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Cayley graph is a variation of graphs that focuses on constructing and analyzing graphs 
using algebraic structures. Meanwhile, topological indices of graphs are numerical 
values that reflect various aspects of the graphs’ structure. Over the years, many 
variants of Cayley graphs have been constructed due to the significance of 
understanding the order of elements within a group’s subset but not on the union of 
subsets with specific order of elements. In this paper, a new variant of Cayley graph, 
namely the union prime power order Cayley graph of a group 𝐺 with respect to subset 
𝐻 is formed by combining all possible subsets of 𝐺. In addition, the union prime power 
order Cayley graph is constructed for cyclic groups of order 𝑝2 and 𝑝3, where 𝑝 is a 
prime, and their generalizations are determined. Moreover, the topological indices, 
which are the Wiener index, mean distance, first Zagreb index, and second Zagreb 
index are also computed for these graphs. Existing definitions and theorems of Cayley 
graphs and topological indices are analyzed to define the new variant of the Cayley 
graph and establish the general form of its topological indices. 
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1. Introduction 
 

In recent years, graph theory has been widely applied in fields such as computer science, social 
networks, robotics, neuroscience, and many more. Graph theory is based on graphs, which consist 
of vertices, connected by edges that represent the relationships between the vertices. Algebraic 
graph theory, on the other hand, involves the study of graphs using algebraic structures such as 
groups. In 1878, Cayley [1] introduced Cayley graph, a type of graph that represents the abstract 
algebraic structure of a group based on a set of generators. A Cayley graph of a finite group 𝐺 with 
respect to a subset 𝑆, denoted as 𝐶𝑎𝑦(𝐺, 𝑆), has the elements of 𝐺 as vertices, with the adjacencies 
of the vertices depending on the subset 𝑆 of 𝐺.  

The study of Cayley graphs related to group theory has advanced significantly over time. 
Konstantinova [2] explored the use of various types of Cayley graphs in solving combinatorial, graph-
theoretical, and applied problems in fields such as mathematics, computer science, and biology. In 
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2015, Tolue [3] introduced a new variant of Cayley graph, called the prime order Cayley graph 
associated to a group 𝐺 and a subset 𝑆 consisting of prime order elements of 𝐺. Asrari and Tolue [4] 
further investigated the prime order Cayley graph introduced in [3] for certain groups, including 
cyclic, dihedral, and generalized quaternion groups. Additionally, Tolue [5] defined the composite 
order Cayley graph of a group 𝐺 and a subset 𝑆 of all composite order elements of 𝐺, which is the 
complement of the prime order Cayley graph from [3]. Recently, Zulkarnain et al., [6] presented 
another variant of Cayley graph, called the prime power Cayley graph of a group 𝐺, with the subset 
𝑆 of 𝐺 containing all elements with prime power order. Furthermore, several other variants of Cayley 
graphs have been explored (see [7,8]). Moreover, the applications of Cayley graphs have expanded 
beyond mathematics. For example, in [9], Cayley graphs of semigroups are used to track atoms in 
complex biochemical networks and predict their potential locations during chemical reactions in 
molecules. Thilaga and Sarasija [10] investigated the use of unitary Cayley graphs in small-world 
networks, focusing on optimizing network communication in terms of delay and reliability. 

In mathematical chemistry, topological indices hold historical significance in predicting the 
biological activity and physicochemical properties of chemical compounds using molecular graphs. 
These indices are numerical values derived from mathematical formulas that quantify various aspects 
of a graph’s structure [11,12]. Among the most widely used topological indices are the Wiener index 
[13] and the Zagreb indices [14]. In [15], the mean distance of a graph is calculated using the Wiener 
index. These indices have also become more prevalent in algebraic graph theory, particularly in the 
study of Cayley graphs. In [16], Cayley graphs, particularly circulant and cube-connected graphs, and 
graph invariants such as forwarding and optical indices, bisection width, and Wiener index are 
analyzed to enhance efficient network communication. Yancheshmeh et al., [17] constructed the 
Cayley graph of the dihedral and generalized quaternion groups on specific subsets, and computed 
the Wiener index, Szeged index, and PI index of these graphs. Shojaee et al., [18] presented some 
new results for the Cayley graphs in [3] and [5] of certain abelian groups, focusing on various 
topological indices, such as the Wiener index, first and second Zagreb indices, eccentric connectivity 
index, and vertex and edge Padmakar-Ivan indices. Alhubairah et al., [19] introduced a new graph, 
the 𝑝-Subgroup graph, and computed the Wiener index, first and second Zagreb indices for these 
graphs of dihedral group of order 2𝑛, where 𝑛 = 𝑝𝑟, 𝑟 ∈ ℕ and 𝑝 is a prime. 

Most research on Cayley graphs has focused on finite groups with individual subsets containing 
elements of prime order [2], composite order [5], and prime power order [6]. However, the union of 
subsets with specific order of elements of a group has not been explored for Cayley graphs. In this 
paper, we introduce a new variant of Cayley graph, called the union prime power order Cayley graph 
for a finite group 𝐺 with respect to subset 𝐻 formed by combining all possible subsets of 𝐺. This 
graph is constructed for cyclic groups of order 𝑝2 and 𝑝3, where 𝑝 is a prime. In addition, several 
topological indices which are the Wiener index, mean distance, and first and second Zagreb indices 
are computed, providing new insights into the structure of these graphs in algebraic graph theory. 

In the following sections, we provide the basic concepts of graph theory and group theory, and 
previous results related to various topological indices of graphs. Next, the general structure of the 
new variant of Cayley graph and the computation of its topological indices are discussed. Finally, the 
paper concludes with a summary of the research findings. 

