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Rotating machinery, gas turbine rotators, and air cleaning equipment are some 
industrial and electronic applications of hybrid nanofluids as heat transfer fluids. 
Considering these potential applications, the axisymmetric flow of a hybrid nanofluid 
towards a permeable rotating disk with a uniform shrinking rate is analysed in the 
current study. Nonlinear ordinary differential equations and boundary conditions are 
generated, using Von Kármán’s transformations, from the governing partial differential 
equations and boundary conditions. Then, a sophisticated bvp4c solver containing 
finite difference code is utilized for solving the boundary value problem numerically. 
Following the discovery of dual solutions, stability analysis is performed, and only the 
first solution is stable. Besides that, the magnitude of the local skin friction coefficient 
is found to increase with the rise of shrinking and injection parameters. However, the 
augmentation of the shrinking and injection parameters reduces and enhances the 
local Nusselt number. Meanwhile, the enhancement of injection parameter is 
observed to reduce the hybrid nanofluid’s momentum and thermal boundary layer 
thickness. 
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1. Introduction 
 

Two or more distinct nanoparticles dispersed in a base fluid create a hybrid nanofluid. Many years 
ago, attempts to find a more efficient and cost-saving heat transfer fluid were executed by Maxwell 
[1] and Masuda et al., [2]. Conventional fluids have a limitation of low heat transfer performance 
owing to the small surface-to-volume ratio available for heat transfer. Both of these studies 
suggested the incorporation of solid particles and ultra-fine particles into conventional fluid (e.g., 
water, ethylene glycol, engine oil, and toluene). It was proven that the thermal conductivity of the 
fluid improves, but the sedimentation of these particles clogged flow passages. Choi and Eastman [3] 
then overcame this problem by introducing nanofluid produced from the dispersion of metallic 
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particles with an average size of 10nm. The nanofluid has more advantages regarding better heat 
transfer performance and stability. Later, researchers analysed hybrid nanofluids. The suspension of 
dissimilar nanoparticles, for example, metal oxide nanoparticles of Al2O3, CuO, ZnO, or TiO2 with 
metallic nanoparticles of Cu, Zn, Ag, or Ni, into the conventional heat transfer fluid is predicted to 
create a fluid with improved thermophysical properties [4]. Besides combining metal oxide with 
metallic nanoparticles, hybrid nanofluid can also be synthesized by combining carbon nanotubes and 
carbides. Like nanofluid, hybrid nanofluid has diverse potential applications as the working fluid in 
manufacturing processes, nuclear cooling systems, drug delivery systems (biomedical field), chemical 
engineering processes, car radiators, and domestic refrigerators [5, 6]. The published works by Nabil 
et al., [7], Eshgarf et al., [8], and Ukueje et al., [9] provide further reading on hybrid nanofluids.  

Before realizing the usage of hybrid nanofluid in real-life applications, researchers did rapid 
studies, either experimentally or theoretically, to understand this fluid’s flow and thermal behaviors. 
The researchers in fluid dynamics conducted various studies to analyze the flow of hybrid nanofluids 
over different solid boundaries and prescribed conditions. Ghadikolaei et al., [10] explored the 
magnetohydrodynamics (MHD) flow of a Carreau hybrid nanofluid over a rotating cone. The hybrid 
nanofluid consists of TiO2 and CuO nanoparticles dispersed in an ethylene glycol-water mixture. The 
increase in viscosity variation parameter enhanced the velocity profiles, but the opposite occurred 
for the increasing values of Weissenberg and Hartman numbers. Meanwhile, the increase in shape 
factors enhanced the local Nusselt number related to heat transfer rate. Dinarvand et al., [11] 
concurred with this observation for the Cu-CuO/blood flows at the stagnation point over a porous 
stretching sheet. Similarly, Khan et al., [12] found that platelet-shaped nanoparticles perform more 
efficiently than brick- and cylindrical-shaped nanoparticles. Besides that, the local Sherwood number 
related to the mass transfer rate increased due to chemical reactions and activation energy in the 
TiO2-Cu/H2O flow through a stretching sheet. Meanwhile, Ahmad and Nadeem [13] discussed the ion 
slip effects on the combined free and forced convection flows of carbon nanotubes hybrid nanofluid 
across a stretching sheet. The ion slip effect enhanced the temperature and horizontal velocity 
profiles. Next, Waini et al., [14] investigated the thermophoresis and Brownian motion in the Al2O3-
Cu/H2O flow past a moving thin needle. The increase in thermophoresis and Brownian motion 
parameters showed a contrasting effect on the nanoparticle concentration. The effects of Joule 
heating on the hybrid nanofluid flow over a contracting cylinder with suction were scrutinized by 
Khashi’ie et al., [15]. Then, Benkhedda et al., [16] evaluated the flows of Ag-TiO2/H2O and TiO2/H2O 
through a horizontal pipe. This investigation concluded that the friction factor of the hybrid nanofluid 
is more significant than that of the nanofluid. Thus, extra pumping power is needed for hybrid 
nanofluid flow compared to the nanofluid. Tulu and Ibrahim [17] then discussed the mixed 
convection flow of MWCNTs-Al2O3/engine oil hybrid nanofluid over a spinning cone. In this flow 
problem, the Nusselt number decreased when the variable thermal conductivity parameter 
increased. The numerical computation of hybrid nanofluid flow across a contracting/expanding sheet 
in the studies by Mousavi et al., [18] and Yahaya and Arifin [19] produced dual solutions. These 
solutions were found in the shrinking case with suction, and the stability analysis identified that only 
one of the dual solutions was stable. Some recent studies on hybrid nanofluid were conducted by 
Nayan et al., [20], Roy and Pop [21], Mahabaleshwar et al., [22], Asghar et al., [23], Mahesh et al., 
[24], Patel et al., [25], and Yahaya et al., [26]. 

