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Significant public health risks have been posed by the drinking habits of college 
students for several generations. In order to tackle this issue thoroughly, the analysis 
of the NSP (Non-Drinkers, Social Drinkers, Problem Drinkers) epidemic model is 
conducted to understand which factors influence the dynamics of drinking behaviour 
in campus. The impact of different numerical methods for solving the model is 
evaluated, and recommendations for approaches to reduce the misuse of alcohol are 
mathematically examined. The model is solved using three techniques: the Euler, 
Runge-Kutta 4th order (RK-4), and the Non-standard Finite Difference (NSFD). The 
results provided by the NSFD scheme are the most important, as it maintains essential 
properties of the NSP model, such as the positivity of solutions and the stability of 
equilibrium, which are not preserved when the Euler and RK-4 methods are used. The 
basic reproductive numbers serve as the main result on which the further extension of 

the outbreak can be investigated. The effective reproduction numbers 𝑅0
𝑆 and 𝑅0

𝑃 are 
derived to determine the stability of equilibrium points. Moreover, the NSFD method 
is shown to preserve positivity for all time step sizes, making it suitable for epidemic 
modelling. Finally, numerical simulations are considered to investigate the 
effectiveness of the NSFD method. These results imply that the NSFD scheme is more 
appropriate for characterizing the dynamics of campus drinking and could provide 
valuable information for the prevention of alcohol related issues among students. 

 

Keywords: 
NSP; Mathematical Model; Euler; RK4; 
NSFD 

 
1. Introduction 
 

In pre-historic times, French chemists discovered the products of natural fermentation, which 
were quickly followed by the intention to make wines and beers from starchy and sugary vegetation. 
In the early days, alcohol was regarded as food, a medical drug, and a euphoriant, as well as being 
used in spiritual symbolism and society. Since the days of Plymouth Rock, alcoholic beverages have 
been consumed in the USA. In fact, wine and beer were staples on the ships carrying settlers to the 
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New World. In colonial times, milk and water were scarce and prone to pollution or waste, while 
coffee and tea were expensive [1]. The settlers turned to alternatives such as whisky and beer, and 
less frequently, to liquors like brandy and gin. In 1790, per capita consumption of pure whisky, or 
absolute whisky, was just under six gallons a year. Natural liquor composes only a small percentage 
of alcoholic drinks. For instance, if a drink contains ten percent alcohol by volume, one would have 
to consume ten gallons of it to drink one gallon of pure liquor [2]. Despite the fact that most of the 
colonists consumed alcohol frequently, sturdy community limitations restrained any tendency 
towards extreme levels. Drunken conduct was handled by emphasizing harmony and balance, instead 
of enforcing punishment. Alcohol consumption persisted without much controversy or conflict, as 
beer and other refined spirits became valuable commercial supplies [3]. When Congress imposed 
customs taxes on the agriculturists who manufactured alcohol in the 1790s, they refused to pay the 
tax. Their opposition is referred to as the Whiskey Rebellion, a protest movement of farmers who 
perceived the tax as an undue burden on their financial activities. A recent survey in the United States 
reveals that nearly 90 percent of college students drink alcohol at least once [4]. 

The college students who consume alcohol faced many consequences, like those students who 
drink may have average results. College is a time of huge change for teenagers across the United 
States of America and around the world. With newfound freedom comes the chance to explore an 
entirely new territory of possibilities associated with crossing the bridge from childhood into the 
trenches of adulthood [5]. These can very well be the defining moments in a person’s life. Abusive 
and immature alcohol consumption among college students is a widespread public health issue, 
exacting a significant toll on the mental and social lives of college students on campuses all over the 
USA. Drinking alcohol in college has become a custom that students often see as an essential part of 
their higher education experience. Several college students arrive on campus with established 
drinking habits, and the college environment worsens the problem [6]. 

