Advancing Heat Transfer: Exploring Nanofluids and Regression analysis on Lower Stagnation Point of a Horizontal Circular Cylinder for Brinkman-Viscoelastic fluid

Authors

  • Farahanie Fauzi Centre for Mathematical Sciences, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Gambang, 26300, Malaysia
  • Abdul Rahman Mohd Kasim Centre for Research in Advanced Fluid and Process, University Malaysia Pahang, Lebuhraya Tun Razak, Pahang, Gambang, 26300, Malaysia
  • Siti Farah Haryatie Mohd Kanafiah Mathematical Sciences Studies, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA (UiTM) Kelantan Branch, Machang Campus, 18500, Malaysia
  • Syazwani Mohd Zokri Mathematical Sciences Studies, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA (UiTM) Terengganu Branch, Kuala Terengganu Campus, 21080, Malaysia
  • Adeosun Adeshina Taofeeq Federal College of Education, 232102 Iwo, Nigeria
  • Siti Hanani Mat Yasin Centre for Mathematical Sciences, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Gambang, 26300, Malaysia

DOI:

https://doi.org/10.37934/sej.7.1.110

Keywords:

Hybrid nanofluids, heat transfer, Brinkman -Viscoelastic model, Carboxymethyl Cellulose (CMC), regression model

Abstract

Nanofluids and hybrid nanofluids are increasingly employed in research, products, and technologies to enhance heat transfer efficiency. Recent investigations have focused on the convective heat transfer of viscoelastic nanofluids flowing through porous media, utilizing the Brinkman-Viscoelastic nanofluid model. In this study, the volume fraction of nanoparticles is used to characterize the nanofluids, while the heat transfer performance is quantified by the Nusselt number. The primary objective is to develop a regression model that evaluates the influence of nanoparticle volume fraction on the Nusselt number using simple linear regression analysis. Copper (Cu) nanoparticles and Carboxymethyl Cellulose (CMC) serve as the nanoparticle and base fluid, respectively. The governing equations for Brinkman-Viscoelastic nanofluid are simplified through non-dimensional and non-similarity transformations to enable analytical treatment. These simplified equations are numerically solved using the Runge-Kutta-Fehlberg method, and the results are used to construct and validate the regression model. This study provides insights into the relationship between nanoparticle concentration and thermal performance, contributing to advancements in heat transfer applications.

Downloads

Download data is not yet available.

Author Biographies

Farahanie Fauzi, Centre for Mathematical Sciences, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Gambang, 26300, Malaysia

farah244@uitm.edu.my

Abdul Rahman Mohd Kasim , Centre for Research in Advanced Fluid and Process, University Malaysia Pahang, Lebuhraya Tun Razak, Pahang, Gambang, 26300, Malaysia

rahmanmohd@ump.edu.my

Siti Farah Haryatie Mohd Kanafiah, Mathematical Sciences Studies, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA (UiTM) Kelantan Branch, Machang Campus, 18500, Malaysia

sitif315@uitm.edu.my

Syazwani Mohd Zokri, Mathematical Sciences Studies, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA (UiTM) Terengganu Branch, Kuala Terengganu Campus, 21080, Malaysia

syazwanimz@uitm.edu.my

Adeosun Adeshina Taofeeq, Federal College of Education, 232102 Iwo, Nigeria

adeshinata@fceiwo.edu.ng

Siti Hanani Mat Yasin, Centre for Mathematical Sciences, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Gambang, 26300, Malaysia

hananimatyasin@gmail.com

Downloads

Published

2024-12-31

How to Cite

Fauzi, F. ., Mohd Kasim , A. R. ., Mohd Kanafiah, S. F. H. ., Mohd Zokri, S. ., Taofeeq, A. A. ., & Mat Yasin, S. H. . (2024). Advancing Heat Transfer: Exploring Nanofluids and Regression analysis on Lower Stagnation Point of a Horizontal Circular Cylinder for Brinkman-Viscoelastic fluid. Semarak Engineering Journal, 7(1), 1–10. https://doi.org/10.37934/sej.7.1.110

Issue

Section

Articles

Most read articles by the same author(s)