The first study of rotating-disk flow was by Von Kármán [27]. He presented the Navier-Stokes 
equations for this problem and introduced the famous transformations to reduce the equations into 
a system of ordinary differential equations. The problem is then solved using the momentum integral 
method. Cochran [28] then presented the asymptotic solution for the flow problem. Ackroyd [29] 
discussed the effects of suction and injection toward the steady flow over a rotating disk. Later, Attia 
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[30] examined these effects towards the unsteady flow with a magnetic field. In these studies, the 
disk was assumed to be permeable to allow suction and injection to occur at the disk surface. Attia 
[30] observed a more significant intensification of magnetic field effects on the flow with injection 
than suction. Takhar et al., [31] expanded the research by introducing the energy equation together 
with the Navier-Stokes equations. It was discovered that an increase in the magnetic field decreases 
the heat transfer rate and surface shear stress in the radial direction while increasing it in the 
tangential direction. Then, Attia [32] studied the MHD flow and heat transfer of non-Newtonian fluid 
past a permeable rotating disk. In contrast to the non-Newtonian parameter, the magnetic field has 
been observed to stabilize the flow. The nanofluid flow over a permeable rotating disk was then 
examined by Rashidi et al., [33] with the effects of entropy generation and magnetic field. The 
decrement in nanoparticle volume fraction, magnetic field, and suction parameters minimizes the 
entropy generation. Turkyilmazoglu [34] considered five different water-based nanofluids (i.e., Cu, 
CuO, Ag, Al2O3, and TiO2) and found that more torque was needed to preserve the steady rotation of 
the disk when Ag, Cu, and CuO nanoparticles were used. Then, Yin et al., [35] discussed the nanofluid 
flow across a rotating disk with radial expansion. The enhancement of the stretching parameter was 
detected to cause the increment of local skin friction and heat transfer rate together with the axial 
and radial velocities. Hayat et al., [36] and Alghamdi [37] then scrutinized the nanofluid flow across 
a rotating disk with a stagnation point and mixed convection, respectively. In the meantime, 
Naganthran et al., [38] and Sarkar and Sahoo [39] obtained dual solutions for the flow problem 
involving a shrinking/stretching rotating disk. Gamachu and Ibrahim [40] analyzed the hybrid 
nanofluid’s rotating-disk flow with the findings of diminishing concentration and temperature 
distributions by the increase in the nanoparticle volume fraction. Meanwhile, Waqas et al., [41], 
Kumar and Mondal [42], and Kumar and Sharma [43] studied the radiative flow of a hybrid nanofluid 
past a rotating disk. The fluid’s temperature profile increased due to the thermal radiation 
parameter. The unsteady MHD rotating-disk flow of hybrid ferrofluid was examined by Waini et al. 
[44]. Pandey and Das [45] studied the hybrid nanofluid flow over a rotating, stretching disk with 
magnetic field effects. Recent investigations on hybrid nanofluid and ternary hybrid nanofluid flow 
over a rotating disk with velocity slips and nonlinear convection were published by Algehyne et al., 
[46] and Ullah et al., [47]. Singla et al., [48] then conducted an intriguing comparative investigation 
on mono, hybrid, and ternary nanofluids flow between two rotating disks. 