When a person consumes alcohol, nearly 20 percent of the alcohol is absorbed in the stomach, 
and approximately 80 percent is absorbed in the small intestine. The rate at which alcohol is absorbed 
depends on several factors: 

 
i) The biological gender of the drinker: Alcohol is absorbed differently in men and women due 

to differences in physiology. 
ii) The concentration of alcohol in the beverage: The higher the concentration, the faster the 

absorption. 
iii) The type of alcohol: Carbonated drinks tend to accelerate the absorption of alcohol. 
iv) The presence of food in the stomach: Food in the stomach slows down alcohol absorption, 

depending on whether the stomach is full or empty [7]. 
 

Whilst we examine males and females of the same height, weight, and build, males generally tend 
to have more muscle mass and lower fat content than females. This is because muscle volume 
contains more water compared to fat tissue. As a result, a specific quantity of alcohol can be diluted 
more effectively in males than in females. Consequently, the blood-alcohol concentration (BAC) from 
the same amount of alcohol is higher in women than in men, and women also feel the effects of that 
amount of alcohol faster than men [8]. 

As a general rule of thumb, an average man or woman can metabolize approximately 0.5 ounces 
(15 ml) of alcohol per hour. Therefore, it would take about 1 hour to eliminate the alcohol from a 12-
ounce (355 ml) can of beer. The BAC increases when the body absorbs alcohol faster than it can 
eliminate it [9]. Hence, because the body can only metabolize approximately one serving of alcohol 
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per hour, consuming multiple drinks in one hour will significantly increase your BAC compared to 
consuming one drink over a period of one hour or more. 

The breakdown, or metabolism, of ethanol occurs in the liver. An enzyme in the liver called 
alcohol dehydrogenase (ADH) strips electrons from ethanol to produce acetaldehyde [10]. Another 
enzyme, known as aldehyde dehydrogenase, converts acetaldehyde, in the presence of oxygen, into 
acetic acid the primary component of vinegar. The molecular structure of acetic acid is represented 
as CH₃COOH. When ethanol reacts with acetic acid, electrons and protons are also produced. Acetic 
acid can be used to form fatty acids or further broken down into water and carbon dioxide [11]. 

As stated by the National Cancer Institute:” According to scientists, drinking may cause various 
kinds of cancer. Research shows that when a man consumes a lot of beer, especially over time, there 
is an increased possibility of developing beer-related cancer [12]. Also, those who do not drink more 
than once a day but later consume large amounts of alcohol simultaneously have an increased risk 
of other cancers. Approximately 3.5 percent of cancer deaths in the USA occurred in 2009 due to 
alcohol consumption. About 19,500 people died as a result of alcohol intake.” Drinking has a 
significant effect on memory. Firstly, drinking interrupts the ability to form long-term memories, 
causing less disturbance in recalling earlier-formed long-term memories or the ability to retain new 
data in short-term memory for several seconds or more [13]. At low levels, the effects of alcohol are 
usually subtle, although they are visible under controlled conditions. As the dose of alcohol increases, 
so does the extent of memory impairment. Youngsters who consume alcohol at least once a month 
are twice as likely to commit an illegal act compared to those who abstain [14]. More than one-third 
of teens who consume alcohol at least once a week have committed violent crimes, including theft 
or assaulting. Youngsters who engage in such behaviour often develop a criminal record that can 
negatively impact their future [15]. This could destroy their opportunities for the rest of their lives. 
Due to a criminal record, a person may not qualify for certain jobs, and some crimes may bar them 
from traveling abroad. 

The assumptions made by Hethcote [16,17] in 1976 form the foundation for this model. In this 
paper, we compare the Forward Euler, RK-4, and NSFD methods. The NSFD method proves to be 
more efficient and reliable than the Forward Euler and RK-4 methods, as it demonstrates 
convergence even at very small step sizes [18]. 

This paper is organized into seven sections. Section 1 covers the literature review and 
background. Section 2 focuses on the formulation of the model. In Section 3, we present the 
equilibrium states, stability, and threshold analysis. Section 4 provides results about reproductive 
number, while section 5 insights into numerical modelling and the convergence analysis of NSFD. 
Section 6 showcases the graphical comparison of Euler, RK4, and NSFD methods. Finally, Section 7 
concludes the paper with a summary of key findings. 