 
2. Preliminaries  
2.1 Graph 
 

Graphs are mathematical structures used to represent relationships between objects or entities, 
first introduced by Euler in 1736 while solving the notable Königsberg bridges problem [20]. 
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Let Γ = (𝑉(Γ), 𝐸(Γ)) be a graph, where 𝑉(Γ) is the set of vertices and 𝐸(Γ) is the set of edges. 
In a graph Γ, two vertices 𝑢 and 𝑣 are adjacent, denoted 𝑢 ~ 𝑣, if there is an edge {𝑢, 𝑣} connecting 
them. The order of Γ is the number of vertices, denoted by |𝑉(Γ)|, while the size of Γ is the number 
of edges, denoted by |𝐸(Γ)|. For a vertex 𝑢 ∈  𝑉(Γ), the degree of 𝑢, denoted by 𝑑𝑒𝑔(𝑢) is the 
number of vertices adjacent to 𝑢. A graph Γ with 𝑛 vertices is called a complete graph, denoted by 
𝐾𝑛, if every distinct pair of vertices in Γ is adjacent. A graph Γ is 𝑑-regular if every vertex in Γ has the 

same degree 𝑑, and the size of the regular graph Γ with 𝑛 vertices is 
𝑛𝑑

2
. Furthermore, a graph Γ is 

considered connected if there exists a path between every pair of vertices, otherwise, Γ is a 
disconnected graph. Let Γ = Γ1 ∪ Γ2 ∪⋯∪ Γ𝑘 be the union of 𝑘 graphs, each with disjoint vertex and 
edge sets, where 𝑉(Γ) = 𝑉(Γ1) ∪ 𝑉(Γ2) ∪ ⋯∪ 𝑉(Γ𝑘), and 𝐸(Γ) = 𝐸(Γ1) ∪ 𝐸(Γ2) ∪ ⋯∪ 𝐸(Γ𝑘). The 
union of 𝑘 disjoint copies of Γ is denoted by 𝑘Γ. The distance between two vertices 𝑢 and 𝑣 in a 
connected graph Γ, denoted by 𝑑(𝑢, 𝑣), is the length of the shortest path between them, while the 
diameter of Γ, denoted 𝑑𝑖𝑎𝑚(Γ), is the maximum distance between any two vertices in Γ [21].  

According to [22], a group 𝐺 is called cyclic if there exists an element 𝑎 ∈ 𝐺 such that 𝐺 is 
generated by 𝑎.  

In group theory, graphs are used to represent the algebraic structure of a group. Cayley graphs 
are a type of graph of groups, where vertices correspond to the elements of the group, and edges 
represent the group’s action, providing a graphical representation of the group’s structure. 
 

Definition 1 [1] Cayley Graph 
Let 𝐺 be a group and 𝑆 a subset of 𝐺 such that the identity element 𝑒 ∉ 𝑆 and 𝑆 = 𝑆−1. The Cayley 

graph of 𝐺 with respect to 𝑆, denoted 𝐶𝑎𝑦(𝐺, 𝑆), has vertex set 𝑉(𝐶𝑎𝑦(𝐺, 𝑆)) = 𝐺, and two vertices 
𝑔 and ℎ are adjacent if and only if 𝑔ℎ−1 ∈ 𝑆. 

In 2022, Zulkarnain et al., [6] introduced the prime power Cayley graph of a group 𝐺 and a subset 
𝑆 of 𝐺 containing all prime power order elements. For a cyclic group 𝐺 of prime power order, it was 
shown that the prime power Cayley graph forms a complete graph. 
 

Theorem 1 [6]  
Let 𝐺 be a cyclic group of order 𝑝𝑛, where 𝑝 is a prime and 𝑛 ∈ ℕ. Let 𝑆 be a subset of 𝐺 defined 

by 𝑆 = {𝑥 ∈ 𝐺: |𝑥| = 𝑝𝑘, 1 ≤ 𝑘 ≤ 𝑛} and 𝑆 = 𝑆−1. Then, the prime power Cayley graph of 𝐺 with 

respect to 𝑆, denoted 𝐶𝑎�̃�(𝐺, 𝑆), is a complete graph of order 𝑝𝑛, that is 𝐶𝑎�̃�(𝐺, 𝑆) = 𝐾𝑝𝑛. 

In this paper, by extending the idea in [6], a new variant of Cayley graph is introduced, namely 
the union prime power order Cayley graph of a group 𝐺 with respect to the union of all possible 
subsets of 𝐺. 
 
2.2 Topological Indices of Graphs 
 

Topological indices are numerical values that represent the topological structure of a graph. 
Various topological indices have been introduced over the past decades, including the Wiener index, 
mean distance, and Zagreb indices. Here, the definitions, theorems, and propositions related to the 
topological indices of graphs are given. 

 
Definition 2 [13] Wiener Index of a Graph 
The Wiener index of a connected graph Γ is, 𝑊(Γ) = ∑ 𝑑(𝑢, 𝑣){𝑢,𝑣}∈𝑉(Γ) , where 𝑑(𝑢, 𝑣) is the 

distance between two vertices 𝑢 and 𝑣 in Γ. 
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Proposition 1 [23]  

For a complete graph with 𝑛 vertices, 𝐾𝑛, the Wiener index is, 𝑊(𝐾𝑛) =
𝑛(𝑛−1)

2
. 

 
Theorem 1 [24]  
Let Γ be a graph with |𝑉(Γ)| vertices and |𝐸(Γ)| edges. Then, the Wiener index is, 𝑊(Γ) =

|𝑉(Γ)|2 − |𝑉(Γ)| − |𝐸(Γ)| if and only if 𝑑𝑖𝑎𝑚(Γ) ≤ 2. 
 
Proposition 2 [23]  
For a disconnected graph Γ, the Wiener index is, 𝑊(Γ) = ∑ 𝑑{𝑢,𝑣}⊆𝑉(Γ)

𝑢−𝑣 𝑝𝑎𝑡ℎ 𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑛 Γ

(𝑢, 𝑣), where 

𝑑(𝑢, 𝑣) is the distances between the vertices 𝑢 and 𝑣 within each connected component of Γ. 
 
Definition 3 [15] Mean Distance of a Graph 

The mean distance of a graph Γ is, 𝜎(Γ) =
𝑊(Γ)

(|𝑉(Γ)|2 )
, where 𝑊(Γ) is the Wiener index of graph Γ and 

|𝑉(Γ)| is the number of vertices in Γ. 
 
Proposition 3 [15]  
For a complete graph with 𝑛 vertices, 𝐾𝑛, the mean distance is, 𝜎(𝐾𝑛) = 1. 
 