The classical rotating-disk flow has many practical applications, such as for rotating machinery, 
gas turbine rotators, thermal power generating systems, electronic apparatus, chemical processes, 
oceanography, the geothermal industry, medical machines, computer storage devices, and air 
cleaning equipment [40]. Thus, incorporating the rotating-disk flow problem with a hybrid nanofluid 
as the working fluid (heat transfer fluid) is relevant for many real-life applications. It is found that the 
study on hybrid nanofluid flow past a permeable, rotating, shrinking disk has not been considered by 
other researchers. Therefore, the current study will analyze the steady flow of Al2O3-Cu/H2O hybrid 
nanofluid over a permeable rotating disk. The disk is assumed to shrink in the radial direction with a 
uniform shrinking rate. The mathematical formulation for the flow problem will be described in the 
next section. Besides that, the familiar Von Kármán’s transformations will be applied to convert the 
governing equations and boundary conditions into a set of ordinary differential equations. Then, 
MATLAB’s bvp4c solver will be used to execute all numerical computations using the finite difference 
code in this solver. Dual solutions generated by the numerical computation at specified values of 
injection and shrinking parameters distinguish this research from others. In order to determine the 
physically realizable and stable solution, it is necessary to execute a stability analysis. The current 
study will provide crucial information on the hybrid nanofluid behaviors in the rotating-disk flow with 
injection and uniform shrinking rate.    
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2. Mathematical Formulation 
 

Consider a hybrid nanofluid’s flow and heat transfer over a rotating disk with an angular velocity 
Ω and a uniform shrinking velocity 𝑢𝑤(𝑟) in the radial direction 𝑟. As depicted in Figure 1, (𝑟, 𝜑, 𝑧) 
are the cylindrical coordinates with the (𝑟, 𝜑)- axes measured along the plane of the disk, and the 
𝑧 −axis is normal to it; the flow occupies the domain 𝑧 ≥ 0. The flow is axially symmetric; thus, 
𝜕/𝜕𝜑 = 0 for all variables. It is presumed that the mass flux velocity is 𝑤𝑤 and the disk’s surface 
temperature is 𝑇𝑤, while 𝑇∞ is the working fluid’s temperature with 𝑇𝑤 > 𝑇∞ for a hot disk. The 
working fluid is a water-based hybrid nanofluid (H2O) that contains alumina (Al2O3) and copper (Cu) 
nanoparticles. Moreover, it is presumed that the base fluid and the suspended nanoparticles are in 
thermal equilibrium and that the nanoparticles have a uniform size and shape and are also in a 
thermal equilibrium state. 

 

 
Fig. 1. The flow problem’s physical representation and 
coordinate system 

 
Under these assumptions, the continuity, momentum, and energy equations are as follows [34], 

[35], [49]: 
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subject to the boundary conditions: 
 
𝑢 = 𝑢𝑤(𝑟) = 𝑎 𝑟,   𝑣 = 𝑣𝑤(𝑟) = Ω 𝑟,   𝑤 = 𝑤𝑤, 𝑇 =  𝑇𝑤    at   𝑧 =  0

  𝑢 = 𝑢𝑒 → 0, 𝑣 = 𝑣𝑒 → 0, 𝑇 → 𝑇∞   as   𝑧 → ∞
}.                (6) 

 
Here, (𝑢, 𝑣, 𝑤) are velocities along (𝑟, 𝜑, 𝑧)- axes of the disk, 𝑝 is the pressure, 𝑇 is the 

