Numerical Study on Mixed Convection Stagnation-Point Flow of Reiner-Philippoff Hybrid Nanofluid over a Shrinking Sheet

Authors

  • Nur Syahidah Nordin Centre for Mathematical Sciences, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, 26300 Kuantan, Pahang, Malaysia
  • Abdul Rahman Mohd Kasim Center for Research in Advanced Fluid and Process, University Malaysia Pahang Al-Sultan Abdullah, Gambang, 26300 Kuantan, Pahang, Malaysia
  • Iskandar Waini Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Masyfu’ah Mokhtar Mathematical Sciences Studies, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA (UiTM) Johor Branch, Segamat Campus, 85000 Segamat, Johor, Malaysia
  • Siti Farah Haryatie Mohd Kanafiah Mathematical Sciences Studies, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA (UiTM) Kelantan Branch, Machang Campus, 18500, Malaysia
  • Imran Ullah College of Civil Engineering, National University of Sciences and Technology, Islamabad, Pakistan

DOI:

https://doi.org/10.37934/sijmpe.2.1.2436

Keywords:

Reiner-Philippoff model, Hybrid nanofluid, Mixed convection, Stagnation point, Shrinking sheet

Abstract

This study introduces a mathematical model that addresses the mixed convection stagnation point flow of a non-Newtonian Reiner-Philippoff hybrid nanofluid over a shrinking sheet. Through the application of theoretical assumptions, the governing equations were formulated and subsequently simplified into a set of ordinary differential equations (ODEs). The model facilitates the computation of steady flow solutions utilizing the MATLAB software function bvp4c. The primary objectives of this research include an analysis of the effects of various parameters on flow dynamics and thermal behaviour. These parameters encompass the mixed convection parameter, the solid volume fraction of nanoparticles, and the mass flux parameter, all of which significantly influence flow characteristics. Numerical results have been obtained for critical metrics, including the skin friction coefficient, local Nusselt number, and the velocity and temperature profiles. The findings contribute to a deeper understanding of hybrid nanofluid behaviour in thermal management applications, offering valuable insights for future research endeavours in the domains of fluid dynamics and heat transfer.

Downloads

Author Biographies

Nur Syahidah Nordin, Centre for Mathematical Sciences, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, 26300 Kuantan, Pahang, Malaysia

nsyahidahnordin@uitm.edu.my

Abdul Rahman Mohd Kasim, Center for Research in Advanced Fluid and Process, University Malaysia Pahang Al-Sultan Abdullah, Gambang, 26300 Kuantan, Pahang, Malaysia

rahmanmohd@umpsa.edu.my

Iskandar Waini, Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

iskandarwaini@utem.edu.my

Masyfu’ah Mokhtar, Mathematical Sciences Studies, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA (UiTM) Johor Branch, Segamat Campus, 85000 Segamat, Johor, Malaysia

masyf037@uitm.edu.my

Siti Farah Haryatie Mohd Kanafiah, Mathematical Sciences Studies, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA (UiTM) Kelantan Branch, Machang Campus, 18500, Malaysia

siti315@uitm.edu.my

Imran Ullah, College of Civil Engineering, National University of Sciences and Technology, Islamabad, Pakistan

imran.ullah@mce.nust.edu.pk

Downloads

Published

2025-03-15

How to Cite

Nordin, N. S., Mohd Kasim, A. R., Waini, I., Mokhtar, M., Mohd Kanafiah, S. F. H., & Ullah, I. (2025). Numerical Study on Mixed Convection Stagnation-Point Flow of Reiner-Philippoff Hybrid Nanofluid over a Shrinking Sheet. Semarak International Journal of Mechanical Precision Engineering, 2(1), 24–36. https://doi.org/10.37934/sijmpe.2.1.2436

Issue

Section

Articles