Definition 4 [14] First Zagreb Index of a Graph 
For a connected graph Γ, the first Zagreb index is, 𝑀1(Γ) = ∑ 𝑑𝑒𝑔(𝑣)2𝑣∈𝑉(Γ) , where 𝑑𝑒𝑔(𝑣) is 

the degree of vertex 𝑣 in Γ. 
 

Definition 5 [14] Second Zagreb Index of a Graph 
For a connected graph Γ, the second Zagreb index is, 𝑀2(Γ) = ∑ 𝑑𝑒𝑔(𝑢)𝑑𝑒𝑔(𝑣){𝑢,𝑣}∈𝐸(Γ) , where 

𝑑𝑒𝑔(𝑢) and 𝑑𝑒𝑔(𝑣) represent the degrees of adjacent vertices 𝑢 and 𝑣 in Γ. 
 
Proposition 4 [25]  
For a complete graph with 𝑛 vertices, 𝐾𝑛, the first Zagreb index is, 𝑀1(𝐾𝑛) = 𝑛(𝑛 − 1)

2. 
 
Proposition 5 [25]  

For a complete graph with 𝑛 vertices, 𝐾𝑛, the second Zagreb index is, 𝑀2(𝐾𝑛) =
𝑛(𝑛−1)3

2
. 

 
Proposition 6 [25]  
Let Γ be a 𝑑-regular graph with 𝑛 vertices, then the first Zagreb index is, 𝑀1(Γ) = 𝑛𝑑

2, where 𝑑 
is the degree of each vertex in Γ. 

 
Proposition 7 [25]  

Let Γ be a 𝑑-regular graph with 𝑛 vertices, then the second Zagreb index is, 𝑀2(Γ) =
𝑛𝑑3

2
, where 

𝑑 is the degree of each vertex in Γ. 
 
Proposition 8 [26]  
Let Γ be a disconnected graph with components Γ1, Γ2, … , Γ𝑘, then the first Zagreb index is, 

𝑀1(Γ) = 𝑀1(Γ1) + 𝑀1(Γ2) + ⋯+𝑀1(Γ𝑘). 
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Proposition 9 [26]  
Let Γ be a disconnected graph with components Γ1, Γ2, … , Γ𝑘, then the second Zagreb index is, 

𝑀2(Γ) = 𝑀2(Γ1) + 𝑀2(Γ2) + ⋯+𝑀2(Γ𝑘). 
 

In the next section, we introduce a new variant of Cayley graph, called the union prime power 
order Cayley graph. Then, the structures of these graphs for cyclic groups of order 𝑝2 and 𝑝3, where 
𝑝 is a prime, and their topological indices, are determined. 

 
3. Results 
 

In this research, a new variant of Cayley graph, namely the union prime power order Cayley graph 
is introduced. The union prime power order Cayley graph is defined as follows: 
 

Definition 6 Union Prime Power Order Cayley Graph 

Let 𝐺 be a group with |𝐺| = 𝑝1
𝛼1 ⋅ 𝑝2

𝛼2 ⋅ … ⋅ 𝑝𝑘
𝛼𝑘 where 𝑝𝑖 are primes and 𝛼𝑖 ∈ ℕ for 𝑖 = 1,2, … , 𝑘. 

Suppose 𝑆(𝑝𝑖
𝑟) = {𝑎 ∈ 𝐺: |𝑎| = 𝑝𝑖

𝑟} be an inverse-closed subset of 𝐺 for 𝑟 = 1,2, … , 𝛼𝑖 and 𝐻 be a 

subset formed from all possible union of 𝑆(𝑝𝑖
𝑟). The union prime power order Cayley graph of 𝐺 with 

respect to 𝐻, denoted as 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻) is a graph with the elements of 𝐺 as its vertices and two 

distinct vertices 𝑔 and ℎ are adjacent if 𝑔ℎ−1 ∈ 𝐻. 
 
Example 1  
Let 𝐺 be a cyclic group of order 8, |𝐶8| = 8 = 2

3, generated by 𝑥 with the set of elements 
{𝑒, 𝑥, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7}. By 0, there are three subsets associated to 𝐺, which are: 

 

i) 𝑆(2) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 2} = {𝑥4}, 

ii) 𝑆(4) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 4} = {𝑥2, 𝑥6}, 

iii) 𝑆(8) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 8} = {𝑥, 𝑥3, 𝑥5, 𝑥7}. 
 

Hence, the possible unions of subsets 𝑆(2), 𝑆(4) and 𝑆(3) can be formed as follows: 
 

i) 𝐻1 = 𝑆
(2) ∪ 𝑆(4) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 2 or 4} = {𝑥2, 𝑥4, 𝑥6}, 

ii) 𝐻2 = 𝑆
(2) ∪ 𝑆(8) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 2 or 8} = {𝑥, 𝑥3, 𝑥4, 𝑥5, 𝑥7}, 

iii) 𝐻3 = 𝑆
(4) ∪ 𝑆(8) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 4 or 8} = {𝑥, 𝑥2, 𝑥3, 𝑥5, 𝑥6, 𝑥7}, 

iv) 𝐻4 = 𝑆
(2) ∪ 𝑆(4) ∪ 𝑆(8) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 2, 4 or 8} = {𝑥, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7}. 

 
Based on 0, all the graphs have elements of 𝐺 as vertices, and the vertices of the graphs are 

adjacent if 𝑔ℎ−1 ∈ 𝐻1, 𝐻2, 𝐻3, 𝐻4. Therefore, the union prime power order Cayley graph of 𝐺 with 
respect to the subsets 𝐻1, 𝐻2, 𝐻3, and 𝐻4, are obtained, as in Figures 1-4, respectively. 
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Fig. 1. 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1) Fig. 2. 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2) 

  

  
Fig. 3. 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻3) Fig. 4. 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻4) 

 
Note that the union prime power order Cayley graph cannot be constructed for a cyclic group 𝐺 

of order 𝑝, where 𝑝 is a prime since by 0, there is only one subset associated to 𝐺, which is 𝑆(𝑝) =
{𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝}. Thus, it is not possible to get a union of subsets of elements with distinct prime 
power order.  