 
2. Model Formulation 

 
We took model from [3] where concentrate on college-drinking and divide total students into 

three compartments: Non-drinkers (N), Social drinkers (S) and Problem drinkers (P) (see Figure 1). 
The model is governed by following nonlinear differential equation. 

The total population is represented by N and is sub-divided into three sub-populations Non-
drinkers (N), Social drinkers (S) and Problem drinkers (P). 

 
N(t) + S(t) + P(t) = 1 
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-  
Fig. 1. NSP model 

 
Variable of compartmental model are N: Susceptible, S: Infected and P represent the Infected.  
 

𝑑𝑁

𝑑𝑡
= 𝜂 − 𝜂𝑁 − 𝛼𝑁𝑆 − 𝜅𝑁𝑃 + 𝛽𝑆 + 𝜖𝑃                                   (1) 

         
𝑑𝑆

𝑑𝑡
= 𝜎𝑆 − (𝜂 + 𝜎)𝑆 + 𝛼𝑁𝑆 − 𝛽𝑆 − 𝛾𝑆𝑃 + 𝛿𝑃                        (2)        

                               
𝑑𝑃

𝑑𝑡
= 𝜋𝑃 − (𝜂 + 𝜋)𝑃 + 𝛾𝑆𝑃 + 𝜅𝑁𝑃 − 𝛿𝑃 − 𝜖𝑃                       (3) 

 
Changing from N to S, N to P, and S to P are modeled by using terms αNS, 𝜅𝑁𝑃 and 𝛾SP 

respectively. And conversion from S to N, P to N and P to S consider recovery process through βS, 𝜖P 
and δP respectively.                 

                                   
3. Disease free Equilibrium 
 
𝜋𝑃 − (𝜂 + 𝜋)𝑃 + 𝛾𝑆𝑃 + 𝜅𝑁𝑃 − 𝛿𝑃 − 𝜖𝑃 = 0                                         (4) 
 
𝜎𝑆 − (𝜂 +  𝜎)𝑆 +  𝛼𝑁𝑆 −  𝛽𝑆 −  𝛾𝑆𝑃 +  𝛿𝑃 =  0                              (5) 
 
𝜂 −  𝜂𝑁 −  𝛼𝑁𝑆 −  𝜅𝑁𝑃 +  𝛽𝑆 +  𝜖𝑃 =  0                                             (6) 
 

From above equation we get 
 
𝜀0 = (N, S, P) = (1, 0, 0 ) 
 
3.1 Drinking Free Equilibrium 
 

The equilibrium considered by deficiency of the problem drinkers P = 0, eigenvalues at problem 

DFE ε0= (
𝜂+𝛽

𝛼
, 1 −

𝜂+𝛽

𝛼
, 0). Differentiating f, g and h with respect to compartmental model 

parameters N, S and P. 
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𝐽 = [
𝑓𝑁 𝑓𝑆 𝑓𝑃
𝑔𝑁 𝑔𝑆 𝑔𝑃
ℎ𝑁 ℎ𝑆 ℎ𝑃

]                                  (7) 

 

𝐽 = [

−η − αS − kP −𝛼𝑁 + 𝛽 −𝑘𝑁 + 𝜖
𝛼𝑆 −η + αN − β − γP −𝛾𝑆 + 𝛿
𝑘𝑃 𝛾𝑃 −η + γS + kN − δ − ϵ

]                 (8) 

 

𝐽 (
𝜂+𝛽

𝛼
, 1 −

𝜂+𝛽

𝛼
, 0) =

(

 
 
−𝛼 + 𝛽 −𝜂 −𝜅 (

𝜂+𝛽

𝛼
) + 𝜖

𝛼 − 𝜂 + 𝛽 0 −𝛾 (
𝛼−𝜂−𝛽

𝛼
) + 𝛿

0 0 −𝜂 + 𝛾 (
𝛼−𝜂−𝛽

𝛼
) + 𝜅 (

𝜂+𝛽

𝛼
) − 𝛿 − 𝜖

)

 
 

                (9) 

 

 𝜆1 = −𝜂 ,  𝜆2 = 𝛼 − 𝜂 − 𝛽   and  𝜆3 =
−𝜂𝛼+𝛼𝛾−𝜂𝛾−𝛽𝛾+𝜂𝜅+𝛽𝜅−𝛼𝛿−𝛼𝜖

𝛼
 are eigenvalues at problem 

DFE. 
 