temperature, and 𝑎 is a shrinking constant of dimension (time)−1. Further, 
 

𝜇ℎ𝑛𝑓 = 𝜇𝑏𝑓(1 − 𝜙𝐴𝑙2𝑂3 − 𝜙𝐶𝑢)
−2.5

𝜌ℎ𝑛𝑓 = 𝜙𝐴𝑙2𝑂3𝜌𝐴𝑙2𝑂3 + 𝜙𝐶𝑢𝜌𝐶𝑢 + (1 − 𝜙ℎ𝑛𝑓)𝜌𝑏𝑓
𝑘ℎ𝑛𝑓

𝑘𝑏𝑓
= {
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+ 2𝑘𝑏𝑓 + 2(𝜙𝐴𝑙2𝑂3𝑘𝐴𝑙2𝑂3 + 𝜙𝐶𝑢𝑘𝐶𝑢) − 2(𝜙ℎ𝑛𝑓)𝑘𝑏𝑓}  ×
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(𝜌𝐶𝑝)ℎ𝑛𝑓 = 𝜙𝐴𝑙2𝑂3(𝜌𝐶𝑝)𝐴𝑙2𝑂3
+ 𝜙𝐶𝑢(𝜌𝐶𝑝)𝐶𝑢 + (1 − 𝜙ℎ𝑛𝑓)(𝜌𝐶𝑝)𝑏𝑓

and 𝜙ℎ𝑛𝑓 = 𝜙𝐴𝑙2𝑂3 + 𝜙𝐶𝑢

−1

}
 
 
 
 

 
 
 
 

,         (7) 

 
are the correlations from Takabi and Salehi [50] and Devi and Devi [49] for dynamic viscosity (𝜇ℎ𝑛𝑓), 

density (𝜌ℎ𝑛𝑓), thermal conductivity (𝑘ℎ𝑛𝑓), and heat capacity ((𝜌𝐶𝑝)ℎ𝑛𝑓) of the hybrid nanofluid. 

Meanwhile, 𝜙 represents the volume fraction of nanoparticles, and the suffix 𝑏𝑓 refers to the base 
fluid. By referring to Oztop and Abu-Nada [51] and Khashi’ie et al., [52], the physical characteristics 
of the nanoparticles and base fluid are given in Table 1. 

 
Table 1 
Thermophysical characteristics of water, alumina, and copper 

 

 
To solve the governing equations (1) to (6), we take the following similarity transformations [27]: 
 

𝑢 = Ω 𝑟𝑓(𝜂),     𝑣 = Ω 𝑟𝑔(𝜂), 𝑤 = √Ω 𝜈𝑏𝑓 ℎ(𝜂),     𝜃(𝜂) =
𝑇 − 𝑇∞
𝑇𝑤  −   𝑇∞

,      𝜂 = 𝑧√
Ω

𝜈𝑏𝑓
, 

𝑝 − 𝑝∞ = 2 𝜇𝑏𝑓 Ω 𝑝(𝜂).                                                           (8) 

 
Thus, we have: 
 

𝑤𝑤 = √Ω 𝜈𝑏𝑓 𝑆,                                                               (9) 

 
where 𝑆 is the constant mass flux parameter with 𝑆 < 0 for injection and 𝑆 > 0 for suction, 
meanwhile, 𝜈𝑏𝑓 is the kinematic viscosity of water. 

Physical Properties H2O (water) Al2O3 (alumina) Cu (copper) 

𝜌 (𝑘𝑔/𝑚3) 997.1 3970 8933 
𝐶𝑝 (𝐽/𝑘𝑔 𝐾) 4179 765 385 

𝑘 (𝑊/𝑚𝐾) 0.613 40 401 
𝜇 (𝑘𝑔/𝑚𝑠 ) 8.90 × 10−4 - - 
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Ordinary (similarity) differential equations and boundary conditions are obtained after 
substituting (8) into Eq. (1)-(6): 

 
2 𝑓 + ℎ′ = 0,                                                                             (10) 
 
𝐴𝑓′′ − ℎ𝑓′ − 𝑓2 + 𝑔2 = 0,                                                                            (11) 
 
𝐴𝑔′′ − ℎ 𝑔′ − 2𝑓𝑔 = 0,                                                                            (12) 
 
𝐵𝜃′′ − 𝑃𝑟ℎ 𝜃′ = 0,                                                                (13) 
 
𝑔(𝜂) = 1,    𝑓(𝜂) = 𝛽,   ℎ(𝜂) = 𝑆,   𝜃(𝜂) = 1  at    𝜂 = 0    

𝑔(𝜂) → 0,   𝑓(𝜂) → 0,   𝜃(𝜂) → 0     as    𝜂 → ∞     
},                                    (14) 

 
where the prime denotes differentiation with respect to 𝜂, 𝑃𝑟 = (𝜇 𝐶𝑝)𝑏𝑓/𝑘𝑏𝑓 implies the Prandtl 

number, and 𝛽 = 𝑎/Ω represents the shrinking parameter that measures the ratio of radial shrink to 

swirl with 𝛽 = 0 corresponding to the non-shrinking case. In the equations, 𝐴 =
𝜇ℎ𝑛𝑓/𝜇𝑏𝑓

𝜌ℎ𝑛𝑓/𝜌𝑏𝑓
 and 𝐵 =

𝑘ℎ𝑛𝑓/𝑘𝑏𝑓

(𝜌 𝐶𝑝)ℎ𝑛𝑓
/(𝜌 𝐶𝑝)𝑏𝑓

. 