Therefore, we start by constructing the union prime power order Cayley graph for the cyclic 
groups of order 𝑝2, where 𝑝 is a prime. Then, we determine the Wiener index, mean distance, first 
Zagreb index, and second Zagreb index for this graph. 

 
3.1 The Union Prime Power Order Cayley Graph of Cyclic Groups of Order 𝑝2 

 
Let 𝐺 be a cyclic group of order 𝑝2, for prime 𝑝. For any element 𝑥𝑟 ∈ 𝐺, the order of 𝑥𝑟 can be 

1, 𝑝, or 𝑝2. By 0, there are two subsets associated to 𝐺, which are: 
 

i) 𝑆(𝑝) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝}, 

ii) 𝑆(𝑝
2) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝2}. 

 

Thus, a subset 𝐻 can be formed by the union of 𝑆(𝑝) and 𝑆(𝑝
2), as follows: 

 

𝐻 = 𝑆(𝑝) ∪ 𝑆(𝑝
2) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝 or 𝑝2}. 

 
The union prime power order Cayley graph of 𝐺 with respect to 𝐻 is constructed as in the 

following theorem. 
 
Theorem 3 
Let 𝐺 be a cyclic group of order 𝑝2 generated by 𝑥, where 𝑝 is a prime. Let 𝐻 be a subset of 𝐺 

defined as 𝐻 = 𝑆(𝑝) ∪ 𝑆(𝑝
2) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝 or 𝑝2}. The union prime power order Cayley graph 

of 𝐺 with respect to 𝐻 is a complete graph of order 𝑝2, that is 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻) = 𝐾𝑝2. 
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Proof. Let 𝐺 be a cyclic group of order 𝑝2 generated by 𝑥, where 𝐺 =

{𝑒, 𝑥, … , 𝑥𝑝, 𝑥𝑝+1, … , 𝑥𝑝
2−1}. 

Let 𝐻 be a subset of 𝐺 in which 𝐻 = 𝑆(𝑝) ∪ 𝑆(𝑝
2) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝 or 𝑝2}, includes all 

elements in 𝐺 except the identity element. Thus, 𝐻 = {𝑥𝑖 ∈ 𝐺: 1 ≤ 𝑖 ≤ (𝑝2 − 1)}. 

By 0, 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻) has vertex set 𝑉(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)) = 𝐺. For 1 ≤ 𝑖 ≤ (𝑝2 − 1), each vertex 𝑥𝑖 

is adjacent to the identity element 𝑒, since 𝑥𝑖 ∙ 𝑒−1 = 𝑥𝑖 ∈ 𝐻. Two distinct vertices, 𝑥𝑖 and 𝑥𝑗 in 

𝑉((𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)) are adjacent since 𝑥𝑖 ∙ 𝑥−𝑗 ≠ 𝑒, as 𝑥𝑖 ∙ 𝑥−𝑗 = 𝑒 implies 𝑥𝑖 = 𝑥𝑗, which is a 

contradiction since 𝑥𝑖 and 𝑥𝑗 are distinct. Therefore, 𝑥𝑖 ∙ 𝑥−𝑗 ∈ 𝐻 and 𝑥𝑖  ~ 𝑥𝑗. 
Since every pair of distinct vertices in 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻) are adjacent, the graph forms a complete 

graph of order 𝑝2, denoted 𝐾𝑝2. Therefore, 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻) = 𝐾𝑝2. 

 
Example 2 
Let 𝐺 be a cyclic group of order 4, 𝐶4, generated by 𝑥 with the set of elements {𝑒, 𝑥, 𝑥2, 𝑥3}. By 0, 

there are two subsets associated to 𝐺, which are: 
 

i) 𝑆(2) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 2} = {𝑥2}, 

ii) 𝑆(4) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 4} = {𝑥, 𝑥3}. 
 

Hence, a subset 𝐻 can be formed by the union of 𝑆(2) and 𝑆(4), as follows: 
 

𝐻 = 𝑆(2) ∪ 𝑆(4) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 2 or 4} = {𝑥, 𝑥2, 𝑥3}. 
 
The union prime power order Cayley graph of 𝐺 with respect to 𝐻, 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻) has vertex set 

𝑉(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)) = 𝐺 = {𝑒, 𝑥, 𝑥
2, 𝑥3}. The vertex 𝑒 is adjacent to all other vertices in 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻) 

since 𝑥𝑖 ∙ 𝑒−1 = 𝑥𝑖 ∈ 𝐻 for 𝑖 = 1,2,3. Similarly, 𝑥𝑖  ~ 𝑥𝑗 for all 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 3 since all elements of 
𝐺 are in 𝐻 except for the identity.  

Therefore, 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻) is a complete graph of order 4, as shown in Figure 5. 

 

 
Fig. 5. 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻) 

 
3.2 The Topological Indices of the Union Prime Power Order Cayley Graph of Cyclic Groups of Order 
𝑝2 
 

For a cyclic group 𝐺 of order 𝑝2, where 𝑝 is a prime, the union prime power order Cayley graph 

of 𝐺 with respect to the subset 𝐻 = 𝑆(𝑝) ∪ 𝑆(𝑝
2) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝 or 𝑝2} is a complete graph with 

𝑝2 vertices, 𝐾𝑝2, as shown in 0. 

In the following theorem, the Wiener index, mean distance, first Zagreb index, and second Zagreb 
index of the union prime power order Cayley graphs of a cyclic group 𝐺 of order 𝑝2, for prime 𝑝, with 
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respect to the subset 𝐻, denoted by 𝑊(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)), 𝜎(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)), 𝑀1(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)) and 

𝑀2(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)) are determined. 

 
Theorem 4 

Let 𝐺 be a cyclic group of order 𝑝2 and 𝐻 = 𝑆(𝑝) ∪ 𝑆(𝑝
2) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝 or 𝑝2}. Then, 

 

i) 𝑊(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)) =
𝑝2(𝑝2−1)

2
, 

ii) 𝜎(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)) = 1, 

iii) 𝑀1(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)) = 𝑝
2(𝑝2 − 1)2, 

iv) 𝑀2(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)) =
𝑝2(𝑝2−1)

3

2
. 