4. Reproductive Number  
 

In disease transmission research, cutting edge grid is a technique used to determine the 
multiplication number needed for a compartmental model of unchecked disease propagation. 
Jacobin Network estimates F and V require a disease-free balance 𝜀0. Then there is a permanent state 
structure. 

 
𝑑𝐹𝑘
𝑑𝑋𝑙

(𝜀0) = (
𝐹 0
0 0

) 

 
𝑑𝑉𝑘
𝑑𝑋𝑙

(𝜀0) = (
𝐹 0
𝐿3 𝐿4

) 

 
Here F and V are m × m matrices. We used the next generation matrix technique to calculate the 

reproductive number. 
 

𝑑𝑆

𝑑𝑡
= 𝛼𝑁𝑆 − 𝜂𝑆 − 𝛽𝑆 − 𝛾𝑆𝑃 + 𝛿𝑃                              

               
𝑑𝑃

𝑑𝑡
= 𝜅𝑁𝑃 − 𝜂𝑃 + 𝛾SP − 𝛿𝑃 − 𝜖𝑃                            

                
Next Generation Method: 

 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑦) − 𝑣(𝑥, 𝑦) 

 

𝐹 = [
𝛼𝑁𝑆
𝜅𝑁𝑃

], V= [
𝜂𝑆 + 𝛽𝑆 + 𝛾𝑆𝑃 − 𝛿𝑃
𝜂𝑃 − 𝛾𝑆𝑃 + 𝛿𝑃 + 𝜖𝑃

]. 

 
Hence, at the disease-free equilibrium (DFE) points, the transmissions matrix T and V are 
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𝐹 = [
𝑁𝑆
𝑁𝑃
]                                                               (10) 

 

𝑉 = [
𝜂 +  𝛽 +  𝛾𝑃

𝜂 +  𝛿 + 𝜖 −  𝛾𝑆
]                                      (11) 

 
F represents the changes of new infections and V transitions approaching equilibrium. So, the 

fundamental reproductive number has the highest eigenvalue. Largest eigenvalue of Jacobian matrix 
 

𝑅0
𝑆 = 𝐹𝑉−1 =

𝛼

𝜂+𝛽
                                                               (12) 

 

𝑅0
𝑃 = 𝐹𝑉−1 =

𝑘

𝜂+𝛿+𝜖
                                                           (13) 

 
4.1 Endemic Equilibrium 
 
𝜂 − 𝜂𝑁 − 𝛼𝑁𝑆 − 𝜅𝑁𝑃 + 𝛽𝑆 + 𝜖𝑃 = 0 

 
𝜋𝑃 − (𝜂 + 𝜋)𝑃 + 𝛾𝑆𝑃 + 𝜅𝑁𝑃 − 𝛿𝑃 − 𝜖𝑃 = 0                               
 
𝜎𝑆 − (𝜂 +  𝜎)𝑆 +  𝛼𝑁𝑆 −  𝛽𝑆 −  𝛾𝑆𝑃 +  𝛿𝑃 =  0                               
 

From above equation we get 
 

𝑁 =
𝜂−𝛾𝑆+𝛿+𝜖

 k
       

                                                              

𝑃 =
 αγ𝑆2+(𝜂𝑘+𝛽𝑘−𝛼𝜂−𝛼𝛿−𝛼𝜖)𝑆

k(δ−γS)
    

     
𝑆2 + 𝑏𝑠 + 𝑐 = 0,                    
 
here, 

 

