging, it can highlight certain features that may not be as apparent in
the original image. This helps the doctors with a more comprehensive and accurate diagnosis and
analysis. The maximum pixel value for a grayscale image is 255. The operation can be done by using
mathematical expression in Eq. (8) to obtain the new Invert value by subtracting the initial Gray value
from the maximum pixel value, Amax. The implementation of inversion starts by reading the data of
the grayscale image. The invert data can be obtained based on the mathematical expression shown
in Eq. (8). The invert output image is obtained.

𝐼𝑛𝑣𝑒𝑟𝑡 = 𝐴𝑚𝑎𝑥 − 𝐺𝑟𝑎𝑦 (8)

2.6 Research Design

The first step is to conduct research and study information related to digital image processing
algorithms. A lot of related studies and research have been reviewed and studied. The next step is to
search for suitable hardware and software for image processing. For example, the model of the FPGA
and the FPGA development tools for writing Verilog HDL code. The FPGA board used is the DE-10
Standard and the selected platforms are Intel Quartus II and ModelSim Altera. Next, it is crucial to
find a suitable image for digital image processing.

The image “Lenna_colour.png” was chosen as it is a standard test image in image processing. The
dimensions of the image need to be known beforehand as they are specified in the Verilog code when

Semarak International Journal of Electronic System Engineering

Volume 3, Issue 1 (2024) 28-45

34

reading and storing the image data. The dimension of the “Lenna_colour.png” is 512 x 512 x 3. Then,
Microsoft Paint is used to convert the image from PNG format to bitmap format. Since the FPGA can
only read hexadecimal and binary files, MATLAB is used to convert the bitmap image into
hexadecimal format. Therefore, a MATLAB script is written to read the bitmap image and convert it
into hexadecimal format. The hexadecimal file obtained is later inputted into the FPGA using Intel
Quartus II and ModelSim Altera. Various Verilog HDL codes are written to design and perform
different digital image processing algorithms on the hexadecimal data of the input image. A
testbench is written to verify the functionality of the design. The Verilog HDL code was synthesized,
and simulation was performed. The hexadecimal files output by the algorithms are post-processed
in MATLAB to generate respective images. Another MATLAB script is written to convert the data in
the hexadecimal files into PNG format. The output images generated are checked to see if they meet
expectations. If the output images are not as expected, the Verilog HDL code is modified, and the
simulation is performed again.

The block diagram for the digital image processing algorithm on FPGA implementation is
displayed in Figure 1. A colour image “Lenna_colour.png”, with dimensions 512 x 512 x 3, is chosen
as the input. By using Microsoft Paint, it is converted to bitmap format, resulting in
“Lenna_colour.bmp”. It is then converted to hexadecimal format using MATLAB. The output files are
“Lenna_colour.hex” and “size_file.hex”.

Fig. 1. Block diagram digital image processing algorithm on FPGA implementation

The RGB data from the input image is read by the FPGA and stored in the memory block via Intel

Quartus II and ModelSim Altera. Verilog HDL is used to develop various digital image processing
algorithms to process the image. The image processing algorithms applied to the input image include
grayscale conversion, brightness manipulation, thresholding, contrast adjustment and inversion. The
algorithms output the processed data in their respective hexadecimal files. The processed images are
then generated and visualized using MATLAB, which converts the image data from hexadecimal
format back to PNG format.

3. Results and Discussion

This section discussed the coding used to convert the colour image into hexadecimal format in
MATLAB and Verilog coding used to develop various digital image processing algorithms. Then, the
output hexadecimal files are converted back to images using MATLAB in post-processing of the
image. The details regarding pre-processing of the image are discussed in this section. To effectively
utilise the programme, it is necessary to possess prior knowledge of the FPGA board, Intel Quartus II,
ModelSim, and MATLAB. This information can be obtained from the following articles [17-20]. Other
images from other papers [21] can also be used to observe the results.

Semarak International Journal of Electronic System Engineering

Volume 3, Issue 1 (2024) 28-45

35

3.1 Preprocessing using Microsoft Paint

“Lenna” image is a standardized test image commonly used in digital image processing. The
“Lenna” image obtained from the Internet is originally in PNG format and it is saved as
“Lenna_colour.png”. The dimension of the image is 512x512x3. Later, the image is converted into
bitmap format using Microsoft Paint. PNG format is known for its loseless compression
characteristics, which efficiently reduces the image file size without sacrificing the image quality. On
the other hand, bitmap format is known for its loseless and uncompressed attributes, which stores
the image data in pixel-by-pixel manner. This means that the colour of each pixel is stored in a matrix
of bytes, allowing bitmap format image to be a preferable format in image processing tasks. Figure 2
shows the “Lenna_colour” image in PNG and bitmap formats respectively.