 

Proof. From 0, 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻) = 𝐾𝑝2. Let 𝑛 = |𝑉(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻))|. By using 0, the Wiener 

index of 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻) is,  

 

𝑊(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)) = 𝑊(𝐾𝑝2) =
𝑝2(𝑝2 − 1)

2
. 

 
Based on 0, the mean distance of any complete graph is one. Hence, 𝜎(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)) =

𝜎(𝐾𝑝2) = 1.  

Next, the first and second Zagreb indices are determined using 0 and 0, respectively: 
 

𝑀1 (𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)) = 𝑀1(𝐾𝑝2) = 𝑝
2(𝑝2 − 1)2, 𝑀2(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)) = 𝑀2(𝐾𝑝2) =

𝑝2(𝑝2 − 1)3

2
. 

 
Example 3 

From 0, for a cyclic group 𝐺 = 𝐶4 and subset 𝐻 = 𝑆(2) ∪ 𝑆(4) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 2 or 4} =
{𝑥, 𝑥2, 𝑥3}, 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻) = 𝐾4. Hence, the distance between distinct vertices is 1.  

By 0, 
 

𝑊(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)) = ∑ 𝑑(𝑢, 𝑣)

{𝑢,𝑣}∈𝑉(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺,𝐻))

 

= 𝑑(𝑒, 𝑥) + 𝑑(𝑒, 𝑥2) + 𝑑(𝑒, 𝑥3) + 𝑑(𝑥, 𝑥2) + 𝑑(𝑥, 𝑥3) +  𝑑(𝑥2, 𝑥3) 
= 6, 

 
and by 0,  
 

𝜎(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)) =
𝑊(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻))

(|𝑉(𝑈𝐶𝑎𝑦𝑝𝑝
(𝐺,𝐻))|

2
)
=
6

(4
2
)
= 1. 

 
Next, for every vertex 𝑣 ∈ 𝑉(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)), the degree, 𝑑𝑒𝑔(𝑣) = 3. Therefore, by 0 and 0, 

respectively,  
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𝑀1(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)) = ∑ 𝑑𝑒𝑔(𝑣)2

𝑣∈𝑉(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺,𝐻))

 

= 𝑑𝑒𝑔(𝑒)2 + 𝑑𝑒𝑔(𝑥)2 + 𝑑𝑒𝑔(𝑥2)2 + 𝑑𝑒𝑔(𝑥3)2 
= 36, 

 

𝑀2(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)) = ∑ 𝑑𝑒𝑔(𝑢)𝑑𝑒𝑔(𝑣)

{𝑢,𝑣}∈𝐸(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺,𝐻))

 

= (𝑑𝑒𝑔(𝑒) 𝑑𝑒𝑔(𝑥)) + (𝑑𝑒𝑔(𝑒) 𝑑𝑒𝑔(𝑥2)) + (𝑑𝑒𝑔(𝑒) 𝑑𝑒𝑔(𝑥3)) 
+ (𝑑𝑒𝑔(𝑥) 𝑑𝑒𝑔(𝑥2)) + (𝑑𝑒𝑔(𝑥) 𝑑𝑒𝑔(𝑥3)) + (𝑑𝑒𝑔(𝑥2) 𝑑𝑒𝑔(𝑥3)) 
= 54. 

 
Meanwhile, by using 0, 
 

𝑊(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)) =
22(22 − 1)

2
= 6, 

𝜎(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)) = 1, 

𝑀1(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)) = 2
2(22 − 1)2 = 36, 

 𝑀2(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻)) =
22(22 − 1)3

2
= 54. 

 
In the following sub-section, we present results on the general structure of the union prime 

power order Cayley graph for cyclic groups of order 𝑝3, where 𝑝 is a prime, as well as the topological 
indices of this graph. 
 
3.3 The Union Prime Power Order Cayley Graph of Cyclic Groups of Order 𝑝3 
 

Let 𝐺 be a cyclic group of order 𝑝3, for prime 𝑝. For any element 𝑥𝑟 ∈ 𝐺, the order of 𝑥𝑟 can be 
1, 𝑝, 𝑝2 or 𝑝3. By 0, there are three subsets associated to 𝐺, which are: 

 

i) 𝑆(𝑝) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝}, 

ii) 𝑆(𝑝
2) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝2}, 

iii) 𝑆(𝑝
3) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝3}. 

 

Thus, the possible unions of subsets 𝑆(𝑝), 𝑆(𝑝
2) and 𝑆(𝑝

3) can be defined as follows: 
 

i) 𝐻1 = 𝑆
(𝑝) ∪ 𝑆(𝑝

2) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝 or 𝑝2}, 

ii) 𝐻2 = 𝑆
(𝑝) ∪ 𝑆(𝑝

3) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝 or 𝑝3}, 

iii) 𝐻3 = 𝑆
(𝑝2) ∪ 𝑆(𝑝

3) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝2 or 𝑝3}, 

iv) 𝐻4 = 𝑆
(𝑝) ∪ 𝑆(𝑝

2) ∪ 𝑆(𝑝
3) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝, 𝑝2 or 𝑝3}. 

 
The union prime power order Cayley graph of 𝐺 with respect to 𝐻1, 𝐻2, 𝐻3, and 𝐻4 are 

constructed as in the following theorems. 
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Theorem 5 
Let 𝐺 be a cyclic group of order 𝑝3 generated by 𝑥, where 𝑝 is a prime. Let 𝐻1 be a subset of 𝐺 

defined as 𝐻1 = 𝑆
(𝑝) ∪ 𝑆(𝑝

2) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝 or 𝑝2}. The union prime power order Cayley graph 
of 𝐺 with respect to 𝐻1 is the union of 𝑝 disjoint copies of complete graphs of order 𝑝2, that is 
𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1) = 𝑝𝐾𝑝2. 

