Electromyography Indices of Handgrip Force with Swinging Motion

Authors

  • Wan Hisarudin Wan Abdullah Fakulti Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
  • Wan Mohd Bukhari Wan Daud Fakulti Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
  • Mohammad Osman Tokhi Faculty of Engineering, University of London South Bank, London, United Kingdom
  • Rubita Sudirman Fakulti Kejuruteraan Elektrik, Universiti Teknologi Malaysia, Skudai, 81310 Johor, Malaysia
  • Mohd Juzaila Abd. Latif Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
  • Norafizah Abas Fakulti Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
  • Nur Syuhada Abu Fakulti Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia

DOI:

https://doi.org/10.37934/araset.31.3.126136

Keywords:

Electromyography EMG, maximum voluntary contraction MCV, muscle indices, EMG Indices Handgrip Force

Abstract

Electromyography (EMG) is a powerful tool for studying muscle activity, but there is limited research on EMG signals in the muscles of the human forearm, which poses challenges for prosthetic hand development. This study utilized the maximum voluntary contraction (MVC) normalization method to analyze the flexor carpi radialis muscle during handgrip and swinging motions. The MVC indices revealed a significant proportion of high-amplitude MVC results. We conducted three statistical analyses to validate the indices. One-way ANOVA showed significant differences in mean values among the seven subjects during the percent MVC test. RMS study demonstrated a linear correlation between muscle contraction and movement. Boxplot analysis revealed variations within the interquartile range and median values across the entire MVC range. To achieve these results, we employed an eighth-order Gaussian function for curve fitting and exponential weighted moving average. The median interquartile range showed high discrepancies, while the differences between MVC increments were minimal, providing reliable indices for swinging motion. This suggests that the fat layer thickness may influence the muscle signal's frequency characteristics. In summary, our study highlights the untapped potential of EMG signals in the forearm muscles for prosthetic hand development. By employing MVC normalization and conducting rigorous statistical analyses, we uncovered significant findings that contribute to advancements in this field. Our insights provide hope and inspiration for researchers and practitioners seeking to enhance prosthetic technology.

Downloads

Download data is not yet available.

Author Biographies

Wan Hisarudin Wan Abdullah, Fakulti Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia

p012210002@student.utem.edu.my

Wan Mohd Bukhari Wan Daud, Fakulti Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia

bukhari@utem.edu.my

Mohammad Osman Tokhi , Faculty of Engineering, University of London South Bank, London, United Kingdom

tokhim@lsbu.edu.ac.uk

Rubita Sudirman , Fakulti Kejuruteraan Elektrik, Universiti Teknologi Malaysia, Skudai, 81310 Johor, Malaysia

Rubita Sudirman @ rubita@fke.utm.my

Mohd Juzaila Abd. Latif , Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia

juzaila@utem.edu.my

Norafizah Abas , Fakulti Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia

norafizahabas@utem.edu.my

Nur Syuhada Abu, Fakulti Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia

nursyuhahadaabu8085@gmail.com

Downloads

Published

2023-08-12

How to Cite

Wan Hisarudin Wan Abdullah, Wan Mohd Bukhari Wan Daud, Mohammad Osman Tokhi, Rubita Sudirman, Mohd Juzaila Abd. Latif, Norafizah Abas, & Nur Syuhada Abu. (2023). Electromyography Indices of Handgrip Force with Swinging Motion. Journal of Advanced Research in Applied Sciences and Engineering Technology, 31(3), 126–136. https://doi.org/10.37934/araset.31.3.126136

Issue

Section

Articles