CFD Modelling and Simulation of the Thermal Management in a Polymer Electrolyte Membrane (PEM) Fuel Cell Stack
DOI:
https://doi.org/10.37934/arnht.27.1.113Keywords:
PEM fuel cell stack, COMSOL Multiphysics, temperature distribution, electric potential, water activityAbstract
Polymer Electrolyte Membrane fuel cells are a promising technology for clean energy conversion due to their high efficiency and low emissions. However, one of the critical challenges in the operation of fuel cells is the effective management of temperature and humidity within the fuel cell stack. Uneven temperature distribution can cause uneven water vapor condensation, leading to performance inconsistencies among individual cells in the stack. This necessitates a comprehensive understanding and control of the thermal and humidity dynamics within the fuel cell stack to ensure optimal performance and longevity. In this study, with the use of COMSOL Multiphysics, a mathematical polymer exchange membrane fuel cell stack model is designed and is applied to assess the thermal control of a stack of polymer exchange membrane fuel cell made up of two end plates, five membranes electrode assembly, and five cells. The boundary conditions are established and the mathematical equations are numerically solved. The obtained results indicate that that the thermal and electrochemical performance within the fuel cell stack is significantly influenced by the distribution of cooling flow and gas reactants. Higher temperatures near the outlet highlight the importance of optimizing cooling strategies to prevent overheating and ensure uniform temperature distribution. Moreover, the observed variations in relative humidity suggest that water management is crucial for avoiding flooding, particularly in the first and last cells. This study also reveals the intricate relationship between temperature, humidity, and gas flow, which must be carefully balanced to prevent performance degradation. These insights suggest that optimizing the thermal and humidity management strategies is crucial for improving the durability and reliability of polymer exchange membrane fuel cell stacks.
Downloads
References
Habib, Mohamed A., Gubran AQ Abdulrahman, Awad BS Alquaity, and Naef AA Qasem. "Hydrogen combustion, production, and applications: A review." Alexandria Engineering Journal 100 (2024): 182-207. https://doi.org/10.1016/j.aej.2024.05.030 DOI: https://doi.org/10.1016/j.aej.2024.05.030
Verma, Amit Kumar, Prerna Tripathi, Akhoury Sudhir Kumar Sinha, and Shikha Singh. "Advanced Materials in Energy Conversion Devices: Fuel Cells and Biofuel Cells." Smart Materials for Science and Engineering (2024): 269-285. https://doi.org/10.1002/9781394186488.ch13 DOI: https://doi.org/10.1002/9781394186488.ch13
Parthiban, D., D. Rajesh, Iyan Kumar, and K. Muninathan. "Performance Optimisation of Proton Exchange Membrane Fuel Cell by Modifying Anode Flow Field Design." Advanced Energy Conversion Materials (2024): 224-239. https://doi.org/10.37256/aecm.5220244684 DOI: https://doi.org/10.37256/aecm.5220244684
Kabouchi, Kaoutar, Mohamed Karim Ettouhami, Hamid Mounir, and Khalid Elbikri. "Performance Investigation of PEM Fuel Cell with Three-Pass Serpentine Flow Fields under Varying Operating Voltages." CFD Letters 16, no. 10 (2024): 54-63. https://doi.org/10.37934/cfdl.16.10.5463 DOI: https://doi.org/10.37934/cfdl.16.10.5463