(a) (b)

Fig. 2. “Lenna_colour” image in (a) PNG format (b) bitmap format

3.2 Pre-processing using MATLAB

Since the FPGA cannot read images directly, conversion of image from bitmap format to

hexadecimal format is necessary. FPGA can only read image data in binary and hexadecimal formats.
In this project, MATLAB is used to convert the pixel values of the bitmap image into a hexadecimal
data file. This is to ensure that the image data is compatible to be transferred and processed within
the FPGA.

3.2.1 MATLAB coding explanation

The image used in this project is “Lenna_colour.bmp”. It is a colour image with an image size of
512 x 512 x 3. This means that both the width and height of the image are 512 and it consists of 3
channels (Red, Green and Blue). The MATLAB coding loads and reads each pixel of the
“Lenna_colour.bmp” image. It then converts the RGB values of the image into their corresponding
hexadecimal representations. The resulting hexadecimal data is written sequentially to a text file
named “Lenna_colour.hex”. The image size is also written a text file named “size_file.hex”. The image
size file will be later used in post-processing to convert the hex data to image. Since the
“Lenna_colour” image is a colour image, it consists of three colour channels, known as RGB channels.
Therefore, in the hexadecimal file, there are 512 x 512 x 3 = 786432 hexadecimal values. These values

Semarak International Journal of Electronic System Engineering

Volume 3, Issue 1 (2024) 28-45

36

represent the colour information for each pixel in the image. The hexadecimal data file is then read
by the Verilog code in Quartus II for FPGA-based digital image processing.

3.2.2 Output of hex files

The hexadecimal data is stored in a text file named “Lenna_colour.hex”. Another text file called
“size_file.hex” is created to store the image size data. Figure 3 shows the output of the first and last
21 hexadecimal values that corresponds to the RGB values of a single pixel in “Lenna_colour.hex”.
Therefore, the 21 hexadecimal values shown represent 7 sets of RGB values from the beginning and
end of the image. Figure 3 illustrates the hexadecimal data stored in “size_file.hex”.

(a) (b)

Fig. 3. First (a) and last (b) for 21 RGB hexadecimal

data in “Lenna_colour.hex”

3.3 Image Processing using Intel Quartus II

In Quartus II, the design is compiled. The compilation process involves analysis and synthesis,
fitter, assembler, timing analysis and Exploratory Data Analysis (EDA) netlist writer. The Verilog code
is checked for any syntax errors and is then converted into a gate-level representation that consists
of logic gates and flip-flops. An RTL design is generated, showing the logic circuits and data flow of

Semarak International Journal of Electronic System Engineering

Volume 3, Issue 1 (2024) 28-45

37

the design. In the Pin Assignment, the ports are assigned to respective pins to allow the data to flow
into and out of the FPGA.

3.3.1 Verilog coding explanation

The Verilog coding is separated into design part and testbench. The design part consists of six
modules, which are the Top Module, Gray Module, Brightness Module, Threshold Module, Contrast
Module and Invert Module. The Verilog coding for the design in Quartus II must be synthesizable to
be able to generate RTL design and program it into the FPGA hardware. The Verilog coding are
designed so that the input RGB data from the input image file “Lenna_colour.hex” are processed
every clock cycle. This results in a delay and replication of the hex data in the output hexadecimal
files.

The testbench file, “design_module_tb” is used to verify the functionality of the
“design_module”. It declares all the parameters, wires, registers and integers used for the testbench
shown in the blue box. It initializes the ‘clk’ and ‘reset’ signals shown in the orange box. It reads the
RGB hex data from “Lenna_colour.hex” and stores the data in ‘in’ shown in the red box. It instantiates
the “design_module” and connects with the signals in the testbench, allowing the top-level module
to interact with the testbench environment.

3.3.2 Compilation report

Figure 4 shows the hierarchy of the design. The top module is “design_module” and the
submodules are “gray_module”, “brightness_module”, “threshold_module”, “contrast_module” and
“invert_module”. The compilation tasks and time are shown in Figure 5. A summary of the
compilation report is presented in Figure 6.

