Unsteady MHD Rear Stagnation-Point Flow of a Hybrid Nanofluid with Heat Generation/Absorption Effect
Keywords:
MHD, unsteady flow, rear stagnation point, hybrid nanofluid, dual solutionsAbstract
The study of unsteady flow is essential in various engineering systems, for instance, the periodic fluid motion and start-up process. Therefore, this numerical study focuses on examining the unsteady magnetohydrodynamics (MHD) rear stagnation-point flow in Al2O3-Cu/H2O hybrid nanofluid past a permeable stretching/shrinking surface with the impact of heat generation/absorption. By choosing a suitable similarity transformation, partial differential equations are transformed into a system of nonlinear ordinary differential equations and solved using the bvp4c function in the MATLAB package. The effects of the solution domain’s operating parameters are analyzed, and dual solutions are observable as the sheet shrinks. It is found that the addition of the suction parameter escalates the heat transfer efficiency. Eventually, the existence of the unsteadiness parameter and the heat generation/absorption effect significantly encourage heat transfer deterioration.