Rolo, Inês, Vítor AF Costa, and Francisco P. Brito. "Hydrogen-Based Energy Systems: Current Technology Development Status, Opportunities and Challenges." Energies 17, no. 1 (2023): 180. . https://doi.org/10.3390/en17010180 DOI: https://doi.org/10.3390/en17010180
Herlambang, Yusuf Dewantoro, Fatahul Arifin, Totok Prasetyo, and Anis Roihatin. "Numerical analysis of phenomena transport of a proton exchange membrane (PEM) fuel cell." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 80, no. 2 (2021): 127-135. https://doi.org/10.37934/arfmts.80.2.127135 DOI: https://doi.org/10.37934/arfmts.80.2.127135
Lindorfer, Johannes, Daniel Cenk Rosenfeld, and Hans Böhm. "Fuel cells: Energy conversion technology." In Future energy, pp. 495-517. Elsevier, 2020. https://doi.org/10.1016/B978-0-08-102886-5.00023-2 DOI: https://doi.org/10.1016/B978-0-08-102886-5.00023-2
Sapkota, Prabal, Cyrille Boyer, Rukmi Dutta, Claudio Cazorla, and Kondo-Francois Aguey-Zinsou. "Planar polymer electrolyte membrane fuel cells: powering portable devices from hydrogen." Sustainable Energy & Fuels 4, no. 2 (2020): 439-468. https://doi.org/10.1039/C9SE00861F DOI: https://doi.org/10.1039/C9SE00861F
Ragupathy, Pitchai, Santoshkumar Dattatray Bhat, and Nallathamby Kalaiselvi. "Electrochemical energy storage and conversion: An overview." Wiley Interdisciplinary Reviews: Energy and Environment 12, no. 2 (2023): e464. https://doi.org/10.1002/wene.464 DOI: https://doi.org/10.1002/wene.464
Pramuanjaroenkij, Anchasa, and Sadık Kakaç. "The fuel cell electric vehicles: The highlight review." International Journal of Hydrogen Energy 48, no. 25 (2023): 9401-9425. https://doi.org/10.1016/j.ijhydene.2022.11.103 DOI: https://doi.org/10.1016/j.ijhydene.2022.11.103
Zhang, Shidong, Steffen Hess, Holger Marschall, Uwe Reimer, Steven Beale, and Werner Lehnert. "openFuelCell2: A new computational tool for fuel cells, electrolyzers, and other electrochemical devices and processes." Computer Physics Communications 298 (2024): 109092. https://doi.org/10.1016/j.cpc.2024.109092 DOI: https://doi.org/10.1016/j.cpc.2024.109092
Dincer, Ibrahim, and Canan Acar. "A review on clean energy solutions for better sustainability." International Journal of Energy Research 39, no. 5 (2015): 585-606. https://doi.org/10.1002/er.3329 DOI: https://doi.org/10.1002/er.3329
Giorgi, Leonardo, and Fabio Leccese. "Fuel cells: Technologies and applications." The Open Fuel Cells Journal 6, no. 1 (2013): 1-20. https://doi.org/10.2174/1875932720130719001 DOI: https://doi.org/10.2174/1875932720130719001
Aminudin, M. A., S. K. Kamarudin, B. H. Lim, E. H. Majilan, M. S. Masdar, and N. Shaari. "An overview: Current progress on hydrogen fuel cell vehicles." International Journal of Hydrogen Energy 48, no. 11 (2023): 4371-4388. https://doi.org/10.1016/j.ijhydene.2022.10.156 DOI: https://doi.org/10.1016/j.ijhydene.2022.10.156
Kabouchi, Kaoutar, Mohamed Karim Ettouhami, and Hamid Mounir. "Simulation Examination of the Impact of Operating Parameters on a High-Temperature Proton Exchange Membrane Fuel Cell." Mathematical Modelling of Engineering Problems 11, no. 6 (2024). https://doi.org/10.18280/mmep.110624 DOI: https://doi.org/10.18280/mmep.110624