 
Proof. Let 𝐺 be a cyclic group of order 𝑝3 generated by 𝑥, where 
 

𝐺 = {𝑒, 𝑥, 𝑥2, … , 𝑥𝑝, 𝑥𝑝+1, … , 𝑥𝑝
2
, 𝑥𝑝

2+1, … , 𝑥𝑝
3−1}, 

 

and let 𝐻1 = 𝑆
(𝑝) ∪ 𝑆(𝑝

2) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝 or 𝑝2}.  
Since 𝑝 is a prime, the elements of 𝐺 either have order 1, 𝑝, 𝑝2 or 𝑝3 only. By 0, two distinct 

vertices 𝑔 and ℎ are adjacent if 𝑔ℎ−1 ∈ 𝐻1, which implies |𝑔ℎ−1| = 𝑝 or 𝑝2. Thus, if 𝑔 ≁ ℎ, then 
|𝑔ℎ−1| = 1 or 𝑝3. If |𝑔ℎ−1| = 1, then 𝑔ℎ−1 = 𝑒, which implies 𝑔 = ℎ, a contradiction since 𝑔 and ℎ 
are distinct. Meanwhile, if |𝑔ℎ−1| = 𝑝3, then 𝑔ℎ−1 ∉ 𝐻1. The union prime power order Cayley graph 
of 𝐺 with respect to 𝐻1 has vertex set 𝑉(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1)) = 𝐺, which can be partitioned into 𝑝 

subsets, defined as 𝑉𝑘 = {𝑥
𝑖𝑝+(𝑘−1): 𝑖 ∈ ℕ, 0 ≤ 𝑖 ≤ 𝑝2 − 1}, where 1 ≤ 𝑘 ≤ 𝑝. 

Case 1: Consider 𝑔, ℎ ∈ 𝑉𝑘 such that 𝑔 = 𝑥𝑖𝑝+(𝑘−1) and ℎ = 𝑥𝑗𝑝+(𝑘−1) for 𝑖 ≠ 𝑗. Since 𝑔ℎ−1 ∈ 𝐻1, 
two distinct vertices in the same partition are adjacent to each other. 

Case 2: Consider 𝑔 ∈ 𝑉𝑘 and ℎ ∈ 𝑉𝑙  where 𝑘 ≠ 𝑙. Since 𝑔ℎ−1 ∉ 𝐻1, all pair of vertices in distinct 
partitions 𝑉𝑘 and 𝑉𝑙  are not adjacent. 

Since the distinct partitions are disjoint, any two vertices in the same partition are adjacent, 
forming a complete graph with 𝑝2 vertices, 𝐾𝑝2. Meanwhile, any two vertices from distinct partition 

are not adjacent. Therefore, 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1) = 𝐾𝑝2 ∪ …∪ 𝐾𝑝2⏟        
𝑝 𝑡𝑖𝑚𝑒𝑠

= 𝑝𝐾𝑝2. 

 

Example 4 

From 0, for a cyclic group 𝐺 = 𝐶8 and subset 𝐻1 = 𝑆
(2) ∪ 𝑆(4) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 2 or 4} =

{𝑥2, 𝑥4, 𝑥6}, by 0, the vertices of 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1) can be partitioned into two subsets, which are: 

 

i) 𝑉1 = {𝑥
2𝑖: 0 ≤ 𝑖 ≤ 3} = {𝑒, 𝑥2, 𝑥4, 𝑥6}, 

ii) 𝑉2 = {𝑥
2𝑖+1: 0 ≤ 𝑖 ≤ 3} = {𝑥, 𝑥3, 𝑥5, 𝑥7}. 

 
The vertices in 𝑉1 and 𝑉2 are adjacent to each other within the respective vertex sets, but not 

adjacent between the partitions. For example, the vertices 𝑒 ∈ 𝑉1 and 𝑥 ∈ 𝑉2 are not adjacent since 
𝑒 ∙ 𝑥−1 = 𝑒 ∙ 𝑥7 = 𝑥7 ∉ 𝐻1. From Figure 1, it can be seen that 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1) is the union of two 

disjoint copies of complete graphs of order 4, that is 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1) = 2𝐾4. 
 

Theorem 6 
Let 𝐺 be a cyclic group of order 𝑝3 generated by 𝑥, where 𝑝 is a prime. Let 𝐻2 be a subset of 𝐺 

defined as 𝐻2 = 𝑆
(𝑝) ∪ 𝑆(𝑝

3) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝 or 𝑝3}. The union prime power order Cayley graph 
of 𝐺 with respect to 𝐻2, 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2) is a (𝑝3 − 𝑝2 + 𝑝 − 1)-regular graph. 

 

Proof. Let 𝐺 be a cyclic group of order 𝑝3 generated by 𝑥, and let 𝐻2 = 𝑆
(𝑝) ∪ 𝑆(𝑝

3) =
{𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝 or 𝑝3}. 
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Since 𝑝 is a prime, the elements of 𝐺 either have order 1, 𝑝, 𝑝2 or 𝑝3 only. By 0, two distinct 
vertices 𝑔 and ℎ are adjacent if 𝑔ℎ−1 ∈ 𝐻2 which implies |𝑔ℎ−1| = 𝑝 or 𝑝3. Thus, if 𝑔 ≁ ℎ, then 
|𝑔ℎ−1| = 1 or 𝑝2. If |𝑔ℎ−1| = 1, then 𝑔ℎ−1 = 𝑒, which implies 𝑔 = ℎ, a contradiction since 𝑔 and ℎ 
are distinct. Meanwhile, if |𝑔ℎ−1| = 𝑝2, then 𝑔ℎ−1 ∉ 𝐻2. 

The union prime power order Cayley graph of 𝐺 with respect to 𝐻2 has vertex set 

𝑉(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2)) = 𝐺. Two distinct vertices 𝑥𝑖 and 𝑥𝑗 in 𝑉(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2)) are adjacent only if 

𝑥𝑖 ∙ 𝑥−𝑗 ∈ 𝐻2, for 𝑖 ≠ 𝑗, 0 ≤ 𝑖, 𝑗 ≤ 𝑝3 − 1. Hence, each vertex 𝑥𝑖 is adjacent to 𝑝3 − 𝑝2 + 𝑝 − 1 other 
vertices. Therefore, 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2) is a (𝑝3 − 𝑝2 + 𝑝 − 1)-regular graph. 