Fig. 4. Project navigator Fig. 5. Compilation tasks and time

Semarak International Journal of Electronic System Engineering

Volume 3, Issue 1 (2024) 28-45

38

Fig. 6. Compilation report

3.3.3 RTL design

The RTL design describes the operation of the digital circuit by outlining the data flow between
the registers and the logical operations performed on the data. It is an essential step in the hardware
development process, providing a blueprint for the synthesis and implementation phases. RTL
designs are generated from the Verilog coding after performing the compilation process in Quartus.
Figure 7 represents the RTL schematic of the Top Module, “design_module”. It provides a visual
representation of the hierarchical structure, showing how the data flows through different
components. It also shows the interconnections between the inputs, outputs, internal wires, registers
and submodules used in the design. It highlights the integration of different submodules, each
contributing to the overall image processing pipeline.

Fig. 7. RTL design for “design_module”

Semarak International Journal of Electronic System Engineering

Volume 3, Issue 1 (2024) 28-45

39

3.3.4 FPGA implementation

Several steps are required before implementing the design in FPGA to ensure the functionality
and integration with FPGA. The input and output ports are assigned to the designated pins in Pin
Planner. Programmer is used to detect the FPGA hardware and upload the Verilog coding into the
FPGA.Pin Planner is used to map the input and output ports of the design to the physical pins on the
FPGA device. This is to ensure that the FPGA can interact correctly with the external components and
signals. The pin assignment can be found in DE10-Standard User Manual. The ‘clk’ is assigned to
CLOCK_50, with 50 MHz clock input.

In the Programmer, the FPGA is configured in JTAG mode. In the ‘Hardware Setup’, ‘DE-SoC [USB-
1]’ is chosen. Next, the button ‘Auto Detect’ is selected and the device ‘5CSXFC6D6’. Both the FPGA
and HPS are shown in the Programmer interface. The FPGA is right clicked to change the device to
5CSXFC6D6F31. The FPGA is right clicked again to change the file and the output files
“design_module.sof” is chosen. In Figure 8, the box ‘Program/Configure’ in the .sof file is clicked and
the button ‘Start’ is clicked to download the .sof file into the FPGA. The ‘100% (Successful)’ indicates
that the Verilog coding has been successfully uploaded into the FPGA board.

Fig. 8. Programmer interface for programming the .sof file into the FPGA

Figure 9 shows the data captured by the FPGA when the Verilog coding is implemented on the

FPGA. The 6 7- segment displays capture the ‘red’, ‘green’ and ‘blue’ data of ‘e2’, ‘98’ and ‘7d’
respectively when a stream of input image data flows into the FPGA. The LEDs output the binary
number 10000010 of the ‘gray_data’ from the averaging of the ‘red’ ‘green’ and ‘blue’ data captured.
Figure 10 displays the connection between the FPGA board and the laptop and the monitor of the
laptop showing the progress of the program upload into the FPGA.

Semarak International Journal of Electronic System Engineering

Volume 3, Issue 1 (2024) 28-45

40

Fig. 9. The data captured by the FPGA Fig. 10. The connection between the FPGA board

and laptop

3.3 Image Processing using ModelSim Altera

In ModelSim, functional simulation is performed to verify the functionality of the Verilog coding
used for digital image processing. Figure 11 displays the output waveforms for the design and
testbench for the simulation from 0 ps to 251000 ps. Initially, the ‘clk’ and ‘reset’ signals are set to
low. The ‘reset’ signal is set to high after a clock cycle and set to low again after another clock cycle.
The “gray_module” starts to read the hexadecimal data from the image file “Lenna_colour.hex” at
the next rising edge of the clock. Then, the ‘ready’ signal is high when the ‘gray_data’ for each pixel
is available.

In Figure 11 the yellow box highlights the output data for each submodule in the beginning of the
simulation. The ‘gray_data’ is passed to the “brightness_module”, “threshold_module”,
“contrast_module” and “invert_module” for further image processing. Since the always blocks in the
submodules are triggered by the change in ‘gray_data’, there is no delay between the data transfer
for the “gray_module” with other submodules. This ensures that the ‘brightness_data’,
‘threshold_data’, ‘contrast_data’ and ‘invert_data’ are updated in the same clock cycle as the
‘gray_data’.

Semarak International Journal of Electronic System Engineering

Volume 3, Issue 1 (2024) 28-45

41

Fig. 11. Output simulation waveforms in the beginning

Figure 12 displays the output simulation waveforms for the design and testbench from

2621225000 ps to 2621475000 ps. The ‘ready’ signal goes low when all the ‘gray_data’ has been
successfully obtained from the averaging of the RGB data input. The integer ‘count’ tracks the pixel
number of the grayscale image and stops the simulation when the file write operations for each
submodule is complete. The simulation automatically stops when the ‘count’ reaches 262144 and
with a clock cycle delay. This is because the always block in the testbench is triggered by the rising
edge of the ‘clk’ and ‘reset’ signals.