 The quantities of practical interest are the skin friction coefficient 𝐶𝑓 and the local Nusselt 

number 𝑁𝑢𝑟, which are defined as: 
 

𝐶𝑓 =
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,                                              (15) 

 
where 𝜏𝑤𝑟 and 𝜏𝑤𝜑 are the radial and tangential shear stress at 𝑧 = 0, respectively: 
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Using (8), (15) and (16), we obtain: 
 

𝑅𝑒𝑟
1/2
𝐶𝑓 = 

𝜇ℎ𝑛𝑓

𝜇𝑏𝑓
√[𝑓′(0)]2 + [𝑔′(0)]2,     𝑅𝑒𝑟

−1/2
𝑁𝑢𝑟 = − 

𝑘ℎ𝑛𝑓

𝑘𝑏𝑓
𝜃′(0).                                     (17) 

     
 We noticed that for 𝜙ℎ𝑛𝑓 = 0 (classical viscous fluid), the boundary value problem (i.e., Eqs. (10)-

(14)) reduces to those by Rashidi et al., [33] and Turkyilmazoglu [34]. Thus, the numerical 
computation and solutions to the current problem (at 𝜙ℎ𝑛𝑓 = 0) can be validated and compared with 

these studies. The present study will conduct the numerical analysis using MATLAB’s bvp4c solver.       
                            
3. Stability Analysis  
 

Several studies have disclosed the presence of multiple solutions for problems involving the fluid 
flow over a shrinking surface with suction/injection [18], [38], [53]. Since the current problem deals 
with the flow over a permeable shrinking disk, it is interesting to perform stability analysis to 

https://www.sciencedirect.com/science/article/abs/pii/S0045793014000644#!
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determine the stability and significance of the obtained solutions. Time-dependent or unsteady 
equations for the current problem are introduced as: 
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𝑢 
𝜕 𝑣

𝜕 𝑟
+  𝑤 

𝜕 𝑣

𝜕 𝑧
+
𝜕 𝑣

𝜕 𝑡
=

𝜇ℎ𝑛𝑓

𝜌ℎ𝑛𝑓
[
1

𝑟

𝜕

𝜕 𝑟
(𝑟

𝜕𝑣

𝜕 𝑟
) −

𝑣

𝑟2
+ 

𝜕2𝑣

𝜕 𝑧2
] −

𝑢 𝑣

𝑟
,                                 (20) 

 

𝑢 
𝜕 𝑤

𝜕 𝑟
+  𝑤 

𝜕 𝑤

𝜕 𝑧
+
𝜕 𝑤

𝜕 𝑡
=

𝜇ℎ𝑛𝑓

𝜌ℎ𝑛𝑓
[
1

𝑟

𝜕

𝜕 𝑟
(𝑟

𝜕𝑤

𝜕 𝑟
) + 

𝜕2𝑤

𝜕 𝑧2
] −

1

𝜌ℎ𝑛𝑓
 
𝜕 𝑝

𝜕 𝑧
,                                 (21) 

 

𝑢 
𝜕 𝑇

𝜕 𝑟
+  𝑤 

𝜕 𝑇

𝜕 𝑧
+
𝜕 𝑇

𝜕 𝑡
= 

𝑘ℎ𝑛𝑓

(𝜌 𝐶𝑝)ℎ𝑛𝑓
[
1

𝑟
 
𝜕

𝜕 𝑟
(𝑟 

𝜕 𝑇

𝜕 𝑟
) +

𝜕2𝑇

𝜕 𝑧2
],                                                       (22) 

 
and these equations can be simplified using the following similarity transformations: 
 

𝑢 = Ω 𝑟𝑓(𝜂, 𝜏),     𝑣 = Ω 𝑟𝑔(𝜂, 𝜏), 𝑤 = √Ω 𝜈𝑏𝑓 ℎ(𝜂, 𝜏),     𝜃(𝜂, 𝜏) =
𝑇 − 𝑇∞

𝑇𝑤 −  𝑇∞
, 

𝑝 − 𝑝∞ = 2 𝜇𝑏𝑓 Ω 𝑝(𝜂, 𝜏),        𝜂 = 𝑧√
Ω

𝜈𝑏𝑓
,       𝜏 = Ω𝑡,                                               (23) 

 
with 𝜏 as the dimensionless time variable containing time 𝑡. Thus, substituting (23) into Eqs. (18)-(22) 
produces:    
 