𝑏 =
𝜅𝛾 + 𝛼𝛿 + 𝜀𝛾 + 𝜂𝛼 − 𝛿𝜅 + 𝛼𝜀 − 𝛽𝜅 + 𝜂𝛾 + 2𝛾𝛿 − 𝜂𝜅

𝜅𝛾 − 𝛾2 − 𝛼𝛾
 

 
and 
 

𝑐 =
−𝛿𝜀 − 𝜂𝛿 − 𝛿2 + 𝛿𝜅

𝜅𝛾 − 𝛾2 − 𝛼𝛾
 

 
4.2 Local Stability 
 

The trivial equilibrium points above represent drinking-free environment. So, analysis of local 
stability of trivial equilibrium prepares us to determine conditions under which drinking environment 
can be established. This found out from the eigenvalues of Jacobian matrix. 
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𝑑𝑁

𝑑𝑡
= 𝑓 = 𝜂 − 𝜂𝑁 − 𝛼𝑁𝑆 − 𝜅𝑁𝑃 + 𝛽𝑆 + 𝜖𝑃           

                 
𝑑𝑆

𝑑𝑡
= g = σS − (η + σ)S + αNS − βS − γSP + δP         

                     
𝑑𝑃

𝑑𝑡
= h = πP − (η + π)P + γSP + κNP − δP − ϵP                            

 
Differentiating f, g and h with respect to compartmental model parameters N, S and P. 

 

𝐽 = [
𝑓𝑁 𝑓𝑆 𝑓𝑃
𝑔𝑁 𝑔𝑆 𝑔𝑃
ℎ𝑁 ℎ𝑆 ℎ𝑃

]                                                               (14) 

 

𝐽 = [

−η − αS − kP −𝛼𝑁 + 𝛽 −𝑘𝑁 + 𝜖
𝛼𝑆 −η + αN − β − γP −𝛾𝑆 + 𝛿
𝑘𝑃 𝛾𝑃 −η + γS + kN − δ − ϵ

]                           (15) 

 
By drinking free point 
 

𝐽(1,0,0) = [

−η −𝛼 + 𝛽 −𝑘 + 𝜖
0 −η + α − β 𝛿
0 0 −η + k − δ − ϵ

]                                                          (16) 

 
By Characteristic Equation det (J − 𝜆I) = 0 
 

𝜆1 = −𝜂 , 𝜆2 = 𝛼 − 𝜂 − 𝛽  and  𝜆3 = 𝑘 − 𝜂 − 𝛿 − 𝜖 
 
are eigenvalues at drinking free equilibrium. Table 1 shows the parametric values. 
 

Table 1 
Parametric values 
Parameters Values Reference  

𝛼 0.4 [3] 
𝛿 0.2 [3] 
𝛽 0.2 DFE(Fitted), EE [3] 
𝛾 0.4 [3] 
𝜖 0.2 [3] 
𝜂 0.25 [3] 
𝜅 0.15 [3] 
𝜎 0.25 [3] 
𝜋 0.1 [3] 

 
5. Numerical Modelling of SEIR on Vaccine 
 
𝑑𝑁

𝑑𝑡
= 𝜂 − 𝜂𝑁 − 𝛼𝑁𝑆 − 𝜅𝑁𝑃 + 𝛽𝑆 + 𝜖𝑃           

                    
𝑑𝑆

𝑑𝑡
= 𝜎𝑆 − (𝜂 + 𝜎)𝑆 + 𝛼𝑁𝑆 − 𝛽𝑆 − 𝛾𝑆𝑃 + 𝛿𝑃                 
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𝑑𝑃

𝑑𝑡
= 𝜋𝑃 − (𝜂 + 𝜋)𝑃 + 𝛾𝑆𝑃 + 𝜅𝑁𝑃 − 𝛿𝑃 − 𝜖𝑃                

 
After simplification, 
 

𝑑𝑁

𝑑𝑡
= 𝜂 − 𝜂𝑁 − 𝛼𝑁𝑆 − 𝜅𝑁𝑃 + 𝛽𝑆 + 𝜖𝑃                                    

 
𝑑𝑆

𝑑𝑡
= −𝜂𝑆 + 𝛼𝑁𝑆 − 𝛽𝑆 − 𝛾𝑆𝑃 + 𝛿𝑃                                                                  

 
𝑑𝑃

𝑑𝑡
= −𝜂𝑃 + 𝛾𝑆𝑃 + 𝜅𝑁𝑃 − 𝛿𝑃 − 𝜖𝑃                              

 
The NSP model is represented using ordinary differential equations. We will now tackle the 

problem by numerical modelling. The Forward Euler scheme will be used first, then the Fourth Order 
Runge-Kutta scheme, and lastly the NSFD method. 