Fig. 12. Output simulation waveforms at the end

Figure 13 highlights the output waveform of the “contrast_module”. The ‘contrast_data_temp’

is used to tackle the overflow that might happen in the “contrast_module”. When the
‘contrast_data_temp’ is a negative value, the ‘contrast_data’ is 00.

Semarak International Journal of Electronic System Engineering

Volume 3, Issue 1 (2024) 28-45

42

Fig. 13. Output waveforms of “contrast_module”

3.5 Post-processing using MATLAB

After running the simulation in ModelSim, five hexadecimal files are outputted. The ‘gray_data’,
‘brightness_data’, ‘threshold_data’, ‘contrast_data’ and ‘invert_data’ are written to their respective
files. Figure 14 shows the block diagram of Design Module with input hex file and generation of
output hex file from Verilog HDL code after simulation process.

Fig. 14. Block diagram with input and output file of design module

In this stage, MATLAB is utilized to convert the hexadecimal data outputted by ModelSim into

visible images. This step is crucial for visual inspection and verification of the results of the simulation
performed in ModelSim. A total of five images are obtained from five different hexadecimal files.
Table 1 shows the transformation of five different types of hexadecimal output result.

Semarak International Journal of Electronic System Engineering

Volume 3, Issue 1 (2024) 28-45

43

 Table 1
 Image transformation from generation output hex Verilog file

Transformation Output image transformation from generation output hex Verilog file
Gray Level Transformation

Brightness Manipulation

Thresholding

Contrast Adjustment

Semarak International Journal of Electronic System Engineering

Volume 3, Issue 1 (2024) 28-45

44

Inversion

4. Conclusions

The digital image processing algorithms employed in this project are grayscale conversion,
brightness manipulation, thresholding, contrast adjustment and inversion. The implementation of
these algorithms in digital image processing relies on both hardware and software. FPGA is the only
hardware used for implementing the algorithms. For software, Microsoft Paint, MATLAB, Intel
Quartus II and ModelSim Altera are utilized. Microsoft Paint is used for converting the input image
from PNG format to bitmap format. MATLAB is used for converting the bitmap image to hexadecimal
format. Intel Quartus II and ModelSim Altera are used to design the algorithms in Verilog HDL. They
are also used to simulate and verify image processing operations. MATLAB is used again to convert
the output hexadecimal files to PNG format, where the images are visualized for comparison
between the input colour image and the processed images.

The success of the project is assessed by the successful implementation of the digital image
algorithms in Verilog HDL and integration into the FPGA. The developed algorithms are evaluated
through simulation and verification using Intel Quartus II and ModelSim Altera to ensure the
functionality of the design. Comparisons between the grayscale image with the input image and with
the other algorithms are done to validate the correctness of the algorithms. Validation on the FPGA
hardware is carried out to confirm the practical applicability and performance of the algorithms.

Acknowledgement
This research was funded by Universiti Malaysia Sarawak (Osaka Gas Foundation in Cultural Exchange
(OGFICE) research Grant Scheme INT/FO2/IG-OSAKA/85047/2022).

References
[1] Moore, Andrew, and Ron Wilson. "FPGAs For Dummies®, 2nd Intel® Special Edition." (2017).
[2] Gonzalez, Rafael C, and Woods, Richard E. "Digital Image Processing, 2nd Ed. Prentice Hall." (2002).
[3] Vanaparthy, Praveen, G. Sahitya, Krishna Sree, and C. D. Naidu. "FPGA implementation of image enhancement

algorithms for biomedical image processing." International Journal of Advanced Research in Electrical, Electronics
and Instrumentation Engineering 2, no. 11 (2013): 5747-5753.

[4] Chiuchisan, Iuliana, and Oana Geman. "An approach of fpga technology in skin lesion detection."In 2018
International Conference and Exposition on Electrical And Power Engineering (EPE), pp. 0175-0178. IEEE, 2018.
https://doi.org/10.1109/ICEPE.2018.8559866

[5] Zhang, Yunxiang, Xiaokun Yang, Lei Wu, and Jean H. Andrian. "A case study on approximate FPGA design with an
open-source image processing platform."In 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp.
372-377. IEEE, 2019.https://doi.org/10.1109/ISVLSI.2019.00074