By using similar approach as in the proof of 0 and 0, the following two theorems are obtained, 
respectively. 

 
Theorem 7 
Let 𝐺 be a cyclic group of order 𝑝3 generated by 𝑥, where 𝑝 is a prime. Let 𝐻3 be a subset of 𝐺 

defined as 𝐻3 = 𝑆
(𝑝2) ∪ 𝑆(𝑝

3) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝2 or 𝑝3}. The union prime power order Cayley 
graph of 𝐺 with respect to 𝐻3, 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻3) is a (𝑝3 − 𝑝)-regular graph. 

 
Theorem 8 
Let 𝐺 be a cyclic group of order 𝑝3 generated by 𝑥, where 𝑝 is a prime. Let 𝐻4 be a subset of 𝐺 

defined as 𝐻4 = 𝑆
(𝑝) ∪ 𝑆(𝑝

2) ∪ 𝑆(𝑝
3) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝, 𝑝2 or 𝑝3}. The union prime power order 

Cayley graph of 𝐺 with respect to 𝐻4 is a complete graph of order 𝑝3, that is 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻4) = 𝐾𝑝3. 

 
3.4 The Topological Indices of the Union Prime Power Order Cayley Graph of Cyclic Groups of Order 
𝑝3 
 

In Section 3.3 the union prime power order Cayley graphs of a cyclic group 𝐺 of order 𝑝3, where 
𝑝 is a prime, are constructed with respect to the following subsets: 

 

i) 𝐻1 = 𝑆
(𝑝) ∪ 𝑆(𝑝

2) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝 or 𝑝2}, 

ii) 𝐻2 = 𝑆
(𝑝) ∪ 𝑆(𝑝

3) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝 or 𝑝3}, 

iii) 𝐻3 = 𝑆
(𝑝2) ∪ 𝑆(𝑝

3) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝2 or 𝑝3}, 

iv) 𝐻4 = 𝑆
(𝑝) ∪ 𝑆(𝑝

2) ∪ 𝑆(𝑝
3) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝, 𝑝2 or 𝑝3}. 

 
In the following theorem, the Wiener index, first Zagreb index, and second Zagreb index of the 

union prime power order Cayley graphs of a cyclic group 𝐺 of order 𝑝3, for prime 𝑝, with respect to 
the subset 𝐻1, denoted by 𝑊(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1)), 𝑀1(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1)) and 𝑀2(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1)) are 

determined. The mean distance of 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1) is omitted since the graph is disconnected, as 

shown in 0. 
 

Theorem 9 

Let 𝐺 be a cyclic group of order 𝑝3 and 𝐻1 = 𝑆
(𝑝) ∪ 𝑆(𝑝

2) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝 or 𝑝2}. Then, 
 

i) 𝑊(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1)) =
𝑝3(𝑝2−1)

2
, 

ii) 𝑀1(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1)) = 𝑝
3(𝑝2 − 1)2, 

iii) 𝑀2(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1)) =
𝑝3(𝑝2−1)

3

2
. 
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Proof. From 0, 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1) = 𝑝𝐾𝑝2. Let 𝑛 = |𝑉(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1))|. 

By using 0 and 0, 
 

𝑊(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1)) = 𝑊(𝐾𝑝2) +𝑊(𝐾𝑝2) + ⋯+𝑊(𝐾𝑝2)⏟                      
𝑝 𝑡𝑖𝑚𝑒𝑠

 

=∑𝑊(𝐾𝑝2)

𝑝

𝑖=1

=
𝑝3(𝑝2 − 1)

2
. 

 
Next, by applying 0 and 0,  

 

𝑀1(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1)) = 𝑀1(𝐾𝑝2) + 𝑀1(𝐾𝑝2) + ⋯+𝑀1(𝐾𝑝2)⏟                        
𝑝 𝑡𝑖𝑚𝑒𝑠

 

=∑𝑀1(𝐾𝑝2)

𝑝

𝑖=1

= 𝑝3(𝑝2 − 1)2. 

 
Then, by using 0 and 0, 

 

𝑀2(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1)) = 𝑀2(𝐾𝑝2) + 𝑀2(𝐾𝑝2) + ⋯+𝑀2(𝐾𝑝2)⏟                        
𝑝 𝑡𝑖𝑚𝑒𝑠

 

=∑𝑀2(𝐾𝑝2)

𝑝

𝑖=1

=
𝑝3(𝑝2 − 1)3

2
. 

 
Example 5 
From 0, 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1) = 2𝐾4. Hence, by 0 and 0, 

 
𝑊(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1)) = 𝑊(𝐾4) +𝑊(𝐾4) 

=
4(4 − 1)

2
+
4(4 − 1)

2
= 12. 

 
Next, by 0 and 0,  
 

𝑀1(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1)) = 𝑀1(𝐾4) + 𝑀1(𝐾4) 

= 4(4 − 1)2 + 4(4 − 1)2 = 72. 
 
Then, by 0 and 0, 
 

𝑀2(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1)) = 𝑀2(𝐾4) + 𝑀2(𝐾4) 

=
4(4 − 1)3

2
+
4(4 − 1)3

2
= 108. 

 
Meanwhile, by using 0, 
 

𝑊(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1)) =
23(22 − 1)

2
= 12, 
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𝑀1(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1)) = 2
3(22 − 1)2 = 72, 

𝑀2(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻1)) =
23(22 − 1)3

2
= 108. 

 
Next, the Wiener index, mean distance, first Zagreb index, and second Zagreb index of the union 

prime power order Cayley graph of a cyclic group 𝐺 of order 𝑝3, for prime 𝑝, with respect to the 
subsets 𝐻2, 𝐻3, and 𝐻4 are determined.  

First, the diameter of 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2) is determined as stated in the following lemma, which is 

necessary for computing the Wiener index of 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2) using 0. 

 
Lemma 1 

Let 𝐺 be a cyclic group of order 𝑝3 and 𝐻2 = 𝑆
(𝑝) ∪ 𝑆(𝑝

3) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝 or 𝑝3}. The 
diameter of 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2) is 2. 