 
5.1 Forward Euler’s Scheme 
 
𝑁𝑛+1 = 𝑁𝑛 + ℎ(η − η𝑁𝑛 − α𝑁𝑛𝑆𝑛 − 𝜅𝑁𝑛𝑃𝑛 + 𝛽𝑆𝑛 + 𝜖𝑃𝑛)                                     (17) 

 
𝑆𝑛+1 = 𝑆𝑛 + ℎ(−η𝑆𝑛 + α𝑁𝑛𝑆𝑛 − 𝛾𝑆𝑛𝑃𝑛 − 𝛽𝑆𝑛 + 𝛿𝑃𝑛)                                               (18) 

 
𝑃𝑛+1 = 𝑃𝑛 + ℎ(−η𝑃𝑛 + 𝛾𝑃𝑛𝑆𝑛 + 𝜅𝑁𝑛𝑃𝑛 − 𝛿𝑃𝑛 − 𝜖𝑃𝑛)                                           (19) 
 
5.2 Fourth Order Runge-Kutta Scheme 
 

NSP system developed according to RK4-method. 
 

𝐾1 = h(η − η𝑁
𝑛 − α𝑁𝑛𝑆𝑛 − κ𝑁𝑛𝑃𝑛 + β𝑆𝑛 + ϵ𝑃𝑛), 

 
𝑚1 = h(−η𝑆

𝑛 + α𝑁𝑛𝑆𝑛 − γ𝑆𝑛𝑃𝑛 − β𝑆𝑛 + δ𝑃𝑛), 
 
𝑛1 = h(−η𝑃

𝑛 + κ𝑁𝑛𝑃𝑛 + γ𝑆𝑛𝑃𝑛 − δ𝑃𝑛 − ϵ𝑃𝑛). 
 

𝑘2 = h(η − η(𝑁
𝑛 +

𝐾1

2
) − α(𝑁𝑛 +

𝐾1

2
)(𝑆𝑛 +

𝑚1

2
) − κ(𝑁𝑛 +

𝐾1

2
)(𝑃𝑛 +

𝑛1

2
) + β(𝑆𝑛 +

𝑚1

2
) + ϵ(𝑃𝑛 +

𝑛1

2
)),                           

                                                                                                                                  

𝑚2 = ℎ(−𝜂(𝑆
𝑛 +

𝑚1

2
) + α(𝑁𝑛 +

𝐾1

2
)(𝑆𝑛 +

𝑚1

2
) − β(𝑆𝑛 +

𝑚1

2
) − γ(𝑆𝑛 +

𝑚1

2
)(𝑃𝑛 +

𝑛1

2
) + δ(𝑃𝑛 +

𝑛1

2
)),       

                                                                                                                                                      

𝑛2 = ℎ(−𝜂(𝑃
𝑛 +

𝑛1

2
) + γ(𝑆𝑛 +

𝑚1

2
)(𝑃𝑛 +

𝑛1

2
) + κ(𝑁𝑛 +

𝐾1

2
)(𝑃𝑛 +

𝑛1

2
) − δ(𝑃𝑛 +

𝑛1

2
) − ϵ(𝑃𝑛 +

𝑛1

2
)).   