Yakut, Yurdagül Benteşen. "A new control algorithm for increasing efficiency of PEM fuel cells–Based boost converter using PI controller with PSO method." International Journal of Hydrogen Energy 75, (2023): 1-11. https://doi.org/10.1016/j.ijhydene.2023.12.008 DOI: https://doi.org/10.1016/j.ijhydene.2023.12.008
Arif, Muhammad, Sherman CP Cheung, and John Andrews. "Different approaches used for modeling and simulation of polymer electrolyte membrane fuel cells: A review." Energy & Fuels 34, no. 10 (2020): 11897-11915. https://doi.org/10.1021/acs.energyfuels.0c02414 DOI: https://doi.org/10.1021/acs.energyfuels.0c02414
Ferreira, Rui B., Diogo FM Santos, A. M. F. R. Pinto, and D. S. Falcão. "Development and testing of a PEM fuel cell stack envisioning unmanned aerial vehicles applications." International Journal of Hydrogen Energy 51 (2024): 1345-1353. https://doi.org/10.1016/j.ijhydene.2023.05.090 DOI: https://doi.org/10.1016/j.ijhydene.2023.05.090
Mahato, Neelima, Hyeji Jang, Archana Dhyani, and Sunghun Cho. "Recent progress in conducting polymers for hydrogen storage and fuel cell applications." Polymers 12, no. 11 (2020): 2480. https://doi.org/10.3390/polym12112480 DOI: https://doi.org/10.3390/polym12112480
Wang, X. R., Y. Ma, J. Gao, T. Li, G. Z. Jiang, and Z. Y. Sun. "Review on water management methods for proton exchange membrane fuel cells." International Journal of Hydrogen Energy 46, no. 22 (2021): 12206-12229. https://doi.org/10.1016/j.ijhydene.2020.06.211 DOI: https://doi.org/10.1016/j.ijhydene.2020.06.211
Madheswaran, Dinesh Kumar, Arunkumar Jayakumar, and Edwin Geo Varuvel. "Recent advancement on thermal management strategies in PEM fuel cell stack: a technical assessment from the context of fuel cell electric vehicle application." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44, no. 2 (2022): 3100-3125. https://doi.org/10.1080/15567036.2022.2058122 DOI: https://doi.org/10.1080/15567036.2022.2058122
Chen, Yong, Louise Enearu, Diogo Montalvão, and Thamo Sutharssan. "A Review of Computational Fluid Dynamics Simulations on PEFC Performance." Journal of Applied Mechanical Engineering (2016). https://doi.org/10.4172/2168-9873.1000241 DOI: https://doi.org/10.4172/2168-9873.1000241
Yu, Zeting, Lei Xia, Guoping Xu, Changjiang Wang, and Daohan Wang. "Improvement of the three-dimensional fine-mesh flow field of proton exchange membrane fuel cell (PEMFC) using CFD modeling, artificial neural network and genetic algorithm." International Journal of Hydrogen Energy 47, no. 82 (2022): 35038-35054. https://doi.org/10.1016/j.ijhydene.2022.08.077 DOI: https://doi.org/10.1016/j.ijhydene.2022.08.077
Gopi, K. H., A. Nambi, and N. Rajalakshmi. "Design and development of open cathode PEM fuel cell–flow analysis optimization by CFD." Fuel Cells 20, no. 1 (2020): 33-39. https://doi.org/10.1002/fuce.201900124 DOI: https://doi.org/10.1002/fuce.201900124
Sarjuni, C. A., B. H. Lim, E. H. Majlan, and M. I. Rosli. "A review: Fluid dynamic and mass transport behaviour in a proton exchange membrane fuel cell stack." Renewable and Sustainable Energy Reviews 193 (2024): 114292. https://doi.org/10.1016/j.rser.2024.114292 DOI: https://doi.org/10.1016/j.rser.2024.114292
Kim, Youchan, Kisung Lim, Hassan Salihi, Seongku Heo, and Hyunchul Ju. "The Effects of Stack Configurations on the Thermal Management Capabilities of Solid Oxide Electrolysis Cells." Energies 17, no. 1 (2023): 125. https://doi.org/10.3390/en17010125 DOI: https://doi.org/10.3390/en17010125
