Validation of a Benchmark Methanol Flame using OpenFOAM
Keywords:
Methanol , Modelling, CFD, Validation , Spray , FlameAbstract
The spray combustion simulation includes the modelling of many physical processes that interact with each other such as droplet breakup, evaporation, mixing, and reaction which pose a challenge to the modelling effort. The present study evaluates the accuracy of an unsteady spray combustion solver based on a benchmark methanol spray combustion database. Extensive validation has been done to evaluate the accuracy of the models and improvements to the state-of-the-art of spray combustion model are proposed. A monocomponent fuel, methanol is chosen due to its well established physical and chemical properties. A comprehensive boundary condition for spray is modelled in OpenFOAM to capture the size and velocity of different droplet groups in the radial direction near the burner. A qualitative validation of the global spray-combustion characteristics along with a quantitative validation of the gas phase velocity and droplet size show a good agreement between the simulation and the experiment. The overpredicted inter-phase momentum transfer is observed in the velocity prediction of the gas phase and further supported by the overprediction of the droplet drag. The modified RNG k−ε model shows an enhanced capability in predicting the gas velocity profile in the near-field.