2 𝑓 +
𝜕 ℎ

𝜕 𝜂
= 0,                                                                       (24) 

 

𝐴
𝜕2 𝑓

𝜕 𝜂2
− 𝑓2 + 𝑔2 − ℎ

𝜕 𝑓

𝜕 𝜂
−
𝜕 𝑓

𝜕 𝜏
= 0,                                                                                (25) 

 

𝐴
𝜕2 𝑔

𝜕 𝜂2
− ℎ 

𝜕 𝑔

𝜕 𝜂
− 2𝑓𝑔 −

𝜕 𝑔

𝜕 𝜏
= 0,                                                                                    (26) 

 

𝐵
𝜕2 𝜃

𝜕 𝜂2
− 𝑃𝑟ℎ

𝜕 𝜃

𝜕 𝜂
− 𝑃𝑟

𝜕 𝜃

𝜕 𝜏
= 0,                                                                    (27) 

 
subjected to the boundary conditions of: 
 
𝑔(𝜂, 𝜏) = 1,   𝑓(𝜂, 𝜏) = 𝛽,   ℎ(𝜂, 𝜏) = 𝑆,   𝜃(𝜂, 𝜏) = 1     at    𝜂 = 0

 𝑔(𝜂, 𝜏) → 0,    𝑓(𝜂, 𝜏) → 0,   𝜃(𝜂, 𝜏) → 0     as    𝜂 → ∞     
}.                                                    (28) 

 
In accordance with Weidman et al., [54] and Roşca and Pop [55], the following perturbation 

functions are introduced: 
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ℎ(𝜂, 𝜏) = ℎ0(𝜂) + 𝑒
−𝛾𝜏 𝐻(𝜂, 𝜏)

𝑓(𝜂, 𝜏) = 𝑓0(𝜂) + 𝑒
−𝛾𝜏 𝐹(𝜂, 𝜏)

𝑔(𝜂, 𝜏) = 𝑔0(𝜂) + 𝑒
−𝛾𝜏 𝐺(𝜂, 𝜏)

𝜃(𝜂, 𝜏) = 𝜃0(𝜂) + 𝑒
−𝛾𝜏 𝑀(𝜂, 𝜏)}

 

 
,                                                               (29)   

 
that contain exponential functions to describe the development of disturbance in the steady flow 
solutions 𝑓 = 𝑓0(𝜂), 𝑔 = 𝑔0(𝜂), ℎ = ℎ0(𝜂), and 𝜃 = 𝜃0(𝜂) where 𝑓0 ≫ 𝐹(𝜂, 𝜏), 𝑔0 ≫ 𝐺(𝜂, 𝜏), ℎ0 ≫
𝐻(𝜂, 𝜏), and 𝜃0 ≫ 𝑀(𝜂, 𝜏). The eigenvalue problem with 𝛾 as the unknown eigenvalue is obtained 
after substituting (29) into (24)-(28). The solution is said to be stable and meaningful if there exists 
an initial decay of disturbance that is represented by the positive smallest eigenvalue 𝛾1. Otherwise, 
the solution is unstable. The initial decay or growth of disturbance can be determined by setting the 
value of 𝜏 = 0. Thus, 𝐹(𝜂) = 𝐹0(𝜂), 𝐺(𝜂) = 𝐺0(𝜂), 𝐻(𝜂) = 𝐻0(𝜂), and 𝑀(𝜂) = 𝑀0(𝜂). The values 
of 𝛾 can be computed by solving the following linearized eigenvalue problem using the bvp4c solver 
in MATLAB: 
 
2 𝐹0 + 𝐻0

′ = 0,                                                              (30) 
 
𝐴𝐹0

′′ − 2𝑓0𝐹0 + 2𝑔0𝐺0 − ℎ0𝐹0
′ − 𝐻0𝑓0

′ + 𝛾𝐹0 = 0,                                                         (31) 
 
𝐴𝐺0

′′ − ℎ0𝐺0
′ − 𝐻0𝑔0

′ − 2𝑓0𝐺0 − 2𝐹0𝑔0 + 𝛾𝐺0 = 0,                                                        (32) 
 