                        

𝑘3 = ℎ(𝜂 − 𝜂(𝑁
𝑛 +

𝐾2

2
) − α(𝑁𝑛 +

𝐾2

2
)(𝑆𝑛 +

𝑚2

2
) − κ(𝑁𝑛 +

𝐾2

2
)(𝑃𝑛 +

𝑛2

2
) + β(𝑆𝑛 +

𝑚2

2
) + ϵ(𝑃𝑛 +

𝑛2

2
)) , 
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𝑚3 = ℎ(−𝜂(𝑆
𝑛 +

𝑚2

2
) + α(𝑁𝑛 +

𝐾2

2
)(𝑆𝑛 +

𝑚2

2
) − β(𝑆𝑛 +

𝑚2

2
) − γ(𝑆𝑛 +

𝑚2

2
)(𝑃𝑛 +

𝑛2

2
) + δ(𝑃𝑛 +

𝑛2

2
)) , 

 

𝑛3 = ℎ(−𝜂(𝑃
𝑛 +

𝑛2

2
) + γ(𝑆𝑛 +

𝑚2

2
)(𝑃𝑛 +

𝑛2

2
) + κ(𝑁𝑛 +

𝐾2

2
)(𝑃𝑛 +

𝑛2

2
) − δ(𝑃𝑛 +

𝑛2

2
) − ϵ(𝑃𝑛 +

𝑛2

2
)).   

                 
𝑘4 = ℎ(𝜂 − 𝜂(𝑁

𝑛 + 𝐾3) − α(𝑁
𝑛 + 𝐾3)(𝑆

𝑛 +𝑚3) − κ(𝑁
𝑛 + 𝐾3)(𝑃

𝑛 + 𝑛3) + β(𝑆
𝑛 +𝑚3) +

ϵ(𝑃𝑛 + 𝑛3)) , 
 
𝑚4 = ℎ(−𝜂(𝑆

𝑛 +𝑚3) + α(𝑁
𝑛 + 𝐾3)(𝑆

𝑛 +𝑚3) − β(𝑆
𝑛 +𝑚3) − γ(𝑆

𝑛 +𝑚3)(𝑃
𝑛 + 𝑛3) + δ(𝑃

𝑛 +
𝑛3)) , 
 
𝑛4 = ℎ(−𝜂(𝑃

𝑛 + 𝑛3) + γ(𝑆
𝑛 +𝑚3)(𝑃

𝑛 + 𝑛3) + κ(𝑁
𝑛 + 𝐾3)(𝑃

𝑛 + 𝑛3) − δ(𝑃
𝑛 + 𝑛3) − ϵ(𝑃

𝑛 +
𝑛3)) . 
 

𝑁𝑛+1 = 𝑁𝑛 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)                                         (20) 

 

𝑆𝑛+1 = 𝑆𝑛 +
1

6
(𝑚1 + 2𝑚2 + 2𝑚3 +𝑚4)                                      (21) 

 

𝑃𝑛+1 = 𝑃𝑛 +
1

6
(𝑛1 + 2𝑛2 + 2𝑛3 + 𝑛4)                                           (22) 

 
5.3 Non-Standard Finite Difference (NSFD) Scheme 
 

𝑁𝑛+1 =
𝑁𝑛+ℎ𝜂+ℎ𝛽𝑆𝑛`+ℎ𝜖𝑃𝑛

 (1+hη+hα𝑆𝑛+hκ𝑃𝑛)
                                           (23) 

 

𝑆𝑛+1 =
𝑆𝑛+ℎ𝛼𝑁𝑛𝑆𝑛+ℎ𝛿𝑃𝑛

 (1+hη+hβ+hγ𝑃𝑛)
                                              (24) 

 

𝑃𝑛+1 =
𝑃𝑛+ℎ𝛾𝑆𝑛𝑃𝑛+ℎ𝜅𝑁𝑛𝑃𝑛

 (1+hη+hδ+hϵ)
                                      (25) 

 
5.4 Stability Analysis of NSFD scheme 
 

The stability of the [NSFD] schemes of the NSP model at disease-free equilibrium point (DFE). 
 