[6] Panappally, J. George Cherian, and M. S. Dhanesh. "Design of graphics processing unit for image processing."
In 2014 First International Conference on Computational Systems and Communications (ICCSC), pp. 299-302. IEEE,
2014. https://doi.org/10.1109/COMPSC.2014.7032666

https://doi.org/10.1109/ICEPE.2018.8559866
https://doi.org/10.1109/ISVLSI.2019.00074
https://doi.org/10.1109/COMPSC.2014.7032666

Semarak International Journal of Electronic System Engineering

Volume 3, Issue 1 (2024) 28-45

45

[7] Chaithra, S., Nithya Priya, H.L., Pragna, V., and Spoorthy, M. "Enhancement of Image using Verilog & MATLAB."
International Research Journal of Modernization in Engineering Technology and Science (IRJMETS), vol. 5, no. 7, pp.
870–872, 2023, https://doi.org/10.56726/IRJMETS43063

[8] Dhanabal, R., Sarat Kumar Sahoo, V. Bharathi, Kalyan Dowluri, Bh SR Phanindra Varma, and V. Sasiraju. "FPGA based
image processing unit usage in coin detection and counting." In 2015 International Conference on Circuits, Power
and Computing Technologies [ICCPCT-2015], pp. 1-5. IEEE, 2015. https://doi.org/10.1109/ICCPCT.2015.7159440

[9] Nived, Ch Sai, A. Rohith Kumar, G. Sai Dheeraj, and P. Jithendra. "Image Enhancement based on Verilog Hardware
Description Language." International Journal of Engineering Research and Technology. Volume 14, Number 7
(2021), pp. 647-651, 2021.

[10] Azhari, Zul Imran, Samsul Setumin, Emilia Noorsal, and Mohd Hanapiah Abdullah. "Digital image enhancement by
brightness and contrast manipulation using Verilog hardware description language." International Journal of
Electrical and Computer Engineering 13, no. 2 (2023): 1346. https://doi.org/10.11591/ijece.v13i2.pp1346-1357

[11] Chiuchisan, Iuliana. "An approach to the Verilog-based system for medical image enhancement." In 2015 E-Health
and Bioengineering Conference (EHB), pp. 1-4. IEEE, 2015. https://doi.org/10.1109/EHB.2015.7391461

[12] "CPU or FPGA for image processing: Which is best?, " Vision Systems Design. Accessed: Jul. 04, 2024. [Online].
[13] Raikovich, Tamás, and Béla Fehér. "Application of partial reconfiguration of FPGAs in image processing." In 6th

Conference on Ph. D. Research in Microelectronics & Electronics, pp. 1-4. IEEE, 2010.
[14] Keerthi, A., Nikitha, A., Nikhil, A., and Kumar, A. P. "Implementation of Image Enhancement using Verilog HDL". ZKG

International, vol. 4, no. 1, pp. 1243– 1263, 2024.
[15] Khudhair, Zaid Nidhal, Ahmed Nidhal Khdiar, Nidhal K. El Abbadi, Farhan Mohamed, Tanzila Saba, Faten S. Alamri,

and Amjad Rehman. "Color to grayscale image conversion based on singular value decomposition." Ieee Access 11
(2023): 54629-54638. https://doi.org/10.1109/ACCESS.2023.3279734

[16] "What are the Benefits of using Grayscale Scanning for Specific Applications, such as Medical Imaging?," Electronic
Office Systems. Accessed: Jun. 28, 2024. [Online].

[17] "DE10-Standard: Layout, " Terasic Technologies. Accessed: Jan. 14, 2024. [Online].
[18] "Altera Quartus II," University of Nevada, Las Vegas (UNLV). Accessed: Jan. 09, 2024. [Online].
[19] Mentor Graphics Corporation, "ModelSim Tutorial, " 2015. Accessed: Jul. 04, 2024. [Online].
[29] "What is MATLAB?, " MathWorks. Accessed: Jan. 09, 2024. [Online].
[21] Yusefi, Mostafa, Ong Su Yee, and Kamyar Shameli. "Bio-mediated production and characterisation of magnetic

nanoparticles using fruit peel extract." Journal of Research in Nanoscience and Nanotechnology 1, no. 1 (2021): 53-
61. https://doi.org/10.37934/jrnn.1.1.5361

https://doi.org/10.56726/IRJMETS43063
https://doi.org/10.1109/ICCPCT.2015.7159440
https://doi.org/10.11591/ijece.v13i2.pp1346-1357
https://doi.org/10.1109/EHB.2015.7391461
https://doi.org/10.1109/ACCESS.2023.3279734
https://doi.org/10.37934/jrnn.1.1.5361

