Magnetohydrodynamic of Williamson Hybrid Nanofluids Flow Over a Non-Linear Shrinking Sheet with Viscous Dissipation and Joule Heating

Authors

  • Masyfu’ah Mokhtar Centre for Mathematical Sciences, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, 26300 Kuantan, Pahang, Malaysia
  • Abdul Rahman Mohd Kasim Centre for Research in Advanced Fluid and Process, University Malaysia Pahang, Lebuhraya Tun Razak, Pahang, Gambang, 26300, Malaysia
  • Iskandar Waini Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia
  • Nur Syahidah Nordin College of Computing, Informatics and Media, Universiti Teknologi MARA, Johor Branch, Segamat Campus, Johor, Segamat, 85000, Malaysia
  • Siti Farah Haryatie Mohd Kanafiah Mathematical Sciences Studies, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA (UiTM) Kelantan Branch, Machang Campus, 18500, Malaysia
  • Adeosun Adeshina Taofeeq Federal College of Education, 232102 Iwo, Nigeria

DOI:

https://doi.org/10.37934/sej.7.1.3147

Keywords:

Williamson, MHD, viscous dissipation, Joule heating, hybrid nanofluid, shrinking, bvp4c

Abstract

Heat transfer plays a crucial role in various industrial applications. Thus, this study investigates the heat transfer characteristics of a non-Newtonian Williamson hybrid nanofluids flowing over a non-linear shrinking sheet, incorporating MHD effects and viscous dissipation. Alumina and Copper nanoparticles are dispersed in a CMC-water base fluid, representing a non-Newtonian hybrid nanofluid with shear thinning behaviour. The complex mathematical model is transformed into similarity equations using appropriate transformations, and the MATLAB function bvp4c is employed to solve these equations numerically. The model’s accuracy is validated by comparison with an established model, demonstrating reasonable agreement. The study analyses the impact of various fluid parameters, including magnetic, Eckert number, Williamson, suction, and nanoparticle volume fraction, on fluid flow behaviour. Results show that increased suction enhances both the skin friction coefficient and heat transfer rate, while a higher Williamson parameter reduces both. The heat transfer rate decreases with an increase in the Eckert number. Additionally, an increase in the magnetic parameter and nanoparticle volume fraction leads to higher skin friction but a lower heat transfer rate.

Downloads

Download data is not yet available.

Author Biographies

Masyfu’ah Mokhtar, Centre for Mathematical Sciences, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, 26300 Kuantan, Pahang, Malaysia

masyf037@uitm.edu.my

Abdul Rahman Mohd Kasim, Centre for Research in Advanced Fluid and Process, University Malaysia Pahang, Lebuhraya Tun Razak, Pahang, Gambang, 26300, Malaysia

rahmanmohd@umpsa.edu.my

Iskandar Waini, Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia

iskandarwaini@utem.edu.my

Nur Syahidah Nordin, College of Computing, Informatics and Media, Universiti Teknologi MARA, Johor Branch, Segamat Campus, Johor, Segamat, 85000, Malaysia

nursyahidah@uitm.edu.my

Siti Farah Haryatie Mohd Kanafiah, Mathematical Sciences Studies, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA (UiTM) Kelantan Branch, Machang Campus, 18500, Malaysia

siti315@uitm.edu.my

Adeosun Adeshina Taofeeq, Federal College of Education, 232102 Iwo, Nigeria

adeshinata@fceiwo.edu.ng

Downloads

Published

2024-12-31

How to Cite

Mokhtar, M. ., Mohd Kasim, A. R. ., Waini, I. ., Nordin, N. S. ., Mohd Kanafiah, S. F. H. ., & Taofeeq, A. A. . (2024). Magnetohydrodynamic of Williamson Hybrid Nanofluids Flow Over a Non-Linear Shrinking Sheet with Viscous Dissipation and Joule Heating. Semarak Engineering Journal, 7(1), 31–47. https://doi.org/10.37934/sej.7.1.3147

Issue

Section

Articles

Most read articles by the same author(s)