F=
𝑁+ℎ𝜂+ℎ𝛽𝑆+ℎ𝜖𝑃

 1+hη+hαS+hκP
                                    (26)                     

                              

𝐺 =
𝑆+ℎ𝛼𝑁𝑆+ℎ𝛿𝑃

 1+hη+hβ+hγP
                                    (27)                           

                                         

𝐻 =
𝑃+ℎ𝛾𝑆𝑃+ℎ𝜅𝑁𝑃

 1+hη+hδ+hϵ
                                    (28)     

                                                                  
Now J will be 
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 𝐽 = [

𝐹𝑁 𝐹𝑆 𝐹𝑃
𝐺𝑁 𝐺𝑆 𝐺𝑃
𝐻𝑁 𝐻𝑆 𝐻𝑃

]                                             

 
Now, the Jacobian matrix of equation 

 

𝐽 =

(

 
 

1

1+ℎ𝜂

ℎ𝛽−ℎ𝛼

1+ℎ𝜂

ℎ𝜂−ℎ𝜅

1+ℎ𝜂

0
1+ℎ𝛼

1+ℎ𝜂+ℎ𝛽

ℎ𝛿

1+ℎ𝜂+ℎ𝛽

0 0
1+ℎ𝜅

1+ℎ𝜂+ℎ𝛿+ℎ𝜖)

 
 

                                     (29) 

 
From above Jacobian matrix we obtain the eigenvalue. 
 

𝜆1 =
1

1+ℎ𝜂
 , 𝜆2 =

1+ℎ𝛼

1+ℎ𝜂+ℎ𝛽
 and  𝜆3 =

1+ℎ𝜅

1+ℎ𝜂+ℎ𝛿+ℎ𝜖
 . 

 
So, this means that  𝜆1 < 1,  𝜆2 < 1, 𝜆3 < 1,  since all eigenvalues are at drinking free equilibrium 

points are less than one. Therefore, numerical scheme will converge to DFE if 𝑅0
𝑆 < 1 , 𝑅0

𝑃 < 1. Hence 
DFE is stable. 
 
6. Graphical Analysis of EULER, RK4 and NSFD Graphs at Different Points 
 

The Euler and RK4 methods can produce divergent solutions at small step sizes due to the explicit 
nature of these methods which can accumulate errors in stiff or nonlinear systems. In contrast, the 
Non-Standard Finite Difference (NSFD) method is designed to preserve the qualitative properties of 
the system, such as positivity and boundedness, leading to convergent solutions even with small step 
sizes. This makes NSFD more suitable for handling complex epidemiological models, ensuring 
numerical stability.  

The Euler and RK4 methods can produce divergent solutions at small step sizes due to the explicit 
nature of these methods as shown in Figures 2-4 which can accumulate errors in stiff or nonlinear 
systems. In contrast, the Non- Standard Finite Difference (NSFD) method is designed to preserve the 
qualitative properties of the system [19] as described in Figures 5-8 such as positivity and 
boundedness, leading to convergent solutions even with each step sizes. This makes NSFD more 
suitable for handling complex epidemiological models, ensuring numerical stability. 

 
 

 
Fig. 2. Euler graphs at h = 3.5  
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Fig. 3. Behavior of Euler at h = 4.7  

 

 
Fig. 4. Fourth Order Runge-Kutta at h = 6.73 

 

  
Fig. 5. Fourth Order Runge-Kutta at h = 6.8 

 

 
Fig. 6. Non-Standard Finite Difference at h = 3.5 
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Fig. 7. Non-Standard Finite Difference at h = 4.7  

 

 
Fig. 8. Non-Standard Finite Difference at h = 6.73 

 
7. Conclusions 
 

In this research work, an accurate and reliable numerical solution of campus drinking epidemic 
model is provided with the help of nonstandard finite difference method. The proposed method 
preserves all important properties possessed by campus drinking epidemic model which shows the 
efficacy of this method. The comparison of proposed method is made with forward Euler method 
and RK-4 method. It is concluded from the simulations that both techniques are failed to give 
accurate solution even at very small step sizes. Moreover, equilibrium points of model are worked 
out and it is noted that the system has two steady states, one is disease free and other is endemic 
equilibrium. Stability at both the steady states is investigated. The role of basic reproduction numbers 

𝑅0
𝑆 and 𝑅0

𝑃 are evaluated. It is mention able that the equilibrium point is locally asymptotically stable, 
when 𝑅0

𝑆  < 1 and unstable when 𝑅0
𝑆 > 1. 
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