Modeling of Loop Heat Pipe Thermal Performance
Keywords:
Loop heat pipe, modeling, capillary structure, electronics coolingAbstract
The present work deals with the heat transfer performance of a copper-water loop heat pipe (LHP) with a flat oval evaporator in steady-state operation. Modeling the heat transfer in the evaporator was particularly studied, and the evaporation heat transfer coefficient was determined from a dimensionless correlation developed based on experimental data from the literature. The model was based on steady-state energy balance equations for each LHP component. The model results were compared to the experimental ones for various heat loads, cooling temperatures, and elevations, and a good agreement was obtained. Finally, a parametric study was conducted to show the effects of different key parameters, such as the axial conductive heat leaks between the evaporator and the compensation chamber cases, the capillary structure porosity and material, and the groove dimensions.