 
Proof. From 0, 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2) is a (𝑝3 − 𝑝2 + 𝑝 − 1)-regular graph. 

Case 1: Consider two distinct vertices 𝑥𝑖 and 𝑥𝑗 in 𝑉(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2)) are adjacent.  If vertices 𝑥𝑖 

and 𝑥𝑗 are adjacent, then the distance between them is one. 

Case 2: Consider two distinct vertices 𝑥𝑖 and 𝑥𝑗 in 𝑉(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2)) are not adjacent. Since the 

graph is regular, both vertices 𝑥𝑖 and 𝑥𝑗 share a common neighbor. There exists a vertex 𝑥𝑘 such that 

𝑥𝑘 ∼ 𝑥𝑖 and 𝑥𝑘 ∼ 𝑥𝑗 in which 𝑥𝑘 is adjacent to both 𝑥𝑖 and 𝑥𝑗. Thus, the distance between 𝑥𝑖 and 

𝑥𝑗 is two. 
The distance between any two vertices in 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2) is at most 2. Therefore, the diameter 

of 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2) is 2. 

 
Theorem 10 

Let 𝐺 be a cyclic group of order 𝑝3 and 𝐻2 = 𝑆
(𝑝) ∪ 𝑆(𝑝

3) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝 or 𝑝3}. Then, 
 

i) 𝑊(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2)) =
𝑝3(𝑝3+𝑝2−𝑝−1)

2
, 

ii) 𝜎(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2)) =
(𝑝+1)2

𝑝2+𝑝+1
, 

iii) 𝑀1(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2)) = 𝑝
3(𝑝3 − 𝑝2 + 𝑝 − 1)2, 

iv) 𝑀2(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2)) =
(𝑝4−𝑝3+𝑝2−𝑝)

3

2
. 

 
Proof. From 0, 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2) is a (𝑝3 − 𝑝2 + 𝑝 − 1)-regular graph. Based on 0, 

𝑑𝑖𝑎𝑚(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2)) = 2. Let 𝑛 = |𝑉(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2))| and 𝑑 = 𝑝3 − 𝑝2 + 𝑝 − 1.  

The number of edges in a 𝑑-regular graph with 𝑛 vertices is 
𝑛𝑑

2
. Hence, by 0, 

 

𝑊(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2)) = |𝑉(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2))|
2
− |𝑉(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2))| − |𝐸(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2))| 

= (𝑝3)2 − 𝑝3 −
𝑝3(𝑝3 − 𝑝2 + 𝑝 − 1)

2
 

=
𝑝3(𝑝3 + 𝑝2 − 𝑝 − 1)

2
. 

 
Next, by 0, the mean distance of 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2) is, 
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𝜎(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2)) =
𝑊(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2))

(|𝑉(𝑈𝐶𝑎𝑦𝑝𝑝
(𝐺,𝐻2))|

2
)

 

=

𝑝3(𝑝3 + 𝑝2 − 𝑝 − 1)
2

(𝑝
3

2
)

 

=
(𝑝 + 1)2

𝑝2 + 𝑝 + 1
. 

 
Then, by using 0 and 0, the first and second Zagreb indices of 𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2) are determined, 

respectively. 
 
𝑀1(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2)) = 𝑝

3(𝑝3 − 𝑝2 + 𝑝 − 1)2, 

𝑀2(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻2)) =
𝑝3(𝑝3 − 𝑝2 + 𝑝 − 1)3

2
=
(𝑝4 − 𝑝3 + 𝑝2 − 𝑝)3

2
. 

 
By using similar approach as in the proof of 0 and 0, the following two theorems are obtained, 

respectively. 
 
Theorem 11 

Let 𝐺 be a cyclic group of order 𝑝3 and 𝐻3 = 𝑆
(𝑝2) ∪ 𝑆(𝑝

3) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝2 or 𝑝3}. Then, 
 

i) 𝑊(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻3)) =
𝑝3(𝑝3+𝑝−2)

2
, 

ii) 𝜎(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻3)) =
𝑝3+𝑝−2

𝑝3−1
, 

iii) 𝑀1(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻3)) = 𝑝
5(𝑝2 − 1)2, 

iv) 𝑀2(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻3)) =
𝑝6(𝑝2−1)

3

2
. 

 
Theorem 12 

Let 𝐺 be a cyclic group of order 𝑝3 and 𝐻4 = 𝑆
(𝑝) ∪ 𝑆(𝑝

2) ∪ 𝑆(𝑝
3) = {𝑥𝑟 ∈ 𝐺: |𝑥𝑟| = 𝑝, 𝑝2 or 𝑝3}. 

Then, 
 

i) 𝑊(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻4)) =
𝑝3(𝑝3−1)

2
, 

ii) 𝜎(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻4)) = 1, 

iii) 𝑀1(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻4)) = 𝑝
3(𝑝3 − 1)2, 

iv) 𝑀2(𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻4)) =
𝑝3(𝑝3−1)

3

2
. 

 
4. Conclusions 
 

In this paper, a new variant of Cayley graph, called the union prime power order Cayley graph is 
introduced. This graph is constructed for a cyclic group 𝐺 of order 𝑝2, where 𝑝 is a prime, and is found 
to be a complete graph with 𝑝2 vertices, 𝐾𝑝2. Based on 0 and 0, it can be observed that 

𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻) ≅ 𝐶𝑎�̃�(𝐺, 𝑆) for a cyclic group 𝐺 of order 𝑝2. Additionally, general formulas for the 
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topological indices of this graph are established using existing results on topological indices of 
complete graphs.  

Furthermore, for a cyclic group 𝐺 of order 𝑝3, the structures of the union prime power order 
Cayley graphs with specific subsets 𝐻1, 𝐻2, 𝐻3, and 𝐻4 , and their topological indices, are generalized. 
Similarly, it is observed that the union prime power order Cayley graph of 𝐺 with respect to 𝐻4, 

𝑈𝐶𝑎𝑦𝑝𝑝(𝐺, 𝐻4) is isomorphic to 𝐶𝑎�̃�(𝐺, 𝑆) for a cyclic group 𝐺 of order 𝑝3. 
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