Zhang, Caizhi, Yuqi Zhang, Lei Wang, Xiaozhi Deng, Yang Liu, and Jiujun Zhang. "A health management review of proton exchange membrane fuel cell for electric vehicles: Failure mechanisms, diagnosis techniques and mitigation measures." Renewable and Sustainable Energy Reviews 182 (2023): 113369. https://doi.org/10.1016/j.rser.2023.113369 DOI: https://doi.org/10.1016/j.rser.2023.113369
Wang, Junye. "Barriers of scaling-up fuel cells: Cost, durability and reliability." Energy 80, (2015): 509-521. https://doi.org/10.1016/j.energy.2014.12.007 DOI: https://doi.org/10.1016/j.energy.2014.12.007
Shan, Yuyao, and Song-Yul Choe. "Modeling and simulation of a PEM fuel cell stack considering temperature effects." Journal of Power Sources 158, no. 1 (2006): 274-286. https://doi.org/10.1016/j.jpowsour.2005.09.053 DOI: https://doi.org/10.1016/j.jpowsour.2005.09.053
Kvesić, Mirko, Uwe Reimer, Dieter Froning, Lukas Lüke, Werner Lehnert, and Detlef Stolten. "3D modeling of a 200 cm2 HT-PEFC short stack." International journal of hydrogen energy 37, no. 3 (2012): 2430-2439. https://doi.org/10.1016/j.ijhydene.2011.10.055 DOI: https://doi.org/10.1016/j.ijhydene.2011.10.055
Mustata, Radu, Luis Valino, Félix Barreras, María Isabel Gil, and Antonio Lozano. "Study of the distribution of air flow in a proton exchange membrane fuel cell stack." Journal of Power Sources 192, no. 1 (2009): 185-189. https://doi.org/10.1016/j.jpowsour.2008.12.083 DOI: https://doi.org/10.1016/j.jpowsour.2008.12.083
Mayyas, Abdel Raouf, Dilip Ramani, Arunachala M. Kannan, Keng Hsu, Ahmad Mayyas, and Tony Schwenn. "Cooling strategy for effective automotive power trains: 3D thermal modeling and multi-faceted approach for integrating thermoelectric modules into proton exchange membrane fuel cell stack." International journal of hydrogen energy 39, no. 30 (2014): 17327-17335. https://doi.org/10.1016/j.ijhydene.2014.08.034 DOI: https://doi.org/10.1016/j.ijhydene.2014.08.034
Liu, Zhixiang, Zongqiang Mao, Cheng Wang, Weilin Zhuge, and Yangjun Zhang. "Numerical simulation of a mini PEMFC stack." Journal of Power Sources 160, no. 2 (2006): 1111-1121. https://doi.org/10.1016/j.jpowsour.2006.03.001 DOI: https://doi.org/10.1016/j.jpowsour.2006.03.001
Kabouchi, Kaoutar, Mohamed Karim Ettouhami, and Hamid Mounir. "Computational Modeling of the Thermal Behavior in Passive Proton Exchange Membrane Fuel Cell." In 2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), pp. 1-6. IEEE, 2024. https://doi.org/10.1109/IRASET60544.2024.10549619 DOI: https://doi.org/10.1109/IRASET60544.2024.10549619
Sierra, J. M., S. J. Figueroa-Ramírez, S. E. Díaz, J. Vargas, and P. J. Sebastian. "Numerical evaluation of a PEM fuel cell with conventional flow fields adapted to tubular plates." International journal of hydrogen energy 39, no. 29 (2014): 16694-16705. https://doi.org/10.1016/j.ijhydene.2014.04.078 DOI: https://doi.org/10.1016/j.ijhydene.2014.04.078
Macedo-Valencia, J., J. M. Sierra, S. J. Figueroa-Ramírez, S. E. Díaz, and M. Meza. "3D CFD modeling of a PEM fuel cell stack." International journal of hydrogen energy 41, no. 48 (2016): 23425-23433. https://doi.org/10.1016/j.ijhydene.2016.10.065 DOI: https://doi.org/10.1016/j.ijhydene.2016.10.065