𝐵𝑀0

′′ − 𝑃𝑟ℎ0𝑀0
′ − 𝑃𝑟𝐻0𝜃0

′ + 𝑃𝑟𝛾𝑀0 = 0,                                                          (33) 
 
𝐹0(0) = 0,   𝐺0(0) = 0,   𝐻0(0) = 0,   𝑀0(0) = 0

𝐹0(𝜂) → 0,    𝐺0(𝜂) → 0, 𝑀0(𝜂) → 0     as    𝜂 → ∞     
}.                                                    (34) 

 
The possible range of 𝛾 (i.e., 𝛾1 < 𝛾2 < 𝛾3 < 𝛾4 < ⋯) can be achieved by relaxing one of the free 
stream boundary conditions in (34). In this study, 𝐹0(𝜂) → 0 is relaxed to form 𝐹0

′(0) = 1 so that the 
smallest eigenvalue 𝛾1 can be attained from the numerical computation of Eqs. (30)-(34). Wahid et 
al., [53] briefly described the method of solutions using the bvp4c solver. 
  
4. Results and Discussion 
 

The boundary value problem (10)-(14) is solved using the bvp4c solver in MATLAB 9.3 R2017b. 
Before any calculations are made, the mathematical formulation and method are checked by 
comparing them with other published studies. The numerical results reported in the studies by 
Rashidi et al., [33] and Turkyilmazoglu [34] are calculated using the shooting and spectral Chebyshev 
collocation methods, respectively. To compare the results, we have set 𝜙𝐴𝑙2𝑂3 = 𝜙𝐶𝑢 = 𝑆 = 𝛽 = 0 

and 𝑃𝑟 = 6.2 to match the previous studies. The comparison of these results is displayed in Table 2. 
As demonstrated in this table, the present results, computed using the bvp4c solver, are well-agreed 
with the results from the previous studies. Thus, it grants confidence in the formulation and method 
employed in the current study. 
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Table 2 
Comparison of results with other published studies 

 Present study Turkyilmazoglu [29] Rashidi et al., [28] 

𝑓′(0) 0.51023 0.51023262 0.510186 
−𝑔′(0) 0.61592 0.61592201 0.61589 
−𝜃′(0) 0.93388 0.93387794 - 

 

The bvp4c solver contains a solinit function that requires an initial guess as an input. Multiple 
solutions are found when various initial guesses generate dissimilar solutions. In the present study, 
two solutions are generated by the solver, which brings about stability analysis of solutions. 
Incorporating injection effects with the selected values of other controlling parameters contributed 
to dual solutions in this flow problem. Meanwhile, the results of the stability analysis are presented 
in Table 3. It can be declared that only the first solution is stable and meaningful, as the smallest 
eigenvalue 𝛾1 is observed to be positive. Hence, the upcoming discussion will focus on the first 
solution.  

 
Table 3 
Smallest eigenvalues 𝛾1 when 𝜙𝐴𝑙2𝑂3 = 𝜙𝐶𝑢 = 0.02,  

𝛽 = −0.3, and 𝑃𝑟 = 6.2 
𝑆 𝛾1 
 First solution Second solution 

-0.4 0.35906 -0.60018 
-0.5 0.36024 -0.67025 
-0.6 0.36317 -0.68629 

 

The local Nusselt number (𝑅𝑒𝑟
−1/2

𝑁𝑢𝑟) and skin friction coefficient (𝑅𝑒𝑟
1/2
𝐶𝑓) are shown in Table 

4 for various values of shrinking and constant mass flux parameters. In this study, dual solutions are 
obtained when considering the shrinking case (i.e., 𝛽 < 0) with injection (i.e., 𝑆 < 0). The values of 

𝑅𝑒𝑟
1/2
𝐶𝑓 are seen to increase with the magnitude of the shrinking parameter. Similar behavior is 

observed as the injection parameter’s magnitude increases. However, the values of 𝑅𝑒𝑟
−1/2

𝑁𝑢𝑟, 
which corresponds to the heat transfer rate, reduce as the shrinking parameter increases; this may 
be due to the reduction of the hot shrinking sheet area available for heat transfer. Nevertheless, the 
augmentation of the injection parameter promotes heat transfer and raises the local Nusselt number.    

    
Table 4 

Values of 𝑅𝑒𝑟
1/2
𝐶𝑓 and 𝑅𝑒𝑟

−1/2
𝑁𝑢𝑟 for 𝜙𝐴𝑙2𝑂3 = 𝜙𝐶𝑢 = 0.02 and 𝑃𝑟 = 6.2 

 

Next, Figure 2 illustrates the effect of the shrinking parameter on the velocity profiles of the hybrid 
nanofluid. The increment in the magnitude of the shrinking parameter affects the radial velocity 
profile at the region near and far from the disk differently. As shown in Figure 2 (a), the increase in 
|𝛽| lowers the radial velocity profile of the hybrid nanofluid near the disk, contrary to the behavior 

𝑆 𝛽 𝑅𝑒𝑟
1/2
𝐶𝑓      𝑅𝑒𝑟

−1/2
𝑁𝑢𝑟 

  First solution Second 
solution 

First solution Second 
solution 

-0.4 -0.3 1.07378 6.51569 1.96347 0.00000 
-0.5 

 
1.10798 5.30981 2.54554 0.00000 

 -0.2 1.09444 5.00381 2.84540 0.00000 
 -0.4 1.14619 5.58995 2.19863 0.00000 

-0.6 -0.3 1.14483 4.49070 3.15579 0.00000 

https://www.sciencedirect.com/science/article/abs/pii/S0045793014000644#!
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observed some distance from the disk. As the disk shrinks in the radial direction, the no-slip condition 
causes the radial velocity of the hybrid nanofluid near the disk to decrease as the shrinking parameter 
increases. After some distance away, the shrinking effects of the disk towards the radial velocity of 
the fluid diminishes. However, the tangential and axial velocity profiles show an increasing behavior 
with |𝛽| at both locations near and far from the shrinking disk, as depicted in Figures 2(b) and 2(c). 
Similarly, as observed in Figure 3, the rise in |𝛽| also raises the temperature profile. The thermal 
boundary layer thickens with |𝛽|, which causes the reduction of the temperature gradient (i.e., 

−𝜃′ (0)) and local Nusselt number, 𝑅𝑒𝑟
−1/2

𝑁𝑢𝑟 (= − 
𝑘ℎ𝑛𝑓

𝑘𝑏𝑓
𝜃′(0)) (see Table 4). 

 

 
(a) 

 

 
(b) 
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(c) 

Fig. 2. Profiles of (a) radial, (b) tangential, and (c) axial velocities with 
different values of the shrinking parameter 

 

 
Fig. 3. Temperature profile with various values of the shrinking parameter 

 
Then, the impacts of the injection parameter (𝑆 < 0) on the velocity profiles are presented in 

Figure 4. In Figure 4(a), the radial velocity increases with |𝑆|. The opposite seems to occur for the 
tangential and axial velocity profiles in Figures 4(b) and 4(c), respectively. Nonetheless, the 
momentum boundary layers in the radial, tangential, and axial directions are noticed to shrink as the 
magnitude of the injection parameter increases. The temperature profile shows the same 
observation (see Figure 5). As the cold hybrid nanofluid is injected through the disk, the temperature 
profile of the fluid decreases as the injection parameter increases. The augmentation of the injection 
parameter then diminishes the thermal boundary layer. Consequently, it enhances the temperature 
gradient that boosts the heat transfer rate and Nusselt number, as obtained in Table 4. 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 4. Profiles of (a) Radial, (b) Tangential and (c) Axial velocities with 
different values of injection parameter 
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Fig. 5. Temperature profile with various values of injection parameter 

 
5. Conclusion 

 
The current study analysed the flow of Al2O3-Cu/H2O over a rotating disk with a uniform shrinking 

rate and injection. A mathematical formulation consisting of differential equations and boundary 
conditions is solved numerically using the bvp4c solver in MATLAB. The findings can be summarized 
as follows: 

 
i. Dual solutions are found, but only the first solution is stable, as verified through the 

stability analysis.  
ii. The augmentation of the shrinking parameter enhances the local skin friction coefficient 

but lowers the local Nusselt number.  
iii. In contrast, the increase in injection parameter raises the local Nusselt number and skin 

friction coefficient. 
 

Since the current study is limited to the flow of a hybrid nanofluid, a comparative analysis for 
mono, hybrid, and ternary nanofluids can be done for future works. Other conditions, such as velocity 
slip, suction, zero mass flux, and thermal radiation, can also be considered and incorporated into the 
mathematical formulation of the flow problem.  
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